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target-based planning, as well as supervision and 

control of � eet operations based on available 

transportation resources and application con-

straints. FMSs have as an objective to reduce risk, 

increase quality of service, and improve a � eet’s 

operational ef� ciency while minimizing its costs.1

A key problem in FMS operations is � eet-route 

planning, where different transport orders need to 

be aggregated into tours of � eet vehicles so that 

the resulting schedule is both ef� cient and robust 

while meeting the constraints put forward in cus-

tomer requests. The main challenge at the tacti-

cal level is to support decision making based on 

seasonality, trends, changing customer mix, and 

demand. At operational and real-time levels, the 

challenge is to respond to daily dynamics, such 

as traf� c, weather, employee absence, equipment 

breakdown, new orders, and order adjustments.

Approaches to � eet planning typically focus on 

the development of near-optimal plans using vari-

ous types of effective vehicle-routing algorithms, 

which can be either static or dynamic.2–4 Fleet 

schedules designed a priori with static route plan-

ning assume the following: all relevant data is 

known before the planning starts, short- and long-

term decisions have the same importance, and 

the time available for creation, verification, and 

 implementation of route plans is of minor impor-

tance. The use of an initial � eet schedule, although 

 necessary, is by no means suf� cient because it might 

not cope adequately with unexpected events dur-

ing execution, such as traf� c delays, vehicle break-

downs, road works, and new customer requests or 

the cancellation of preexisting ones, which causes 

� eet delays, unexpected costs, and poor customer 

service. Real-time dynamic FMSs are needed to 

handle unexpected events—that is, to detect de-

viations from the initial dispatch plan and adjust 

the schedule accordingly by suggesting effective re-

routing immediately. In this context, timely deci-

sions are very important because the time available 

for veri� cation, correction, and implementation of 

changed route plans is often very short.5,6

Real-time FMSs have been applied to a broad va-

riety of domains, including emergency vehicles (� re 

trucks, ambulances, and so on), police cars, taxis, 

commercial delivery vehicles, courier � eets, public 

transport � eets, and freight railcars.7–11 However, 

state-of-the-art FMS solutions are centralized and 

require vehicle � eet operators to send low-level 

commands remotely to the � eet’s drivers and their 

vehicles. Even though some dynamics of the envi-

ronment are accounted for, certain decisions can’t 
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be reconsidered because doing so 

could complicate the assignment pro-

cedure and potentially compromise 

the �eet’s response time. In addition, 

changes in the environment aren’t al-

ways communicated fast enough to 

FMS operators to help them make de-

cisions in a timely manner. The FMS’s 

dependence on adequate central oper-

ator decisions, therefore, compromises  

its robustness and hinders effective 

scalability.12

The technological advances in sen-

sors, communication and networking 

technologies, and geographic infor-

mation systems enables �eet opera-

tors to be informed about unexpected 

changes in �eet operation almost at 

the time that they occur, and thus al-

lows for increased levels of dynamic-

ity in operational decisions. Moreover, 

the increased performance of small-

scale,  energy-ef�cient computing de-

vices allows for delegating part of �eet 

decision making to the �eet’s vehicles, 

enabling a more decentralized FMS ar-

chitecture that gives more  autonomy 

to the vehicles and their drivers and, 

thus fosters the system’s reactiveness. 

Here, we sketch our work in the �eld 

of real-time FMS and point to devel-

opments that we believe are going 

to take place in the near future. We 

put forward our vision of conceiving 

FMS as smart cyber-physical systems, 

and illustrate the idea in the �eld of 

electro-mobility, where  drivers of 

smart e-motorbikes (cyber vehicles),13  

equipped with an intelligent commu-

nication device (cyber helmet), are  

coordinated by means of a next- 

generation FMS.

Dynamic Fleet Management
We propose to employ an event-based 

architecture for dynamic �eet man-

agement. We applied this architec-

ture to the coordination of a �eet of 

ambulances in a medical emergency 

scenario and show experimentally 

that our proposal outperforms a non- 

dynamic approach.

Event-Based FMS Architecture

Fleet operators face two main problems: 

task allocation and redeployment. The 

allocation problem consists of deter-

mining which vehicle should be sent to 

serve a given task. Redeployment con-

sists of relocating vehicles in the region 

of in�uence in a way that new tasks 

can be reached quickly at a low cost. 

Both issues are particularly challeng-

ing in dynamic environments, as con-

tinuously arriving new tasks might re-

quire attendance, and the �eet’s current 

situation might change due to external 

 in�uences. To maximize vehicle utili-

zation and improve service quality in 

such  environments, task allocation and 

 vehicle redeployment should also be ac-

complished in a dynamic manner, adapt-

ing the �eet’s coordination seamlessly 

to upcoming events and changing de-

mands. To adequately capture real-time 

requirements in such a scenario, we set 

out from an event-driven approach.14

Figure 1 depicts our architecture for 

dynamic �eet management. It contains 

three basic layers: the top layer con-

tains the vehicles, modeled as agents; 

the second layer represents the �eet co-

ordination modules; and the third layer 

includes other components necessary 

for normal �eet operation (components 

for monitoring, task management, 

global �eet control, and so on).

