
 
Dynamic Controllability of Temporally-flexible Reactive Programs 

 

Robert Effinger*+, Brian Williams+, Gerard Kelly‡, and Michael Sheehy‡  
 

 *Charles Stark Draper Laboratory, Inc. 
 Autonomous Mission Control Group 

555 Technology Square 
Cambridge, MA 02139-3563 

reffinger@draper.com 
 
 

+Massachusetts Institute of Technology 
Model-based Embedded and Robotic Systems 

CSAIL, 32 Vassar St. Room 32-226 
Cambridge, MA 02139 

effinger@mit.edu, williams@mit.edu 

 

‡University of Limerick  
CTVR, Stokes Institute 

Engineering Research Bld. ERO-006, 
Limerick, Ireland 

gkelly@mit.edu, msheehy@mit.edu

Abstract 
In this paper we extend dynamic controllability of 
temporally-flexible plans to temporally-flexible reactive 
programs.  We consider three reactive programming 
language constructs whose behavior depends on runtime 
observations; conditional execution, iteration, and exception 
handling. Temporally-flexible reactive programs are 
distinguished from temporally-flexible plans in that program 
execution is conditioned on the runtime state of the world.  
In addition, exceptions are thrown and caught at runtime in 
response to violated timing constraints, and handled 
exceptions are considered successful program executions.  
Dynamic controllability corresponds to a guarantee that a 
program will execute to completion, despite runtime 
constraint violations and uncertainty in runtime state.  An 
algorithm is developed which frames the dynamic 
controllability problem as an AND/OR search tree over 
possible program executions.  A key advantage of this 
approach is the ability to enumerate only a subset of 
possible program executions that guarantees dynamic 
controllability, framed as an AND/OR solution subtree.   

 Introduction   
In the field of AI planning, temporal reasoning plays a 
central role.  Many planning applications involve complex 
temporal relationships that must be satisfied for a plan to 
succeed.  In order to be robust to uncertainty, many of 
these applications require flexibility in the timing of 
actions, both at planning and execution time.  To achieve 
this robustness, the planning community has developed a 
family of constraint formalisms to model and reason 
efficiently over large networks of flexible temporal 
constraints. Such formalisms include; the temporal 
constraint network (TCN) (Dechter, Meiri, and Pearl 
1991), the disjunctive temporal problem (DTP) (Stergiou 
and Koubarakis 1998), the temporal plan network (TPN) 
(Kim, Williams, and Abrahmson 2001), the simple 
                                                 
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

temporal problem under uncertainty (STPU) (Vidal and 
Fargier 1999), and the conditional temporal problem (CTP) 
(Tsamardinos, Vidal and Pollack 2003).  The CTP 
formalism is distinguished in that it supports both flexible 
temporal constraints and runtime observations.  A host of 
temporal reasoning algorithms and complexity results have 
been developed along with these temporal formalisms, 
such as (Stergiou and Koubarakis 2001) and (Morris, 
Muscettola, and Vidal 2001).  Central to these algorithms 
is the notion of controllability.  Although the terminology 
differs between formalisms, the central question asked by 
each is: “Does an execution strategy exist in which the 
specified timing constraints are guaranteed to be 
satisfied?”  The answer to this question may vary based on 
the information available to the plan’s executive at 
runtime.  This distinction has guided the community 
towards defining three separate notions of controllability: 
weak, strong, and dynamic controllability.  Strong 
controllability requires no information at runtime in order 
to succeed, weak controllability requires all information 
ahead of time, and dynamic controllability requires 
information only as it becomes available.   
 In this paper, we extend dynamic controllability to 
temporally-flexible reactive programs with three reactive 
programming language constructs; conditional execution, 
iteration, and exception handling.  The proposed language 
is an extension of the Reactive Model-based Programming 
Language (RMPL) (Williams, et. al. 2003) and is 
interpreted graphically as a Temporal Plan Network.  
RMPL also supports; simple temporal constraints, parallel 
and sequential composition, and non-deterministic choice.  
We choose to view the dynamic controllability problem as 
a two-player game between the executive and the 
environment.  The executive picks times for controllable 
timepoints and makes choices for controllable choice 
points.  Alternatively, the environment picks times for 
uncontrollable timepoints and makes choices for 
uncontrollable choice points.  The executive is allowed to 
observe the outcome of uncontrollable timepoints and 
choice points as they occur, and then use that information 
to dynamically schedule future controllable timepoints and 



choice points in order to guarantee successful program 
execution. An algorithm is developed which frames the 
dynamic controllability problem as an AND/OR search 
tree (Dechter and Mateescu 2007) over possible program 
executions.   
 Next we give a simple example of a temporally-flexible 
reactive program, and we review some necessary 
background material.  Then, we define temporally-flexible 
reactive programs, and develop an algorithm for 
determining dynamic controllability.  We conclude with a 
summary and discussion of the experimental results.  
 
