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Dynamic Core Provisioning for Quantitative

Differentiated Services
Raymond R.-F. Liao, Member, IEEE, and Andrew T. Campbell, Member, IEEE

Abstract— Efficient network provisioning mechanisms that
support service differentiation and automatic capacity dimen-
sioning are essential to the realization of the Differentiated
Services (DiffServ) Internet. Building on our prior work on
edge provisioning, we propose a set of efficient dynamic node
and core provisioning algorithms for interior nodes and core
networks, respectively. The node provisioning algorithm prevents
transient violations of service level agreements by predicting the
onset of service level violations based on a multi-class virtual
queue measurement technique, and by automatically adjusting
the service weights of weighted fair queueing schedulers at core
routers. Persistent service level violations are reported to the
core provisioning algorithm, which dimensions traffic aggregates
at the network ingress edge. The core provisioning algorithm is
designed to address the difficult problem of provisioning DiffServ
traffic aggregates (i.e., rate-control can only be exerted at the
root of any traffic distribution tree) by taking into account
fairness issues not only across different traffic aggregates but
also within the same aggregate whose packets take different
routes through a core IP network. We demonstrate through
analysis and simulation that the proposed dynamic provisioning
model is superior to static provisioning for DiffServ in providing
quantitative delay bounds with differentiated loss across per-
aggregate service classes under persistent congestion and device
failure conditions when observed in core networks.

Index Terms— Virtual Queue, Point-to-Multipoint Congestion,
Service Differentiation, Capacity Dimension.

I. INTRODUCTION

EFFICIENT capacity provisioning for the Differentiated

Services (DiffServ) Internet [1] appears more challenging

than in circuit-based networks such as the Asynchronous

Transfer Mode (ATM) networks for two reasons. First, there

is a lack of detailed control information (e.g., per-flow states)

and support mechanisms (e.g., per-flow queueing) in the

network. Second, there is a need to provide increased levels

of service differentiation over a single global IP infrastruc-

ture. In traditional telecommunication networks, where traffic

characteristics are well understood and well controlled, long-

term capacity planning can be effectively applied. We argue,

however, that in a DiffServ Internet more dynamic forms of

control will be required to compensate for coarser-grained

state information and the lack of network controllability, if

service differentiation is to be realistically delivered.

There exists a trade-off intrinsic to the DiffServ service

model (i.e., qualitative vs. quantitative control). DiffServ aims
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to simplify the resource management problem thereby gaining

architectural scalability through provisioning the network on

a per-aggregate basis, which results in some level of service

differentiation between service classes that is qualitative in

nature. Although under normal conditions, the combination of

DiffServ router mechanisms and edge regulation of service

level agreements (SLA) could plausibly be sufficient for ser-

vice differentiation in an over-provisioned Internet backbone,

network practitioners need to use quantitative provisioning

rules to automatically re-dimension a network that experiences

persistent congestion or device failure while attempting to

maintain service differentiation [2], [3]. Therefore, a key

challenge for the emerging DiffServ Internet is to develop

solutions that can deliver suitable network control granularity

with scalable and efficient network state management.

In this paper, we propose an approach to provisioning

quantitative differential services within a service provider’s

network (i.e., the intra-domain aspect of the provisioning

problem). Our SLA provides quantitative per-class delay guar-

antees with differentiated loss bounds across core IP networks.

We introduce a distributed node provisioning algorithm that

works with class-based weighted fair (WFQ) schedulers and

queue management schemes. This algorithm prevents transient

service level violations by adjusting the service weights for

different classes after detecting the onset of SLA violations.

The algorithm uses a simple but effective approach (i.e.,

the virtual queue method proposed in [4], [5]) to predict

persistent SLA violations from measurement data and sends

alarm signals to our network core provisioning algorithm. Our

stress test results for both bursty On-Off and TCP application

traffic show that the node provisioning algorithm alone can

guarantee the delay and loss bounds when there is a low

frequency (below 10%) of alarms raised. When there is a

SLA violation, the algorithm will first meet the delay bound

sacrificing the loss bound. For adaptive applications such

as TCP which respond to packet losses, this approach has

shown to be effective even without the involvement of core

provisioning algorithms.

One challenge facing DiffServ network provisioning is the

rate control of traffic aggregates that comprise flows exiting the

core network at different network egress points. A rate control

function includes traffic policing (i.e., packet dropping) and/or

traffic shaping. This problem occurs when rate control can only

be exerted on a per traffic aggregate basis, (i.e., at the root

of a traffic aggregate’s point-to-multipoint distribution tree).

Under such conditions, any rate reduction of an aggregate

would penalizes traffic flowing along branches of the point-

to-multipoint distribution tree that are not congested. We
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call such a penalty branch-penalty. Branch-penalty exists in

DiffServ networks because rate control is performed at the

ingress edge of the network instead of in the core of the

network. Existing flow control algorithms have focused on

fairness across different traffic aggregates while overlooking

the effect of branch-penalty, which can lead to severe band-

width reduction on traffic aggregates whose portion of traffic

flowing through a congested link is small, and resulting in

unnecessary under-utilization of network links that are not

congested. Our approach, in contrast, comprises a suite of

policies that minimize branch-penalty, deliver fairness with

equal reduction across traffic aggregates, or extend the max-

min fairness for point-to-multipoint traffic aggregates.

In summary, this paper makes two contributions. First,

our node provisioning algorithm prevents transient service

level violations by dynamically adjusting the service weights

of a weighted fair queueing scheduler. The algorithm is

measurement-based and effectively uses the multi-class virtual

queue technique to predict the onset of SLA violations. Sec-

ond, our core provisioning algorithm is designed to address the

unique difficulty of provisioning DiffServ traffic aggregates.