In the �eet coordination layer, a 

�eet tracker follows the vehicles’ op-

erational states and positions. (We 

assume that vehicles have the abil-

ity to send their current positions on 

a regular basis and to inform about 

changes in their operational states.) 

The �eet tracker informs the event-

processing module about any changes 

in the �eet that would require an ad-

aptation of task allocations or the de-

ployment of idle vehicles. If necessary, 

it triggers task allocation and predic-

tive redeployment modules. The task 

allocation module, when executed, 

recalculates the optimal global as-

signment of all pending tasks (in 

the current moment) to vehicles 

based on a set of assignment criteria 

(depending on application domain). 

The predictive redeployment module 
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Figure 1. Event-based architecture for dynamic fleet management. The top layer 

contains the vehicles, modeled as agents; the second layer represents the fleet 

coordination modules; and the third layer includes other components necessary for 

normal fleet operation.
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 calculates adequate positions for all 

idle vehicles at the current moment, 

taking into account predictions con-

cerning the  appearance of new tasks 

(based on historical data) and the 

�eet’s current state.

Case Study: Ambulance 

Coordination in Madrid

To test our approach, we applied the 

architecture in a system for coordi-

nating a �eet of ambulances for the 

Emergency Medical Assistance Service, 

SUMMA112 (www.madrid.org/cs/

Satellite?pagename=SUMMA112/Page/

S112_home), in Madrid, Spain—a re-

gion of about 8,000 km2 with approx-

imately 6 million inhabitants. Among 

other services, SUMMA112 maintains a 

�eet of ambulances that provides out-of-

hospital assistance to patients in cases 

of emergencies. One of the main goals is 

to reduce response time (the time be-

tween when a patient calls and the 

moment the ambulance arrives) in life- 

threatening emergencies: shorter re-

sponse times are directly correlated 

with lower mortality rates.

SUMMA112 currently employs a 

static approach to patient allocation 

and ambulance redeployment: calling 

patients are classi�ed by a triage sys-

tem into different severity levels, and 

patients at the highest level are as-

signed using the �rst-come/�rst-served 

(FCFS) principle—that is, the �rst pa-

tient in the system is assigned �rst, 

then the next patient, and so on. In 

each case, a patient is assigned to the 

closest available ambulance at that 

particular moment. After an ambu-

lance has �nished a mission, it returns 

to its base station and waits for a new 

assignment. The locations of ambu-

lance base stations are �xed and have 

been chosen based on criteria such as 

population density and infrastructure.

Based on the architecture presented 

in Figure 1, we developed a proto-

type of a dynamic ambulance FMS 

in which ambulances and calling pa-

tients are the vehicle agents and new 

tasks, respectively. We concentrated 

only on the most severe emergency 

cases, those that are assisted with ad-

vanced life support units. Regarding 

the assignment of patients to ambu-

lances (task allocation), we substitute 

the current static FCFS strategy with 

a reactive method in which existing 

assignments can be reconsidered on 

the �y. As Figure 2 illustrates, any pa-

tient who was already assigned to an 

ambulance might be reassigned to an-

other one if this improves the average 

response time. In particular, a given 

assignment is recalculated if a new pa-

tient has appeared (see Figure 2b) or 

an ambulance has �nished a previous  

mission (see Figure 2c). For this pur-

pose, we used Dimitri Bertsekas’s 

auction algorithm,15 which assures 

an  assignment that minimizes the 

key performance indicator (average 

 ambulance  response time) in a suf�-

ciently fast manner.

With respect to ambulance rede-

ployment, we use historical data to 

estimate the probability distribution 

of emergency cases in the region for 

different days and times of day (one-

hour intervals). Based on this estima-

tion, we calculate adequate waiting 

positions for all ambulances that are 

idle at a given moment. The waiting 

positions are dynamically recalculated 

if one of the following events occurs: 

an ambulance previously assigned to 

a patient becomes idle again (the mis-

sion is �nished or the ambulance is 

de-assigned from a patient), an idle 

ambulance is assigned to a patient, 

or a different estimation of the prob-

ability distribution needs to be ap-

plied (every hour). We implemented 

the redeployment module based on 

the calculation of centroidal Voronoi 

tessellations, a geometric optimization 

technique that allows to estimate sub-

optimal positions of a set of genera-

tor points in an Euclidean space and 

such that the weighted distance of all 

points in the space to the closest gen-

erator is minimized.16

To evaluate our dynamic approach’s 

effectiveness, we tested it in a set of 

experiments analyzing the response 

times to emergency patients. For this 

purpose, we developed a simulation 

tool for emergency medical assistance 

(EMA) services, covering the whole as-

sistance process—the emergence of pa-

tients, the schedule of an ambulance, 

the “in situ” attendance, and �nally, the 

transfer of patients to hospitals—based 

on the information obtained from a 

well-calibrated, external route service. 