A Simple Example 
Consider a whole-arm manipulator (WAM) pick-and-place 
task, depicted in Figure 1.  The WAM moves to waypoint 
W1 (to its left), then down to the ground to grasp an object.  
After grasping the object, the WAM moves back to W1, 
travels through W2, and onto W3.  Then, the WAM lowers 
to the ground to release the object.  The portion of the task 
in-which the arm moves from W1 through W2 to W3 is 
encoded in RMPL in Figure 1.  This example demonstrates 
the use of reactive language constructs to improve plan 
flexibility and robustness in achieving a goal; “to be at 
W3”.  Each “go” activity has a flexible timing constraint 
and a flexible operating region (depicted at the top right of 
Figure 1) which it should not leave.  If an obstacle is 
observed between W1 and W2, the program specifies an 
alternate route through W2north.  If the WAM is displaced 
from its operating region, a contingency is invoked; the 
WAM returns to the home position.  The until construct is 
used to attempt the task two times before giving up and 
remaining at the home position.  For example, consider the 
plot at the bottom right of Figure 1.  The WAM was 
physically disturbed from its operating region several times 
between W1 and W3.  The trajectory taken by the WAM 
each time to return to the home position is plotted.  
Dynamic controllability in this example corresponds to a 
guarantee that the WAM will end up either at the goal, W3, 
or at a safe contingency location, the home position, within 
40 seconds (i.e. with no uncaught exceptions). 

Figure 1: A Simple WAM Example 

Background 
We briefly review some necessary background material: 
   • Consistency for STPs, DTPs, and TPNs 
   • Weak, strong, dynamic controllability for STNU  
   • Weak, strong, dynamic consistency for CTP  
   • AND/OR search 

Consistency for STPs, DTPs, and TPNs   
The simple temporal problem (STP), the disjunctive 
temporal problem (DTP), and the temporal plan network 
(TPN) are all graphical models for analyzing temporally 
flexible networks of activities.  In each model, a graph is 
constructed which consists of nodes and edges, ,v e . 
Nodes represent instantaneous timepoints (real-valued 
variables), while edges represent timing constraints 
between nodes.  An example of each is shown in Figure 2.  
In an STP, each edge from node i to node j is labeled with 
an interval, [lb,ub], which represents a metric timing 
constraint, lb <= Xj - Xi <= ub.  DTPs and TPNs generalize 
STPs by allowing disjunctions between timing constraints.  
The DTP and TPN differ from one another slightly; the 
DTP can be mapped into a meta-CSP while the TPN can 
be mapped into a meta-Conditional CSP as demonstrated 
in (Tsamardinos and Pollack 2003) and (Effinger 2006).   

            Figure 2: An Example STP, DTP, and TPN  
 
 Consistency for an STP is defined as finding one or 
more complete set of time assignments to each timepoint 
such that all constraints are satisfied.  STP consistency can 
be determined in polynomial time by framing the problem 
as an all-pairs shortest path problem (Dechter, Meiri, and 
Pearl 1991).  A consistent STP may then be dispatched 
efficiently by reformulating the all-pairs graph into a 
minimal dispatchable network (Muscettola, et. al. 1998). 
Consistency for DTPs and TPNs is determined by framing 
disjunctive choices among timing constraints as a meta-
CSP.  The meta-CSP is solved by traditional CSP search.  
A solution to a meta-CSP is a complete set of choices to 
the disjunctions among timing constraints in-which the 
selected component STP is consistent.  Once found, a 
consistent component STP can be dispatched using the 
STP technique described above.  An algorithm has also 
been developed to dispatch DTPs directly, retaining more 
flexibility at runtime (Tsamardinos, et. al. 2001).  
 
Weak, Strong, Dynamic Controllability for STPU 
In many applications, activity durations are not under the 
control of the executing agent and instead depend on 
external factors. To address this issue, the Simple 
Temporal Problem with Uncertainty (STPU) was 
developed.  STPUs are similar to STPs except that edges 
are divided into controllable and uncontrollable edges 
(Vidal and Fargier 1999).  The uncontrollable edges 
represent activities of uncertain duration, whose finish 
timepoints are controlled by nature, termed uncontrollable 

STP: TPN:

Equivalent RMPL expression:
choose(

sequence( A[2,4]; B[1,2] )    
sequence( C[1,3]; D[5,8] )

) 

A[1,3]
B[2,4]

C[2,5]

A [2,4]

C [1,3]
D [0,10]

DTP:

B [5,10]

A[2,4] B[1,2]
[0,0]

C[1,3] D[5,8]
[0,0] [0,0]

[0,0]

A    B     C (A    B)    (C D) (A    B)    (C D)

Home

W1

W2
W3

W1

W2

W1W2W3

W2northHome[0,40] method go() 
{  

until( in(W3) , 2 ){
try{

[1.5,3] goW1();
if(obst){[3,5]goW2north();}
else{ [1.5,3] goW2(); }           
[1.5,3] goW3();

}catch(e){
[5,10] goHome();

}
}

}



timepoints.  All other timepoints are controllable 
timepoints, which are freely controllable by the executive. 
 The definition of consistency for an STP needs to be 
extended for an STPU because the executive does not get 
to pick the times of execution for uncontrollable 
timepoints.  Instead, an execution strategy is needed for 
assigning times to just the controllable timepoints such that 
all constraints are satisfied regardless of the values taken 
by the uncontrollable timepoints.  Several such execution 
strategies exist, and they are classified in Figure 3, based 
on the information available to the agent at runtime.  

Figure 3: STNU Controllability Classifications 
Weak, Strong, Dynamic Consistency for CTP 
The Conditional Temporal Problem (CTP) (Tsamardinos, 
Vidal, and Pollack 2003) augments the STP and DTP 
formalisms with observation nodes.  Observation nodes 
have outgoing edges with labels attached that are 
associated with runtime observations.  The CTP formalism 
allows for the analysis of plans with conditional threads of 
execution and flexible temporal constraints.   Similarly to 
the STNU, in Figure 4, three notions of consistency are 
defined for the CTP; weak, strong, and dynamic 
consistency.  The term consistency is used instead of 
controllability because all CTP timepoints are controllable. 