We proposed an algorithm that balances the trade-off between

fairness and minimizing the branch-penalty. Collectively, these

algorithms contribute toward a more quantitative differentiated

service Internet, supporting per-class delay guarantees with

differentiated loss bounds across core IP networks.

This paper is structured as follows. In Section II, we

discuss related work. In Section III, we introduce a dynamic

provisioning architecture and service model. Following this,

in Section IV, we present our dynamic node provisioning

mechanism, which monitors buffer occupancy, self-adjusts

scheduler service weights and packet dropping thresholds

at core routers. In Section V, we describe our core provi-

sioning algorithm, which dimensions bandwidth at ingress

traffic conditioners located at edge routers taking into account

the fairness issue of point-to-multipoint traffic aggregates

and SLAs. In Section VI, we discuss our simulation results

demonstrating that the proposed algorithms are capable of

supporting the dynamic provisioning of SLAs with guaranteed

delay, differential loss and bandwidth prioritization across per-

aggregate service classes. We also verify the effect of rate

allocation policies on traffic aggregates. Finally, in Section VII,

we present some concluding remarks.

II. RELATED WORK

Dynamic network provisioning algorithms are complemen-

tary to scheduling and admission control algorithms. The

provisioning algorithms introduced in this paper operate on

a medium time scale, as illustrated in Fig. 1. In contrast,

packet scheduling and flow control operate on fast time

scales (i.e., sub-second time scales); admission control and

dynamic provisioning operate on medium time scales in the

range of seconds to minutes; and traffic engineering, including

rerouting and capacity planning, operate on slower time scales

on the order of hours to months. Significant progress has

been made in the area of scheduling and flow control, (e.g.,

dynamic packet state and its derivatives [6], [7]). In the area of

traffic engineering, solutions for circuit-based networks have

been widely investigated in literature (e.g., [8], [9]). There has

been recent progress on developing measurement techniques

for IP networks [10]–[12]. In contrast, for the medium time

scale mechanisms, most research effort has been focused on

admission control issues including edge [13] and end host

based admission control [14]. However, these algorithms do

not provide fast mechanisms that are capable of reacting to

sudden traffic pattern changes. Our dynamic provisioning algo-

rithms are capable of quickly restoring service differentiation

under severely congested and device failure conditions.

Delivering quantitative service differentiation for the Diff-

Serv service model in a scalable manner has attracted a lot of

attentions recently. A number of researchers have proposed

effective scheduling algorithms. Stoica et. al. propose the

Dynamic Packet State [6] to maintain per-flow rate information

in packet headers leading to fine-grained per-flow packet-

dropping that is locally fair (i.e., at a local switch). However,

this scheme is not max-min fair due to the fact that any

packet drops inside the core network wastes upstream link

bandwidth that otherwise could be utilized. In [7], Stoica and

Zhang extend the solution of [6] to support per-flow delay

guarantees in a DiffServ network. Our work operates on top

of per-class schedulers with emphasis on bandwidth allocation

and the maintenance of service differentiation and network-

wide fairness properties. The proportional delay differentiation

scheme [15] defines a new qualitative “relative differentiation

service” as oppose to quantifying “absolute differentiated

services”. The node provisioning algorithm presented in this

paper also adopts a self-adaptive mechanism to adjust ser-

vice weights at core routers. However, our service model

differs from [15] by providing delay guarantees across a core

network while maintaining relative loss differentiation. The

work discussed in [16] has similar objectives to our node

provisioning algorithm. However, it is motivated by a more

comprehensive set of objectives in comparison to our work

because it attempts to support optimization objectives that

include multiple constraints for both relative and absolute loss

and delay differentiation.

The idea of using virtual queues in scheduler design is a well

accepted technique. For example, in [17] a duplicate queue is

constructed to support two “Alternative Best-Effort” services

(viz. low delay vs. high throughput). In our work, we use

virtual queues to predict the onset of SLA violations. The idea

was originally proposed in [4], [5] as a good traffic prediction

technique for traffic with complex characteristics, such as, self

similarity, because its stochastic properties share the same

dominant time scale with the original queue. Our algorithm

extends this work by dynamically adjusting the virtual queue

scaling parameter with respect to queueing conditions.

Our approach to dynamic provisioning is complementary

to the work on edge/end-host based admission control [13],

[14], with admission control at the edge of core networks

and provisioning algorithms operating inside core networks.

An alternative approach that solely uses admission control for

a DiffServ network can support stricter QoS guarantee but

also lead to more complexity in the QoS control plane. For

example, in [18] a complex bandwidth broker algorithm is
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Fig. 1. Network Provisioning Time Scale

presented to maintain the control states of core routers and

perform admission control for the whole network. In contrast,

our provisioning algorithm uses a distributed node algorithm

to detect and signal the need for bandwidth re-allocation. The

centralized core algorithm only maintains the network load

matrix and coordinates the allocation algorithm for fairness

purposes.

One could argue that this problem could be resolved by

breaking down a customer’s traffic aggregates into per ingress-

egress pairs and provisioning these pairs in a similar manner

to circuit-based Multi-Protocol Label Switching (MPLS) [19]

tunnels. However, such an approach would only work if

the tunnel topology of virtual private networks (VPN) is

a mesh. It would not work if a more scaleable hub-and-

spoke topology is used for deploying VPNs because hub-

and-spoke topologies lead to point-to-multipoint distribution

trees. In addition, this approach would not work when the

number of tunnels exceeds the number of shaper queues

supported in edge routers. Our approach does not exclude

support for MPLS tunnels, but benefits from any availability

of MPLS tunnels because MPLS per-tunnel traffic accounting

statistics will improve the measurement accuracy of our traffic

matrix, as discussed in Section V-A. As a result, our approach

improves the scalability of per-MPLS-tunnel traffic shaping by

supporting traffic regulation for MPLS aggregates.