In our experiments, we considered 

a rectangle of 125 × 133 kilometres 

that covers the whole area of Madrid.  

We used 29 hospitals (all located at 

their real positions) and 29 ambu-

lances with advanced life support (as 

currently used by SUMMA112). We 
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Figure 2. Ambulance assignment strategies. Dotted lines show the current first-

come, first-served (FCFS) approach, while solid lines represent our assignment 

policy: (a) initial assignment, (b) a new patient appears, and (c) a previously busy 

ambulance becomes available.
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simulated the operation of the service 

for 10 different days (24-hour peri-

ods) with real patient data from 2009 

provided by SUMMA112. We chose 

the days that gave us a good repre-

sentation of high, medium, and low 

workloads.

Figure 3 compares the distribution 

of the response times in minutes over 

all patients (1,609 in total) for both 

the current FCFS coordination model 

(C-SUMMA112) and our dynamic co-

ordination model (DYNAMIC). The 

results clearly show the bene�ts of our 

dynamic approach, which performs 

better for practically all response time 

ranges. Furthermore, the most impor-

tant improvements can be observed in 

the ranges of higher response times. 

This is an important advantage, be-

cause it assures that more patients 

can be attended within given response 

time objectives. On average, the re-

sponse times are 15.8 percent bet-

ter in the DYNAMIC approach (9:54 

versus 11:45 minutes). Especially in 

severe cases, a reduction of almost 2 

minutes can be potentially lifesaving.

Toward Cyber Fleets
Prototypes of autonomous vehicles 

have been designed and tested, with 

the main challenges related to this 

new technology currently being stud-

ied in countless realistic and complex 

scenarios (www.cybercars.org).17 At 

some point, this poses new challenges 

to FMSs as they attempt to manage 

fully autonomous vehicles in a decen-

tralized manner. Based on currently 

available technologies, we’re studying 

the impact of different types of sensors 

and driver assistance technologies on 

�eet management. In  particular, with 

the goal of improving the ef�ciency, 

safety, and autonomy of vehicle �eets 

and their drivers, we propose an FMS 

as a smart, cyber-physical system (cy-

ber �eet) made of cyber vehicles and 

drivers with cyber interfaces. In such a 

scenario, FMS decision making takes 

place both at the vehicle level (the 

drivers interact with their own and 

other cyber vehicles through cyber 

interfaces), as well as at the system 

level, where �eet operators can focus 

on more coarse grained management 

decisions for �eets that are potentially 

heterogeneous and large scale.

Figure 4 outlines our proposed FMS-

based cyber �eet. The coordination 

cloud is similar to the dynamic FMS 

outlined in Figure 1, but many low-

level events can be coped with locally 

in the cyber vehicles. That is, manage-

ment and monitoring tasks are shared 

between the �eet operator and the cy-

ber vehicles with their drivers.

We can illustrate the notion of cy-

ber �eets through an example in the 

�eld of electro-mobility. The company  

GoingGreen (www.goinggreen.es),  

for instance, is deploying �eets of e-

motorbikes in the city of Barcelona  

for vehicle sharing and home de-

livery purposes. The cyber �eet of  

e-motorbikes that we propose comprises 

three main components:  cyber helmet 

(CH), cyber e-motorbike (CeM), and 

smart e-motorbike FMS (SeM-FMS).

Smart helmets are currently �nding 

their way into the market (see Figure 

5). However, the CH for a cyber �eet 

of e-motorbikes needs to go beyond 

the state of the art, insofar as it serves 

as a smart communication bridge be-

tween the driver and the vehicle, and 

between the driver and the SeM-FMS. 

For this purpose, it’s equipped with 

additional communication outlets, a 

stereo camera, and a microphone, and 

it’s connected to the CeM to take ad-

vantage of its computing capacity.