Figure 4: CTP Consistency Classifications 
 

 The CTP dynamic consistency checking algorithm 
reformulates the original CTP into a DTP which explicitly 
encodes the requirements for dynamic consistency; 
namely, that scheduling decisions may only depend on  

observations that have occurred in the past.  This is 
accomplished by enumerating all possible component STPs 
for a CTP, called execution scenarios, and placing them in 
a parallel network by conjoining each scenario’s start and 
end nodes.  Then, disjunctive constraints are added to the 
network to ensure that identical nodes across scenarios are 
only scheduled independently after a distinguishing 
observation has been made.  The disjunctive constraints 
plus the underlying component STPs constitute a new DTP 
which is then checked for dynamic consistency using 
existing DTP solving techniques.  If the reformulated DTP 
is consistent, then the original CTP is dynamically 
consistent.  The reformulated DTP is then executed using 
the standard DTP dispatching techniques. 
 
AND/OR Search 
An AND/OR search tree is defined by a 4-tuple

0, , ,GS O S s  (Dechter and Mateescu 2007).  S is a set of 
states partitioned into OR states and AND states. O is a 
set of two operators.  The OR operator generates children 
states for an OR state, which represent alternative ways for 
solving a problem.  The AND operator generates children 
states for an AND state, which represents a decomposition 
into subproblems, all of which need to be solved.  The start 
state, s0, is the only state with no parent state.  States with 
no children are called terminal states, GS and are marked 
as Solved (S) or Unsolved (U). 
 
A solution subtree, T, of an AND/OR search tree is a 
subtree which: 
       (1)  Contains the start state, s0. 
       (2)  If state n in T is an OR state, then exactly one  
               child state of n must be in T. 
       (3)   If state n in T is an AND state, then all child states  
               of n must be in T. 
       (4)   All terminal nodes are “Solved” (S). 
 
A common example of AND/OR search is the two-player 
game.  Consider a simple example shown in Figure 5.  
Both a hero and a villain 
pick a number from the set, 
{0,2}.  If the additive total 
equals two, the hero wins, 
otherwise the villain wins. 
The possible outcomes are 
shown in Figure 5.  In 
Figure 6a, the AND/OR 
tree is depicted for the case where the villain must choose 
first.  In Figure 6b, the AND/OR tree is depicted for the 
case where the hero must choose first.  Notice that a 
subtree which satisfies the definition of a solution subtree 
is available for case 6a but not for case 6b.  To be 
guaranteed a win (i.e. to be “dynamically controllable”) the 
hero must be allowed to choose last.  Otherwise the villain 
can foil the hero.   
 
 
 

STNU 
Controllability Description

Weak
Controllability

An execution strategy that is guaranteed to succeed for only 
one set of values taken by the uncontrollable timepoints at 
runtime.  This strategy assumes that uncontrollable durations 
are known or can be predicted a-priori.

Strong 
Controllability

A static execution strategy that is guaranteed to succeed for 
all possible sets of values taken by the uncontrollable 
timepoints at runtime.  This strategy doesn’t need any 
knowledge at runtime to succeed.

Dynamic 
Controllability

A dynamic execution strategy that is guaranteed to succeed 
for all possible sets of values taken by the uncontrollable 
timepoints at runtime.  This strategy relies on knowledge 
acquired at runtime in order to dynamically schedule future 
timepoints in order to satisfy all timing constraints.  Hence, 
this strategy needs access to all runtime information as it 
becomes available.

CTP
Consistency Description

Weak
Consistency

An execution strategy that is guaranteed to succeed for only 
one set of observations that may occur at runtime.  This 
strategy assumes that all observations can be predicted or are 
known a-priori.

Strong 
Consistency

A static execution strategy that is guaranteed to succeed for 
all possible sets of observations that may occur at runtime.  
This strategy doesn’t need any observational data at runtime 
to succeed.

Dynamic 
Consistency

A dynamic execution strategy that relies on observations 
acquired at runtime in order to dynamically schedule future 
choices and timepoints in order to satisfy all timing 
constraints.  This strategy needs access to runtime 
observations as they become available.

Hero Villain Outcome

0 0 (U)

0 2 (S)

2 0 (S)

2 2 (U)

Figure 5: Hero/Villain Example



Figure 6: a. And/Or search tree when Villain goes first. 
                  b. And/Or search tree when Hero goes first. 
                  c. And/Or solution subtree for a. 
                  d. No valid And/Or solution subtree exists for b. 