Currently network service providers use rerouting based

traffic engineering approaches to cope with network traffic

dynamics on slow time-scales. In the inter-domain case where

one provider has no direct control of its peering networks, ab-

sence of direct control leads to the use of intra-domain routing

policy as the only viable technique, with potential solutions

ranging from optimal planning of routes for circuits/virtual

paths [20], to traffic measurement based adjustment on OSPF

weights and BGP route policies [10]. In the intra-domain case

where direct control is possible, dynamic provisioning can

offer faster response to service degradation.

Our provisioning method bears similarity to the work on

edge-to-edge flow control [21] but differs in that we provide

a solution for point-to-multipoint traffic aggregates unique to

a DiffServ network rather than the point-to-point approach

discussed in [21]. In addition, our emphasis is on the delivery

of multiple levels of service differentiation.

III. DYNAMIC NETWORK PROVISIONING MODEL

A. Architecture

We assume a DiffServ framework where edge traffic condi-

tioners perform traffic policing/shaping. Nodes within the core

network use a class-based weighted fair (WFQ) scheduler and

various queue management schemes for dropping packets that

overflow queue thresholds.

The dynamic capacity provisioning architecture illustrated

in Fig. 2 comprises dynamic core and node provisioning

modules for bandwidth brokers and core routers, respectively,

as well as the edge provisioning modules that are located at

access and peering routers. The edge provisioning module [22]

performs ingress link sharing at access routers, and egress

capacity dimensioning at peering routers.

B. Control Messaging

Dynamic core provisioning sets appropriate ingress traffic

conditioners located at access routers by utilizing a core traffic

load matrix to apply rate-reduction (via a Regulate Ingress

Down signal) at ingress conditioners, as shown in Fig. 2.

Ingress conditioners are periodically invoked (via the Reg-

ulate Ingress Up signal) over longer restoration time scales

to increase bandwidth allocation restoring the max-min band-

width allocation when resources become available. The core

traffic load matrix maintains network state information. The

matrix is periodically updated (via LinkState Update signal)

with the measured per-class link load. In addition, when there

is a significant change in the rate allocation at egress access

routers, a core bandwidth broker uses a SinkTree Update signal

to notify egress dimensioning modules at peering routers when

renegotiating bandwidth with peering networks, as shown in

Fig. 2. We use the term “sink-tree” to refer to the topological

relationship between a single egress link (representing the root

of a sink-tree) and two or more ingress links (representing the

leaves of a sink-tree) that contribute traffic to the egress point.

Dynamic core provisioning is triggered by dynamic node

provisioning (via a Congestion Alarm signal as illustrated in

Fig. 2) when a node persistently experiences congestion for a

particular service class. This is typically the result of some

local threshold being violated. Dynamic node provisioning

adjusts service weights of per-class weighted schedulers and

queue dropping thresholds at local core routers with the goal of

maintaining delay bounds and differential loss, and bandwidth

priority assurances.

C. Service Model

The proportional delay differentiation service proposed in

[15] defines the relative service differentiation of a single node

and not a path through a core network. In contrast, our work

produces service assurances that are quantitative in terms of

delay bound and loss differentiation, and support bandwidth

allocation priorities across service classes within a DiffServ

core network.
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Fig. 2. Dynamic Capacity Provisioning Model

Our SLA comprises:

• a delay guarantee: where any packet delivered through

the core network (not including the shaping delay of edge

traffic conditioners) has a delay bound of Di for network

service class i;
• a differentiated loss assurance: where network service

classes are loss differentiated, that is, for traffic routed

through the same path in a core network, the long-term

average loss rate experienced by class i is no larger than

P ∗
loss,i. The thresholds {P ∗

loss,i} are differentiated, i.e.,

P ∗
loss,(i−1) < P ∗

loss,i;

• a delay bound precedence over loss bound: when both

the delay and loss bounds can not be maintained for class

i, the loss bound will be revoked first before the delay

bound;

• a bandwidth allocation priority: where the traffic of class

j never affects the bandwidth/buffer allocation of class

i, i < j, that is, the delay and loss bounds of class i will

be revoked only after there is no bandwidth available

(excluding the minimum bandwidth for each class) in

classes j, j > i ; and

• a bandwidth utility function: which provides an applica-

tion programming interface (API) for edge service differ-

entiation. The utility function serves as a user-approved

per-class QoS degradation trajectory used by network

provisioning algorithms under network congestion or

failure conditions.

We design the service model such that maintaining a

quantitative delay bound takes precedence over maintaining

the packet loss bound. This precedence helps to simplify the

complexity of jointly maintaining both loss and delay bounds

at the same time. In addition, such a service is suitable for

TCP applications that need packet loss as an indicator for flow

control while guaranteed delay performance can support real-

time applications. The precedence to delay bound does not

mean that the loss bound will be ignored. For a service class

with higher bandwidth allocation priority, its loss bound will

be maintained at the cost of violating lower priority classes’

loss and delay bounds.

In addition, the Congestion Alarm signal from the node

provisioning algorithm will give an early warning to the core

provisioning algorithm, which can work with the admission

control algorithm and edge-based traffic regulation algorithm

to remove congestion inside the core network. One benefit of

our dynamic provisioning algorithm is its ability to maintain

service differentiation under unavoidable prediction errors

made by the admission control algorithm.

The granularity of per-node delay bounds Di is limited

by the nature of slow time scale aggregate provisioning. The

choice of Di has to take into consideration the sum of a single

packet transmission time at the link rate and a single packet

service time through various fair queue schedulers [23]. This

is in addition to the queueing delays due to traffic aggregates

inside the core network.