The interaction between the CH 

and the driver has to be grounded 

in situational awareness: the former 

should refrain from communicating 

with the driver during dif�cult ma-

neuvering  operations or traf�c situ-

ations, which require the driver’s 

full attention. In particular, a traf-

�c  evaluation module ought to take 

into account traf�c images received 

through the camera, the driver’s cur-

rent maneuvering complexity based 

on the CeM’s GPS coordinates and 

the actual traf�c state, weather con-

ditions, the road infrastructure com-

plexity, and CH sensor readings about 

the CeM’s current state (acceleration, 
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Figure 3. Dynamic versus static fleet management for ambulance coordination in 

Madrid. The response times in minutes over all patients (1,609 in total) for both 

the current FCFS coordination model (C-SUMMA112) and our dynamic coordination 

model (DYNAMIC) clearly show the benefits of our dynamic approach.
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velocity  dynamics, wheel orientation, 

and so on). The identi�cation of the 

traf�c situation is possible through 

image recognition, fusion of data re-

ceived from different helmet and ve-

hicle sensors, and sensor knowledge 

extraction. In addition, the CH can 

determine the mode of communica-

tion (audio communication through 

microphone, video presentation of 

data on the helmet’s augmented real-

ity display, or a combination of both) 

and inform the driver about his or 

her tasks, as well as CeM and  traf�c 

 conditions (malfunctions, battery, 

driving performance, security alerts, 

weather, traf�c accidents, traf�c jams, 

alternative routes, and so on).

The e-motorbikes that GoingGreen 

currently deploys (see Figure 6) are al-

ready equipped with simple sensors 

and basic data-processing capacity. We 

can enhance them with additional data 

sources such as accelerometer, prox-

imity (laser) sensors, stereo cameras, 

and so forth, and will turn them into 

a CeM by endowing them with ad-

ditional computing power. With this 

 con�guration, the CeM will  perform 

real-time sensor data  extraction,  fusion, 

and reasoning, and communicate with 

the driver through the CH connected 

to the vehicle’s battery and to the SeM-

FMS through standard wireless com-

munication. Some of the exemplary 

vehicle processes are forecasting the 

residual battery autonomy with a spe-

ci�c driver pro�le, maintaining a driver 

pro�le based on driving habits, and 

networking with other vehicles and 

SeM-FMSs in the system for task and 

work break distribution, contingency 

coverage, and so on. The CeM assists 

 decision making about the mission’s 

execution. It might receive and directly 

execute commands from the SeM-FMS 

about maximum speed limit, maximum 

acceleration, and engine blocking, so 

as to enhance energy ef�ciency and ve-

hicle security. But it can also suggest 

 directly to the driver information such 

as the most adequate charging spots.

The SeM-FMS is the computational 

platform that ultimately satis�es �eet 

objectives. Its level of decentralization 

in decision making is customizable 

to  the �eet owner’s preferences and 
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constraints; it can vary from a fully 

centralized to a subsidiary option (see 

Figure 7). Subsidiarity is an organiz-

ing principle of decentralisation, pro-

moting the delegation of responsibil-

ities to the smallest, lowest, or least 

centralized authorities capable of ad-

dressing an issue effectively (in our 

case, drivers and their CeMs).18 In a 

centralized structure, all decisions re-

garding a �eet’s  strategic, tactical, and 

operational levels related to task al-

location, vehicle deployment, battery 

autonomy, work break, and contin-

gency management are controlled by 

the central �eet operator. In contrast, 

with fully decentralized control, the 

�eet operator only controls the overall 

�eet strategy (its  mission and  related 

constraints); CeMs manage key parts 

of mission execution and related op-

erations at tactical and operative lev-

els in real time through lateral inter-

actions. Besides constraints emanating 

from the concrete organizational en-

vironment in which the SeM-FMS is 

embedded, the �eet’s level of decen-

tralization depends, for instance, on 

its size and dispersion over one or 

more regions of interest. To facilitate 

individual accounting for �eet perfor-

mance, one of the tools for mission 

evaluation track’s a personal driver 

pro�le record. If necessary, the SeM-

FMS can undertake corrective actions 

on �eet vehicles and drivers to mini-

mize performance degradation during 

sudden performance variations.

We plan to further explore cy-

ber �eets of e-motorbikes in two case 

studies with GoingGreen. In home 

delivery, the task of electric motorcy-

cles is to distribute products in an ur-

ban area by assigning CeMs to prod-

uct pick-up and delivery tasks. The 

vehicle-sharing scenario refers to a 

type of vehicle rental for short periods 

of time, often a matter of hours. The 

principle of vehicle sharing is that in-

dividuals gain the bene�ts of private 

transportation without the costs and 

responsibilities of ownership. Instead, 

a private user accesses a �eet of ve-

hicles on an as-needed basis. We also 

plan to integrate both business cases 

into one business solution, where a 

�eet of CeMs serves both purposes at 
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the same time, and dynamically and 

seamlessly adapts to user demands to 

maximize vehicle utilization and in-

crease pro�t gains. In future work, we 

also intend to extend our approach to 

mixed cyber �eets capable of manag-

ing heterogeneous �eets of traditional 

vehicles, cyber vehicles, and fully au-

tonomous vehicles. 
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