Temporally-flexible Reactive Programs 
In this section, we introduce temporally-flexible reactive 
programs consisting of seven constructs; conditional 
execution, iteration, exception handling, non-deterministic 
choice, parallel and sequential composition, and simple 
temporal constraints.  The proposed language is an 
extension of the Reactive Model-based Programming 
Language (RMPL), which can be interpreted graphically as 
a Temporal Plan Network (TPN).  The syntax for the 
proposed language is presented in Figure 7.  A TPN 
explicitly represents the semantics implied by the RMPL 
syntax.  The mapping from RMPL constructs to TPN 
elements is presented in Figure 10.  A TPN is comprised of 
five node types and two edge types, as described in Figure 
8.  Arcs with no annotation are assumed to have bounds of 
[0,0].  The until construct consists of an uncontrollable 
choice between each number of possible iterations, 
bounded by n.  The try-catch construct consists of an 
uncontrollable choice between the nominal thread of 
execution and each contingency.  A contingency consists 
of an uncontrollable duration (to account for the uncertain 
timing of a thrown exception) followed by a handler for the 
exception type.  Each catch clause, as well as the 
uncontrollable duration, in a try-catch construct is 
specified by the program’s author, and represents the time 
window over which a program is robust to that particular 
exception.  Threads of execution that include caught and 
handled exceptions are considered successful execution 
paths, and must be tested for temporal consistency with the 
rest of the program.  Labels are attached to uncontrollable 
choice out-edges to represent the condition under which an 
edge is taken at runtime. 
 A TPN is comprised solely of TPN primitive activities, 
as defined in Definition 1.  Each TPN primitive activity 
has an associated simple temporal constraint and a set of 
exceptions that it may throw.  At a minimum, each TPN 
primitive activity has two exceptions, {elb, eub}, which are 
thrown if the activity completes before lb or doesn’t 
complete by ub, respectively.  More exceptions may be 
defined.  For instance, in the WAM example, an exception 
is thrown when the WAM leaves its operating region.   
 

An Example TPN 
The TPN for the simple WAM example is depicted in 
Figure 9.  A timing constraint [0,40] is placed in parallel 
with the rest of the TPN to enforce a 40 second time limit.  
Next, an uncontrollable choice is added for each possible 
iteration of the until construct, denoted by n=1 and n=2.  
Further iterations are bypassed once the halting condition, 
in(W3), is met.  The if-else construct branches on the 
presence of an obstacle, taking one of two possible routes.  
Finally, if an exception is thrown, the contingency is 
invoked by switching execution to the contingent thread.   

Figure 7: RMPL Bakus-naur syntax 

Figure 8: A description of TPN elements 

Figure 9: TPN for the Simple WAM Example 
 
 
 

Villain 
{2}

Hero 
{0}

Hero 
{2}

Villain 
{0}

Villain 
{0}

Villain 
{2}

OR

AND AND

(U) (S) (S) (U)

Villain 
{0}

Villain 
{2}

Hero
{0}

Hero 
{0}

Hero
{2}

Hero 
{2}

AND

OR OR

(U) (S) (S) (U)

Hero
{2}

Villain 
{0}

Villain 
{2}

Hero 
{0}

AND

OR OR

(S) (S)

Villain First Hero Firsta. b.

c. d.

RMPL Bakus-naur syntax: 
wff ::= a(p1,p2,…) [lb,ub]  |   a(p1,p2,…) [lb?ub] |   wff [lb,ub] |

try{ wff } catch (cond){ wff1}catch-all{ wff2 } |
until( cond , n ) { wff } |
sequence{wff1,wff2,…} |
parallel{ wff1,wff2,…} |
choose{ wff1,wff2,…} |
if (cond) { wff1 } else { wff2 }

a(p1,p2,…) ::= a primitive activity 
[lb,ub] ::= a controllable metric timing constraint
[lb?ub]::= an uncontrollable metric timing constraint

cond ::= a boolean statement which evaluates to true or false
n ::=a finite integer 

TPN  element Graphical
Symbol

Description

Controllable 
timepoint

An instantaneous timepoint whose execution 
time is controlled by the executive.

Uncontrollable
timepoint

An instantaneous timepoint whose execution 
time is NOT controlled by the executive and 
must be observed.

Controllable
choice node

A non-deterministic choice point that the 
executive gets to pick at runtime.

Uncontrollable
choice node

An uncontrollable choice point that the 
executive does NOT get to pick at runtime 
and must be observered.

Choice end 
node

An timepoint where alternative threads from 
a choice point reconverge.

Controllable 
time constraint

[lb,ub] A solid arrow; A controllable metric timing 
constraint.

Uncontrollable 
time constraint [lb?ub] A dashed arrow; An uncontrollable metric 

timing constraint.

[0,40]

n=1

goW3()

[1.5,3]

[1.5,3]

goW1()

[1.5,3]

goW2north()
[3,5]

obst

e [0,11]
goHome()

[6,10]

[0,0]

[0,0]

in(W3)

n=2

goW3()

[1.5,3]goW2()

[1.5,3]

goW1()

[1.5,3]

goW2north()
[3,5]

obst

e [0,11]
goHome()
[6,10]

[0,0]

in(W3)

goW2()



 
Definition 1-TPN Primitive Activity 
A TPN primitive activity is a 5-tuple , , , , .i jstring n n STC e   
   • string represents a command or timing constraint. 
        - Commands take the form a(p1,p2,…). 
     - Timing constraints have the empty string, null. 
   • ni is a time event representing the start of the activity. 
   • nj is a time event representing the end of the activity. 
   • STC enforces a metric timing constraint on the activity:  
     - [lb,ub] - A controllable metric timing constraint, or 
        - [lb?ub] - An uncontrollable metric timing constraint. 

• e is a set {elb,eub,e1,e2,…,en}of supported exceptions.  
 
Definition 2 – Candidate Execution 
A candidate execution, s, of a TPN is an assignment of 
choices to controllable and uncontrollable choice nodes in 
a TPN. cV denotes the set of controllable choices, while uV
denotes the set of uncontrollable choices. 
 