The choice of the loss threshold P ∗
loss,i in an SLA also needs

to consider the application behavior. For example, a service

class intended for data applications should not specify a loss

threshold that can impact steady-state TCP behavior. Studies

[24] indicate that the packet drop threshold P ∗
loss,i should

not exceed 0.01 for data applications to avoid the penalty of

retransmission timeouts.

We define a service model for the core network that in-

cludes a number of algorithms. A node provisioning algorithm

enforces delay guarantees by dropping packets and adjusting

service weights accordingly. A core provisioning algorithm

maintains the dropping-rate differentiation by dimensioning

the network ingress bandwidth. Edge provisioning modules

perform rate regulation based on utility functions. Even though

these algorithms are not the only solution to supporting the

proposed SLA, their design is tailored toward delivering quan-

titative differentiation in the SLA with minimum complexity.

Note that utility function based edge dimensioning has been

investigated in our prior work [22]. In the remaining part of

this paper we focus on core network provisioning algorithms

that are complementary components to the edge algorithms of

our dynamic provisioning architecture shown in Fig. 2.
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IV. DYNAMIC NODE PROVISIONING

The design of the node provisioning algorithm follows the

typical logic of measurement based closed-loop control. The

algorithm is responsible for two tasks: (i) to predict SLA

violations from traffic measurements; and (ii) to respond to

potential violations with local reconfiguration. If violations are

severe and persistent, then reports are sent to the core provi-

sioning modules to regulate ingress conditioners, as shown in

Fig. 2.

The detection of SLA violation is triggered by the virtual

queue method proposed in [4], [5]. A virtual queue has exactly

the same incoming traffic as its corresponding real queue but

with both the service rate and buffer size scaled down by

a factor of κ ∈ (0, 1). The virtual queue technique offers a

generic and robust traffic control mechanism without assuming

any traffic model (e.g., the Poisson arrivals, etc.). It performs

well under complex traffic arrival processes including self

similarity [5]. In our node provisioning algorithm, we extend

this technique to queues with multiple classes served by a

weighted fair queueing scheduler by dynamically adjusting the

scaling parameter κi for each class.

The algorithm is invoked either by the event of detect-

ing the onset of an SLA violation, or periodically over an

update interval interval. The value of the update interval
does not effect the detection of SLA violations because the

virtual queue mechanism can trigger the algorithm execution

immediately without the constraint of the update interval.
However, the update interval will effect the speed to detect

the system under-load, and the measurement of traffic statis-

tics. In Section VI-B.2, we investigate the appropriate choice

of the update interval value.

The SLA service model introduced in Section III-C is

intended to be simple for ease of implementation. However,

it still requires non-trivial joint control of both service weight

allocation and buffer dimensioning to maintain the delay and

loss bounds Di and P ∗
loss,i, respectively.

A. Loss Measurement

When P ∗
loss,i is small, solely counting rare packet loss

events can introduce a large bias. Instead, the algorithm works

with the inverse of the loss rate which essentially tracks the

number of consecutively accepted packets. For each class, a

target loss control variable lossfree cnti is measured upon

each update epoch tn. Denote cntaccepted the number of

accepted packets during the interval (tn−1, tn], and cntdropped

the number of dropped packets in the same interval, then we

have

lossfree cnti(tn) = (cntdropped + 1)/P ∗
loss,i − cntaccepted.

(1)

In other words, lossfree cnti represents the number of pack-

ets that have to be accepted consecutively under the P ∗
loss,i

bound before the next packet drop. lossfree cnti ≤ 0 signi-

fies that the Ploss,i bound is not violated; lossfree cnti >
1/P ∗

loss,i indicates the opposite; while lossfree cnti ∈
(0 1/P ∗

loss,i] indicates that there have not been sufficient

packet arrivals yet.

The measurement of cntaccepted and cntdropped uses a

measurement window τl, which is one order of magnitude

larger than the product of 1/P ∗
loss,i and the mean packet

transmission time in order to have a statistically accurate

calculation of the packet loss rate. In the simulation section,

we use τl ≥ 10 s. However, a large τl means that a currently

partial measurement sample has to be considered for the

instantaneous packet loss. To improve statistical reliability, we

also use the complete sample in the preceding window for

calculation, that is:

cntaccepted = accept count(prev)+
accept count partial(now)

cntdropped = drop count(prev)+
drop count partial(now).

(2)

B. Delay Constraint

Our algorithm controls delay by buffer dimensioning and

service weight adjustment. Exact calculation of the maximum

delay of all enqueued packets is expensive since it requires

tracking the queueing delay incurred by every enqueued

packet. Instead, we calculate the current maximum queueing

delay with its upper bound:

di ≤ d̄i
△
= di(HOL) + Nq/µi, (3)

where di(HOL) is the queue delay of the head-of-line (HOL)

packet, Nq is the queue size, and µi is the lower bound of the

packet service rate calculated from the proportion of service

weights in a WFQ scheduler. µi is a lower bound because the

actual service rate will be higher when some of the other class

queues are idle. The benefit of Eq. 3 is that we only need to

calculate the delay of the HOL packet. The downside of this

is that d̄i becomes an approximation of the current maximum

queueing delay. In fact, it represents an upper bound of the

current maximum queueing delay because the first portion of

Eq. 3 represents the maximum queueing delay incurred by

any of the enqueued packets handled so far. The bound can

be reached when all the enqueued packets arrived at the same

time. Note that the same technique is used in [16] to measure

the maximum queueing delay.