 

Definition 3 – Complete Execution 
A complete execution, sc , is a candidate execution which 
can be defined constructively in the following manner: 
(1)    A choice is made to the first choice node encountered   
         along each parallel thread of execution emanating  
         from the startnode.   
(2)  Each thread activated by a previous choice is  
         traversed, and again a choice is made to the first  
         choice node encountered along each parallel thread of  
         execution.  Repeat (2) until the end node is reached. 
In a complete execution, all threads start at the start node 
and end at the end node.  No encountered choices remain 
unassigned, and no unencountered choices are assigned 
extraneously.   

Definition 4 - TPN Fringe 
The TPN fringe is defined as the current state of execution 
progress in a TPN and is used to distinguish between 
already executed nodes and nodes that are next in line for 
execution.  The TPN fringe consists of exactly the set of 
nodes that are capable of being executed next during TPN 
execution.  This rules out any previously executed node; 
any node constrained to occur after an unexecuted node; 
and any node pairs on mutually exclusive program 
branches, (i.e. along different candidate executions). 

Dynamic Controllability of Temporally-
flexible Reactive Programs 

In this section, we define dynamic controllability for 
temporally-flexible reactive programs.  Then, we focus on 
developing an algorithm to determine dynamic 
controllability.  Our approach is inspired by the approach 
taken in (Tsamardinos, Vidal, and Pollack 2003) to 
determine dynamic controllability of CTPs. However, our 
definition of successful execution differs from prior work.  
In temporally-flexible reactive programs, constraint 
violations (i.e. exceptions) are allowed as long as they are 
caught and handled by an exception handler.  The 
programmer is given the flexibility to decide whether, how, 
and when exceptions should be caught.  Because handled 
exceptions are considered successful program executions, 
they must be tested for consistency with the rest of the 
program.  Each handler must be guaranteed to have time to 
complete in response to caught exceptions, or the TPN is 
identified as uncontrollable.  This approach tends to 
overconstrain TPNs with many modeled exceptions.  In 
response, we develop a more reasonable approach called 
N-fault dynamic controllability which ensures robustness 
to at most n exceptions at runtime.   
 
Definition 5 – Dynamic Controllability  
Dynamic controllability of temporally-flexible reactive 
programs can be viewed as a two-player game between the 
executive and the environment.  The executive picks times 
for controllable timepoints and makes choices for 
controllable choice points.  Alternatively, the environment 

choose { A1 , A2 , … }

A1

A2

…

if (c) { A1 } else { A2 }

until ( c , n ) { A1 }

A1

A2

c

not(c)

1

A1

… n

A1

c A2

A3
…

try { A1 } catch (c) { A2 } 
catch( … ) { A3 }

[ lb , ub ]

sequence { A1 , A2 , … }

parallel { A1 , A2 , … }

a(p1,p2,...)  [ lb , ub ]

A1

A2

…

A1 A2
…

a(p1,p2,...)  [ lb ? ub ]
[ lb ? ub ]

a(p1,p2,…)

a(p1,p2,…)

A  [ lb , ub ]
[ lb , ub ]

A

[0,0]

c

A1

[0,0]
c

not(c) not(c)

…



picks times for uncontrollable timepoints and makes 
choices for uncontrollable choice points.  The executive is 
allowed to observe the outcome of uncontrollable 
timepoints and choice points as they occur, and then use 
that information to dynamically schedule future 
controllable timepoints and choices in order to guarantee 
successful execution. This strategy needs access to runtime 
observations as they become available.   
 
 An algorithm is developed which frames the dynamic 
controllability problem for temporally-flexible reactive 
programs as an AND/OR search tree over candidate 
program executions.  To guarantee dynamic controllability, 
the algorithm starts from the beginning of a TPN and 
branches generatively over the TPNfringe as decisions are 
able to be made either by the executive or by the 
environment.  As in the two-player game example, an OR 
state is constructed when a decision is made by the 
executive, while an AND state is constructed when a 
decision is made by the environment.  The result is an 
AND/OR search tree that explicitly encodes the constraints 
implied by dynamic controllability.  Just as in the two-
player game example, the AND/OR search tree considers 
all possible orderings of decisions that are able to be made 
between the executive and the environment.  Each state in 
the search tree is comprised of a set of simple temporal 
constraints.  The original program is dynamically 
controllable if and only if an AND/OR solution subtree 
exists in-which all simple temporal constraints are 
satisfied.  If a program is determined to be dynamically 
controllable, the AND/OR solution subtree serves as a 
compact, dynamic execution strategy to ensure successful 
program execution. 
 
Definition 6 – N-fault Dynamic Controllability  
To determine N-fault dynamic controllability, we 
artificially constrain the choices made by the environment 
when constructing an AND/OR search tree.  Along each 
branch, we keep track of the number of exceptions the 
environment has “chosen” to throw so far, and limit that 
number to N.  This results in an AND/OR solution subtree 
which is robust to at most N runtime exceptions, but is 
more compact than a full AND/OR solution subtree. 
 
Definition 7–AND/OR Search Tree Encoding of a TPN 
An AND/OR search tree encoding of a TPN that 
determines the property of dynamic controllability is a  
4-tuple .  Where, 
   •  S is a set of states partitioned into OR and AND states.   

     Each state is comprised of a set of TPN primitive    
     activities (Definition 1), S={a1,a2,…,aj}. 

   • O is a set of operators used to construct the child states  
     for each state in S.  These are defined below. 

   • s0 is the start state. 
   • SG is a set of terminal states with no children.  Terminal  

       states are NOT simply marked as solved (S) or  
       unsolved (U), however. To determine dynamic  

   controllability of an AND/OR subtree, all timing  
   constraints that comprise the subtree comprise a  
   consistent STP.  Consistency is determined by  
   performing an all-pairs shortest path computation on  
   each subtree, as it is constructed. 

 
Definition 8 – AND/OR Solution Subtree 
A solution subtree, T, is a subtree of the AND/OR search 
tree which: 
      (1)  Contains the start state, s0. 
     (2)  If state n in T is an OR state, then exactly one  
              child state of n must be in T. 
       (3) If state n in T is an AND state, then all child  
               states of n must be in T. 
      (4) All timing constraints that comprise the subtree  
               form a consistent STP. 

Defining the Operators, O 
The operators to construct the AND/OR search tree from a 
TPN are encoded recursively in a function called 
RecursivelyExpand().  Pseudocode follows, along with a 
walkthrough of the algorithm on the WAM example.  

 

function N-Fault Dynamically Controllable TPN ( startnode , N ) 
1.   TPNfringe  =  startnode;   i  =  0;   //fault count 
2.   s_0 = null;  parent(s_0) = null;    //andor start state 
3.  ConvertUncontrollableTimepoints( ); 
3.   AND-OR-tree = RecursivelyExpand( startnode, s_0, TPNfringe, I, N ) 
4.   if SolutionSubtreeExists( AND-OR-tree ) return TRUE  
5.   else return FALSE  

 
function RecursivelyExpand ( startnode , s , TPNfringe , i , N) 
1.   while not( empty( TPNfringe ) ) 
2.   if IntermediateTemporalConsistencyCheck( s , TPNfringe ) 
2.        if any node in TPNfringe is a controllable or uncontrollable choice 
3.             ExpandFringe( s , TPNfringe , i , N)  
4.        else  { s , TPNfringe}= BumpFringe( s , TPNfringe ) 
5.   else  Remove state s from AND-OR-tree. 
 
function ExpandFringe ( s , TPNfringe , i , N) 
1.    Create an (OR) constraint with parent s, and create a child state: 
2.    for each node p in TPNfringe 
3.          c = null; parent(c) = s; //Creates the new OR state c with parent s  
4.        TPNfringe_copy = TPNfringe; // Creates a copy of the TPNfringe  
5.          for each node a in TPNfringe and its copy, denoted acopy 
6.            e =  [0,0];  start(e) = a;  end(e)=acopy;     //Creates [0,0] edge, e, 
                                                               // between each node and its copy 
7.               c += e;                                  // puts edge e into the andor state c 
8.          if node p is a controllable timepoint node 
4.                ExpandNode( pcopy , c , TPNfringe_copy , i , N)  
5.          else if node p is an uncontrollable choice node 
6.                 ExpandUncontrollableChoice( pcopy ,c ,TPNfringe_copy, i, N) 
7.          else if node p is a controllable choice node 
8.                 ExpandControllableChoice( pcopy , c , TPNfringe_copy , i , N) 
 

function ExpandNode ( p , s , TPNfringe , i , N ) 
1.   for each node a in TPNfringe except p  
2.      e =  [0,inf];  start(e) = p;  end(e)=a;  //Constrains node p to occur  
3.        s += e;                                         //before all other TPNfringe nodes 
4.   Remove node p from TPNfringe 
5.   Add all children d of node p to the TPNfringe  
6.   Add all edges e traversed to children d into the andor state s, s +=  e; 
7.   RecursivelyExpand( s , TPNfringe , i , N) 

0, , ,GS O S s



function ExpandUncontrollableChoice( p , s , TPNfringe, i , N ) 
1.   if node p comes from a try-catch statement, i = i + 1; 
2.   Create an (AND) constraint with parent s, and create a child state c: 
3.   for each uncontrollable choice out-edge, eout, emanating from node p 
4.         if i >= N and node p is from a try-catch statement    //N exceeded, 
5.              if eout is not the nominal thread, continue;  //skip contingencies  
6.         c = null; parent(c) = s; //Creates a new AND state c with parent s  
7.       TPNfringe_copy = TPNfringe; // Creates a copy of the TPNfringe  
8.         for each node a in TPNfringe and its copy, denoted acopy 
9.          e = [0,0];  start(e) = a;  end(e)=acopy;   //Creates [0,0] edge, e, 
                                                             // between each node and its copy 
10.             c += e;                                // puts edge e into new andor state c 
11.         for each node ccopy in TPNfringe_copy 
12.            if ccopy is pcopy, continue;//skip it 
13.            e = [0,inf]; start(e) = pcopy; end(e) = acopy; //Constrains node pcopy  
14.            c +=  e;                  //to occur before all other TPNfringe nodes 
15.       Remove node pcopy from TPNfringe_copy 
16.       TPNfringe_copy += end(eout)         //Add chosen out-edge endnode 
17.       c += eout;            // Add chosen out-edge eout into new andor state c  
18.       RecursivelyExpand( c , TPNfringe_copy , i , N )       