Now with d̄i ≤ Di, and Ineq. 3, we obtain a lower bound

for the service rate µi:

µi(new) ≥ Nq/(Di − di(HOL)). (4)

This means that µi(new) needs to be above the lower bound

in order to meet the delay bound of the enqueued packets.

Subsequently, the dimensioning of buffer size Qi for the ith
class queue can be derived as:

Qi(new) = D̃i, where

D̃i =

{

Di − di(HOL) if Di > di(HOL),
Di otherwise, delay bound violated

(5)
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C. Virtual Queue Scaling

The virtual queue technique proposed in [4], [5] needs to be

extended for a WFQ scheduler with multiple queues. Denote

wi the service weight of class i, then the minimum service

rate is:

µi =
wi

∑

i wi
linerate. (6)

Denote κi the scaling parameter for the ith queue, then the

buffer size of each class queue is scaled down by κi. For the

total service rate of the WFQ scheduler, we have:

linerateV Q =
∑

i

κi µi =

∑

i κi wi
∑

i wi
linerate. (7)

The scaling parameter for the total service rate is
∑

i κi wi/
∑

i wi, which is the weighted average of the

individual scaling parameters.

The setting of κi takes into consideration the speed mis-

match between the instantaneous arrival rate and service rate,

and the response time of the queueing system to the adjustment

of service weights. The purpose is to choose κi such that

the early warning generated from the virtual queue will give

enough time for the WFQ scheduler to react.

Since the node provisioning algorithm targets operating at

the buffer half-full point to counter both queue under-load

and overload, we can assume that the available buffer space

at the beginning of an update interval is Qi/2. In addition,

we focus on the case where the traffic load ρi
△
= λi/µi >

1, which represents the extend of the rate mismatch between

queue arrival and departure. Therefore, the time that it takes

to fill the real queue buffer is:

tRQ =
Qi/2

(ρi − 1)µi
. (8)

For the virtual queue, with κi scaling down Qi and µi, we

have the time that takes to fill the virtual queue buffer as:

tV Q =
κi Qi/2

(ρi − κi)µi
. (9)

For a WFQ style (e.g., Weight Round Robin) scheduler, we

estimate the system response time to the change in service

weights as i/λi; that is, the response time is proportional

to the number of queueing classes that have higher or equal

allocation priority than i, and inversely proportional to the line

rate. Here we use λi to approximate the line-rate. Therefore,

we have the following inequality in order to achieve the early

warning of buffer overflow:

tRQ − tV Q =
Qi

2µi

ρi(1 − κi)

(ρi − 1)(ρi − κi)
≥

i

ρi µi
. (10)

Solving this inequality, we have the upper bound for setting

κ as:

κi =
Qi

2i ρ2
i − ρi(ρi − 1)

Qi

2i ρ2
i − (ρi − 1)

. (11)

Fig. 3 shows some typical values of κ as a function of ρi,

Qi and i. The value of κi is sensitive to the buffer size Qi

and the number of higher or equal priority queueing classes i.
However, the value of κ does not vary much for large values of
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Fig. 3. Example of κ Values

ρi, which represents extremely bursty traffic conditions. This

indicates that the dynamic adjustment of the virtual queue

scaling parameter is applicable to a wide range of traffic

conditions. Indeed, taking the limit of ρi in Eq. 11, we have:

lim
ρi→∞

κi = 1 −
2i

Qi
. (12)

This limit is also the lower bound of κi. It is desirable to

keep the scaling parameter of a virtual queue not too small

otherwise the virtual queue will generate a lot of false positive

alarms. That is, 2i
Qi

should remain close to zero. Because
2i
Qi

increases as Qi decreases, a small Qi ≈ µi Di also

means smaller delay requirements usually for higher allocation

priority classes, therefore i is necessarily small as well. As a

result, κi will stay away from values close to zero.

D. Control Action

The control action is to adjust the service rate (weight)

as well as buffer size based on the short-term measurement

of the traffic arrival rate λ̄i and the queue length N̄q,i.

The measurement method is the same as the dual-window

averaging method used for loss measurement in Section IV-A,

except that the window size is much smaller, set to be the

same as the update interval (i.e., the samples are averaged

over an interval between 1 to 2 times the update interval).
We find that this dual-window measurement is better than the

widely used exponentially-weighted moving-average method

for closely tracking the short-term variations in the sampled

statistics.

The baseline assignment of the service rate uses the

measured arrival rate µi(new) = λ̄i. In addition to this,

we decrease/increase the service rate based on the under-

load/overload conditions, respectively.

We determine that a queue is overloaded when the

lossfree cnti > −burst loss/p∗loss,i. Here the meaning of

a negative target loss-free count −loss burst/P ∗
loss,i provides

an early response when the loss rate is within an additional

burst loss packet drops away from P ∗
loss,i. In this work, we

set burst loss = 5 to account for simultaneous packet drops
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resulting from simultaneous arrivals at a full queue. In the case

of queue overload, µi(new) has an additional increment from

queue-length adjustment:
(

N̄q,i−Qi/2
update interval

)+

. The purpose of

this is to use an additional workload to bring the queue length

down to the half-point of the buffer size when N̄q,i > Qi/2.

After replacing Qi with µi(new) D̃i based on Eq. 5, we have:

µi(new) = λ̄i +

(

N̄q,i − µi(new) D̃i/2

update interval

)+

(13)

The solution is:

µi(new) =

{

λ̄i+N̄q,i/update interval

1+D̃i/(2 update interval)
if N̄q,i ≥ λ̄iD̃i/2

λ̄i otherwise
(14)

Similarly, we determine a queue is under-loaded when

lossfree cnti ≤ −burst loss/p∗loss,i. In this case, we set

µi(new) = max{µi(perv) , λ̄i}, (15)

The calculated µi(new) is then checked against the con-

straint of Eq. 4 and we have:

µi(new) = max{µi(new) , N̄q/D̃i, µmin}, (16)

where µmin is the minimum service rate reserved for each class

to avoid starving a traffic class particularly when it transitions

from idle to active.

The service rate µi(new) is then converted to service

weight wi(new) for a WFQ scheduler. Note that µi(new)
is the minimum service rate in a WFQ style scheduler be-

cause the unused service rate (weight) for some temporally

idle classes will be proportionally allocated to busy classes.

When there is congestion, i.e., not enough bandwidth to

satisfy every µi(new), we use a strict priority in the service

weight allocation procedure; that is, higher priority classes can

“steal” service weights from lower priority classes until the

service weight of a lower priority class reaches its minimum

(µi(min)). We always change local service weights first before

sending a Congestion Alarm signal to the core provisioning

module (discussed in Section V) to reduce the arrival rate

which would require a network-wide adjustment of ingress

traffic conditioners at edge nodes.

Similarly, when there is a persistent under-load in the

queues, an increasing arrival rate is signaled (via the

LinkState Update signal) to the core provisioning module. An

increase in the arrival rate is deferred to a periodic network-

wide rate re-alignment algorithm which operates over longer

time scales. In other words, the control system’s response

to rate reduction is immediate, while, on the other hand, its

response to rate increase to improve utilization is delayed

to limit any oscillation in rate allocation. In general, the

timescale of changing ingress router bandwidth should be

one order of magnitude greater than the maximum round trip

delay across the core network in order to smooth out the

traffic variations due to the transport protocol’s flow control

algorithm. Therefore, we introduce two control hystereses to

the dynamic adjustment algorithm (Fig. 4 line (18)), in the

form of a 10% bandwidth threshold and a 5 s delay.

The pseudo code for the node algorithm is detailed in Fig. 4.

dynamic adjustment algorithm

(1) upon the expiration of the update interval
timer or the arrival of early warning

events from the virtual queues:

(2) IF early warning event

(3) reset update interval timer

(4) ENDIF

(5) FOR all classes 1, · · · , n
(6) retrieve measurement: λ̄i and lossfree cnti
(7) IF lossfree cnti > −burst loss/p∗

loss,i
//overload

(8) use Eq. 14 to calculate service weight

(9) ELSE //under-load

(10) use Eq. 15 to calculate service weight

(11) ENDIF

(12) use Eq. 16 to enforce lower bound on µ(new)
(13) IF remaining service bandwidth < µi(new)
(14) adjust µi(new) and set all µj(new), j > i

to µmin

(15) send Congestion Alarm signal

(16) RETURN

(17) ENDIF

(18) adjust buffer size based on Eq. 5

(19) calculate κi for virtual queue with Eq. 11

(20) scale virtual queue service rate to

κiµi(new), and buffer size to κiQi(new)
(21) END FOR

(22) IF remaining service bandwidth > 10% linerate
for a duration > 5s

(23) send LinkState Update signal to increase λi

(24) ENDIF

(25) RETURN

virtual queue prediction algorithm
(1) upon the arrival of class i packets:

(2) IF lossfree cnti(now) > 1/P ∗
loss,i

AND lossfree cnti(now) > lossfree cnti(prev)
AND Congestion Alarm signal not present

for classes j ≤ i
(3) invoke the dynamic adjustment algorithm

(4) lossfree cnti(prev) = lossfree cnti(now)
(5) ENDIF

(6) RETURN

Fig. 4. Node Provisioning Algorithm Pseudo-Code

V. DYNAMIC CORE PROVISIONING

Our core provisioning algorithm has two functions: to

reduce edge bandwidth immediately after receiving a Con-

gestion Alarm signal from a node provisioning module, and

to provide periodic bandwidth re-alignment to establish a

modified max-min bandwidth allocation for traffic aggregates.

We will focus on the first function and discuss the latter

function in Section V-C.

A. Core Traffic Load Matrix

We consider a core network with a set L
△
= {1, 2, · · · , L}

of link identifiers of unidirectional links. Let cl be the finite

capacity of link l, l ∈ L.

A core network traffic load distribution consists of a matrix

A = {al,i} that models per-DiffServ-aggregate traffic dis-

tribution on links l ∈ L, where the value of al,i indicates

the portion of the ith traffic aggregate that passes link l. Let

the link load vector be c and ingress traffic vector be u,

whose coefficient ui denotes a traffic aggregate of one service

class at one ingress point. Note that a network customer may

contribute traffic to multiple ui for multiple service classes
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and at multiple network access points. This matrix formulation

also supports multiple service classes. Let J be the total

number of service classes. Without loss of generality, we can

rearrange the columns of A into J sub-matrices, one for

each class, which is: A = [A(1)
...A(2)

... · · ·
...A(J)]. Similarly,

u = [u(1)
...u(2)

... · · ·
...u(J)].

The constraint of link capacity leads to: Au
T ≤ c. Fig. 5

illustrates an example network topology and its corresponding

traffic matrix. In this figure, node 1, 2, 3, and 4 are edge

nodes, while node 5 and 6 are core nodes. All the links are

unidirectional. To better explain the construct of the traffic load

matrix, we use the construct of the third column of the matrix

A: a·,3 as an example. a·,3 represents the traffic distribution

tree rooted at node 3, which is highlighted in the figure.

Each entry al,3 represents the portion of node 3’s incoming

traffic that passes link l. For example, since 100% of node 3’s

incoming traffic passes through link 8, a8,3 = 1. Then at node

6, node 3’s traffic is split between link 6 and 9 with a ratio of

7 : 3, therefore a6,3 = 0.7, and a9,3 = 0.3. The 70% of traffic

on link 6 is further split between link 2 and 3 with a ratio of

6 : 1, as a result, we have a2,3 = 0.6, and a3,3 = 0.1. All

the other entries in a·,3 are zero since they model the reserve

links.