 
 

function ExpandControllableChoice ( p , s , TPNfringe , i , N ) 
1.   Create an (OR) constraint with parent s, and create a child state c: 
2.   for each controllable choice out-edge, eout, emanating from node p 
3.          c = null; parent(c) = s; //Creates a new OR state c with parent s  
4.        TPNfringe_copy = TPNfringe; // Creates a copy of the TPNfringe  
5.          for each node a in TPNfringe and its copy, denoted acopy 
6.          e = [0,0];  start(e) = a;  end(e)=acopy;   //Creates [0,0] edge, e, 
                                                              // between each node and its copy 
7.               c += e;                                 // puts edge e into the andor state c 
8.          for each node ccopy in TPNfringe_copy except pcopy  
9.              if ccopy is pcopy, continue;//skip it 
10.            e = [0,inf]; start(e) = pcopy; end(e) = acopy; //Constrains node pcopy  
11.            c += e;                  //to occur before all other TPNfringe nodes 
12.       Remove node pcopy from TPNfringe_copy 
13.       TPNfringe_copy += end(eout)        //Add chosen out-edge endnode  
14.       c +=  eout;             // Add chosen out-edge eout into the andor state s  
15.     RecursivelyExpand( c , TPNfringe_copy , i , N )  
 
function BumpFringe ( s , TPNfringe) 
1.  Find all nodes, n, in or extending from TPNfringe that are guaranteed  
     to execute before or simultaneously with the next possible choice or 
     uncontrollable choice node. 
2.  for each node in n 
3.       for each out-edge e emanating from n 
4.            if endnode(e) is also in n 
5.                   s +=  e; 
6.  Remove all nodes, n, from the TPNfringe.     
7. Add all children of nodes n, called c, to the TPNfringe.  Exclude any 
          children, c, which are also in n. 
8.  return { s , TPNfringe } 
 
function ConvertUncontrollableTimepoints ( ) 
1.    Find all uncontrollable edges [lb?ub] in the TPN. 
2.    for each edge e 
3.       for each time increment t between lb and ub 
4.          Create an uncontrollable choice with two possibilities 
5.              choice1: the edge extends for one additional time increment 
6.              choice2: the edge terminates 
 
function IntermediateTemporalConsistencyCheck ( s , TPNfringe ) 
1.    Find all nodes, n, and edges, e, between the startnode and TPNfringe. 
2.    if  TemporallyConsistent( startnode + n + TPNfringe , e )  
3.       return true; 
4.    else 
5.       return false;  

A Simple Walkthrough 
The algorithm starts by placing the TPN start node in the 
TPN_fringe, and then expands recursively via the function 
RecursivelyExpand(). Uncontrollable timepoints are 
handled by converting them into uncontrollable choices via 
ConvertUncontrollableTimepoints().  This function reflects 
the environment’s ability to execute an uncontrollable 
timepoint at any time up to the last instant.   
RecursivelyExpand() then proceeds in two possible ways.  
If the TPN_fringe contains either a controllable or 
uncontrollable choice node, ExpandFringe() is called.  If 
not, then BumpFringe() is called, which “bumps” the 
fringe to the next choice or uncontrollable choice node to 
expand.  ExpandFringe() creates a branch for each node in 
the TPN_fringe, and creates a new OR state which consists 
of a copy of the TPNfringe.  This is depicted graphically in 
Figure 11 for the first call to ExpandFringe() for the WAM 
example.  Next, ExpandFringe() proceeds differently 
depending on the type of node p.  If at any point the 
subtree becomes temporally inconsistent, the function 
IntermediateTemporalConsistencyCheck() prunes the 
subtree from the ANDOR tree.  In the WAM example, two 
nodes are expanded, a controllable timepoint node and an 
uncontrollable choice node, via functions ExpandNode() 
and ExpandUncontrollableChoice(), respectively.  The 
ANDOR tree after these function calls is depicted in Figure 
12. Intuitively, the AND/OR search tree ensures that for at 
least one ordering of the two nodes in TPN_fringe, both 
possible outcomes for the uncontrollable choice node will 
be consistent.   

Figure 11:  First call to ExpandFringe() in WAM example 

Figure 12:  Function subcalls to ExpandNode() and 
ExpandUncontrollableChoice() in the WAM example.  

 

c2c1

OR

e1

e2

e3[0,40]

e5
e6

e7

s0={e1,e2,e3}, c1={e4,e5}, c2={e6,e7}

s0

Meta-AND/OR 
search tree

OR

e4

AND

[0,inf]

[0,inf]

e17 not(in(W3))

e12 [0,inf]
e2

e3[0,40]
e4

e5 e6

e7

s0={e1,e2,e3}, c1={e4,e5,e8,e9}, c2={e6,e7},c3={e10,e11,e12,e13}, c4={e14,e15,e16,e17} 