The construction of matrix A is based on the measure-

ment of its column vectors a·,i, each represents the traffic

distribution of an ingress aggregate ui over the set of links

L. The measurement of ui gives the trend of external traffic

demands. In a DiffServ network, ingress traffic conditioners

need to perform per-profile (usually per customer) policing or

shaping. Therefore, traffic conditioners can also provide per-

profile packet counting measurements without any additional

operational cost. This alleviates the need to place measurement

mechanisms at customer premises. We adopt this simple

approach to measurement, which is advocated in [11] and

measure both ui and a·,i at the ingress points of a core

network rather than measuring at the egress points which is

more challenging. The external traffic demands ui is simply

measured by packet counting at profile meters using ingress

traffic conditioners. The traffic vector a·,i is inferred from the

flow-level packet statistics collected at a profile meter. Some

additional packet probing (e.g., traceroute) or sampling (e.g.,

see [25]) methods can be used to improve the measurement

accuracy of intra-domain traffic matrix. Last, with the addition

of MPLS tunnels, fine granularity traffic measurement data is

available for each tunnel. In this case, the calculation of the

traffic matrix can be made more accurate. For example, in

Fig. 5, if there is an MPLS tunnel from node 3 to node 1

to accurate report the traffic volume, a2,3 can be calculated

exactly, and the inference of a9,3, a6,3, and a3,3 can also be

more accurately determined after knowing the value of a2,3.

B. Edge Rate Reduction Policy

Given the measured traffic load matrix A and the required

bandwidth reduction {−cδ
l (i)} at link l for class i, the alloca-

tion procedure Regulate Ingress Down() needs to find the edge

bandwidth reduction vector −u
δ = −[uδ(1)

...uδ(2)
... · · ·

...uδ(J)]

such that: al,·(j) ∗ u
δ(j)T cδ

l (j), where 0 ≤ uδ
i ≤ ui.

When al,· has more than one nonzero coefficient, there is an

infinite number of solutions satisfying the above equation. In

what follows, we investigate two distinctly different optimiza-

tion policies for edge rate reduction: fairness and minimizing

the impact on other traffic. For clarity, we drop the class (j)
notation since the operations are the same for all classes.

1) Equal Reduction: Equal reduction minimizes the vari-

ance of rate reduction among various traffic aggregates, i.e.,

min
i

{

n
∑

i=1

(

uδ
i −

∑n
i=1 uδ

i

n

)2
}

(17)

with constraints 0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i = cδ

l . Using

Kuhn-Tucker condition [26], we have:

Proposition 1: The solution to the problem of minimizing

the variance of rate reductions comprises three parts:

∀i with al,i = 0, we have uδ
i = 0; (18)

then for notation simplicity, we re-number the remaining

indices with positive al,i as 1, 2, · · · , n; and

uδ
σ(1) = uσ(1), · · · , u

δ
σ(k−1) = uσ(k−1); and (19)

uδ
σ(k) = · · · = uδ

σ(n)

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)

∑n
i=k al,σ(i)

, (20)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of

{1, 2, · · · , n} such that uσ(i) is sorted in increasing order, and

k is chosen such that:

ceq(k − 1) < cδ
l ≤ ceq(k), (21)

where ceq(k) =
∑k

i=1 al,σ(i)uσ(i) + uσ(k)

∑n
i=k+1 al,σ(i).

Equal reduction gives each traffic aggregate the same amount

of rate reduction until the rate of a traffic aggregate reaches

zero.

Remark: A variation of the equal reduction policy is propor-

tional reduction: to reduce each of the aggregates contributing

traffic to bottleneck link l by an amount proportional to its total

bandwidth. In particular, with α = cδ
l /

(

∑

∀i,al,i>0 al,iui

)

, we

have:

uδ
i =

{

0 ∀i with al,i = 0
αui else.

(22)

2) Minimal Branch-Penalty Reduction: A concern that is

unique to DiffServ provisioning is to minimize the penalty on

traffic belonging to the same regulated traffic aggregate that

passes through non-congested branches of the routing tree.

We call this effect the “branch-penalty”, which is caused by

policing/shaping traffic aggregates at an ingress router. For

example, in Fig. 5, if link 7 is congested, the traffic aggregate

#1 is reduced before entering link 1. Hence penalizing a

portion of traffic aggregate #1 that passes through link 3 and

9.

The total amount of branch-penalty is
∑n

i=1(1 − al,i)u
δ
i

since (1 − al,i) is the proportion of traffic not passing

through the congested link. Because of the constraint that
∑n

i=1 al,iu
δ
i = cδ

l , we have
∑n

i=1(1−al,i)u
δ
i =

∑n
i=1 uδ

i −cδ
l .
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Fig. 5. An Example of a Network Topology and its Traffic Matrix

Therefore, minimizing the branch-penalty is equivalent to

minimizing the total bandwidth reduction, that is:

min

n
∑

i=1

(1 − al,i)u
δ
i ⇐⇒ min

n
∑

i=1

uδ
i (23)

with constraints 0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i c

δ
l .

Proposition 2: The solution to the minimizing branch-

penalty problem comprises three parts:

uδ
σ(1) = uσ(1), · · · , u

δ
σ(k−1) = uσ(k−1); (24)

uδ
σ(k) =

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)

al,σ(k)
; and (25)

uδ
σ(k) = · · · = uδ

σ(n) = 0, (26)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of

{1, 2, · · · , n} such that al,σ(i) is sorted in decreasing

order, and k is chosen such that:

cbr(k − 1) < cδ
l ≤ cbr(k), (27)

where cbr(k) =
∑k

i=1 al,σ(i)uσ(i).