OR

e8

end
e9

e1

e10

e11
e13

in(W3)
e14

e15 e16

c2c1
O
R

s0

Meta-AND/OR 
search tree

c4c3
AN
D



Experimental Results and Discussion 
AND/OR search trees can be solved using standard search 
techniques, such as depth-first search.  One, some, or all 
solution subtrees may be found.  The ability to enumerate 
just one solution subtree, which corresponds to a subset of 
possible program executions that guarantees dynamic 
controllability, is considered a key advantage of this 
approach.  In Figure 13, we show that tractability can be 
improved by placing an upper limit on robustness to the 
number of faults at runtime. Four categories of randomly 
generated programs were tested for dynamic 
controllability.  The program generator creates programs 
with three parallel 
threads of execution 
with randomly chosen 
RMPL constructs.  To 
increase program 
complexity, the 
maximum depth of 
nested constructs was 
increased from 1 to 4.  
For example, in 
Category 3, a program 
may consist of a 
contingent choice 
construct, nested within a try-catch construct, nested within 
a controllable choice construct.  We observe that 
computation time is driven almost solely by the number of 
faults we wish to be robust to, regardless of the complexity 
of the original plan.  Approximately an order of magnitude 
improvement is seen for each unit reduction in the number 
N for N-fault controllability.  Intuitively, this can be 
understood as reducing the number of variables in the 
underlying CSP problem for each fault that is ignored. 
 The approach taken in this paper was inspired by the 
work of (Tsamardinos, Vidal, and Pollack 2003) to 
determine dynamic consistency of CTPs.  Our work is 
novel in a few key respects:    
   •  The definition of a successful execution is extended to 

include execution paths with constraint violations (i.e. 
exceptions) as long as they are caught and handled by 
an exception handler.   

   •  Temporally-flexible reactive programs bridge the gap 
between the most common embedded programming 
language constructs used in practice to build reactive 
systems (loops, conditions, and exceptions) and the 
formalisms employed by temporally-flexible planners. 

   •  The proposed algorithm achieves greater compactness 
than prior art by exploiting two structural restrictions 
of temporally-flexible programs. 

1. Threads of execution in a TPN are physical 
processes which always proceed forward in time. 

2. Branches in a TPN always emanate from a single 
program point and coalesce to a single program 
point.  The proposed algorithm could be 
extended to support arbitrary disjunctions, but 
this would require some additional bookkeeping.  

   •  To model looping, conditions, and exception handling, 
a plan representation is provided which supports both 
activities of uncontrollable duration (to model the 
uncertain timing of a thrown exception) as well as 
uncontrollable outcomes (to model the uncertainty in 
the type of exception thrown, loop halting, etc…)   

Conclusion 
In this paper, we extend dynamic controllability of 
temporally-flexible plans to temporally-flexible reactive 
programs.  In temporally-flexible reactive programs, 
program execution is conditioned on the runtime state of 
the world, and exceptions are thrown and caught at runtime 
in response to violated timing constraints.  Handled 
exceptions are considered successful program executions, 
and dynamic controllability corresponds to guarantee that a 
program will execute to completion, despite runtime 
constraint violations and uncertainty in runtime state.  An 
algorithm is developed which frames the dynamic 
controllability problem as an AND/OR search tree over 
possible program executions.  A key advantage of this 
approach is the ability to enumerate only a subset of 
possible program executions that guarantees dynamic 
controllability, framed as an AND/OR solution subtree.  To 
improve tractability, an approach is developed called N-
fault dynamic controllability which ensures robustness to 
at most n exceptions at runtime.   

References 
Dechter, R.; Meiri, I.; Pearl, J., 1991. Temporal Constraint Networks. 
Artificial Intelligence, 49:61-95. 
Kostas Stergiou and Manolis Koubarakis. Backtracking algorithms for 
disjunctions of temporal constraints. AAAI-98. 
Kim, Williams, and Abrahmson, 2001. Executing Reactive, Model-based 
Programs through Graph-based Temporal Planning. IJCAI. 
Vidal, T. and Fargier, H., 1999. Handling contingency in temporal 
constraint networks: from consistency to controllabilities.  Journal of 
Experimental & Theoretical AI, 11, 23-45. 
Tsamardinos, I., Vidal, T., Pollack, M., 2003, CTP: A New Constraint-
Based Formalism for Conditional, Temporal Planning. Constraints 8 (4). 
Stergiou, K. and Koubarakis, M., 2000. Backtracking algorithms for 
disjunctions of temporal constraints.  AI 120, 81-117. 
Morris, P., Muscettola, N., and Vidal, T., 2001. Dynamic Control Of 
Plans With Temporal Uncertainty. IJCAI-01. Seattle, WA.   
Tsamardinos, Pollack, Ganchev.  2001. Flexible dispatch of disjunctive 
plans. Sixth European Conference on Planning.  
Williams, et. al. 2003. Model-based Programming of Intelligent 
Embedded Systems and Robotic Space Explorers, Proc. of the IEEE: 
Modeling and Design of Embedded Software, vol. 91, pp. 212-237. 
Dechter, R., and Mateescu, R., 2007. AND/OR search spaces for 
graphical models.  Artificial Intelligence 171, Feb 2007, 73-106. 
Tsamardinos, I., and Pollack, M., 2003. Efficient Solution Techniques for 
Disjunctive Temporal Reasoning Problems. AI, 151(1-2): 43-90. 
Effinger, R. 2006.  Optimal Temporal Planning at Reactive Time Scales 
via Dynamic Backtracking B&B.  S.M. Thesis, MIT.   
Muscettola, N., et. al. 1998. Reformulating temporal plans for efficient 
execution. Proc.KRR-98. 
Morris, P., et. al. 2001. Dynamic Control of Plans with Temporal 
Uncertainty.  IJCAI 2001. 

0.1

1

10

100

1000

10000

Category 
1

Category 
2

Category 
3

Category 
4

se
co

nd
s

5-Fault-DC
4-Fault-DC
3-Fault-DC
2-Fault-DC
1-Fault-DC

Figure 13: N-fault DC results