Proof: A straightforward proof by contradiction can be

constructed as follows:

Let’s assume that there is another rate reduction vector

v
δ 6= u

δ such that v
δ minimizes the objective function (23),

that is
∑n

i=1 vδ
i <

∑n
i=1 uδ

i . This inequality, together with

the fact that uδ
σ(i) (∀i < k) reaches the maximum possible

value, lead to the existence of at least one pair of indices j
and m, where j < k and m ≥ k, such that al,j > al,m > 0;

vδ
σ(j) < uδ

σ(j) and vδ
σ(m) > uδ

σ(m). Now we can construct

a third vector w
δ as follows: wδ

σ(i) = vδ
σ(i), i 6= j,m,

wδ
σ(j) = vδ

σ(j) + ǫ/al,σ(j), and wδ
σ(m) = vδ

σ(m) − ǫ/al,σ(m).

Here 0 < ǫ < min
{

al,σ(j)

(

vσ(j) − vδ
σ(j)

)

, al,σ(m)v
δ
σ(m)

}

so that both wδ
σ(j) and wδ

σ(m) are positive. It is clear that
∑n

i=1 al,iw
δ
i

∑n
i=1 al,iv

δ
i = cδ

l . However, because al,σ(j) >
al,σ(m), we have

∑n
i=1 wδ

i =
∑n

i=1 vδ
i − ǫ(1/al,σ(m) −

1/al,σ(j)) <
∑n

i=1 vδ
i . This contradicts the assumption that

v
δ minimizes the objective function (23).

The solution is to sequentially reduce the ui with the largest

al,i to zero, and then move on to the ui with the second largest

al,i until the sum of reductions amounts to cδ
l .

Remark: A variation of the minimal branch-penalty solution

is to sort based on al,σ(i)uσ(i) rather than al,σ(i). This ap-

proach first penalizes the aggregates with the largest volume

across the link (i.e., the “elephants”). This solution minimizes

the number of traffic aggregates affected by the rate reduction

procedure.

3) Penrose-Moore Inverse Reduction: It is clear that equal

reduction and minimizing the branch-penalty have conflicting

objectives. Equal reduction attempts to provide the same

amount of reduction to all traffic aggregates. In contrast, min-

imal branch-penalty reduction always depletes the bandwidth

associated with the traffic aggregate with the largest portion

of traffic passing through the congested link. To balance

these two competing optimization objectives, we propose a

new policy that minimizes the Euclidean distance of the rate

reduction vector uδ:

min

{

n
∑

i=1

(uδ
i )

2

}

, (28)

with constraints 0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i c

δ
l .

Similar to the solution of the minimizing variance problem

in the equal reduction case, we have:

Proposition 3: The solution to the problem of minimizing

the Euclidean distance of the rate reduction vector comprises

three parts:

∀i with al,i = 0, we have uδ
i = 0; (29)

then for notation simplicity, we re-number the remaining

indices with positive al,i as 1, 2, · · · , n; and

uδ
σ(1) = uσ(1), · · · , u

δ
σ(k−1) = uσ(k−1); and (30)

uδ
σ(k)

al,σ(k)
= · · · =

uδ
σ(n)

al,σ(n)
=

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)

∑n
i=k a2

l,σ(i)

, (31)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of

{1, 2, · · · , n} such that uσ(i)/al,σ(i) is sorted in increasing

order, and k is chosen such that:

cpm(k − 1) < cδ
l ≤ cpm(k), (32)

where cpm(k) =
∑k

i=1 al,σ(i)uσ(i) +
(uσ(k)/al,σ(k))

∑n
i=k+1 a2

l,σ(i).
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(1) sort the indices i of traffic aggregates

based on :

the increasing order of ui for ER,

the decreasing order of al,i for BR,

the increasing order of ui/al,i for PM;

(2) locate the index k in the sorted index list

based on :

Ineq. 21 for ER,

Ineq. 27 for BR,

Ineq. 32 for PM;

(3) calculate reduction based on:

Eq. 18 - Eq. 20 for ER,

Eq. 24 - Eq. 26 for BR,

Eq. 29 - Eq. 31 for PM.

Fig. 6. Edge Rate Reduction Algorithm Pseudo-Code

Eq. 31 is equivalent to the Penrose-Moore (P-M) matrix

inverse [27], in the form of

[uδ
σ(k) uδ

σ(k+1) · · ·u
δ
σ(n)]

T

[al,σ(k) al,σ(k+1) · · · al,σ(n)]
+ ∗ (cδ

l −

k−1
∑

i=1

al,σ(i)uσ(i)), (33)

where [· · ·]+ is the P-M matrix inverse. In particular, for an

n× 1 vector al,·, the P-M inverse is a 1×n vector a
+
l,· where

a+
l,i = al,i/(

∑n
i=1 a2

l,i).
We name this policy as the “P-M inverse reduction” because

of the property of P-M matrix inverse. The P-M matrix inverse

always exists and is unique, and gives the least Euclidean dis-

tance among all possible solution satisfying the optimization

constraint.

Proposition 4: The performance of the P-M inverse reduc-

tion lies between the equal reduction and minimal branch-

penalty reduction. In terms of fairness, it is better than the

minimal branch-penalty reduction and in terms of minimizing

branch-penalty, it is better than the equal reduction.

Proof: By simple manipulation, the minimization objec-

tive of P-M inverse is equivalent to the following:

min







n
∑

i=1

(

uδ
i − (

n
∑

i=1

uδ
i )/n

)2

+

(

n
∑

i=1

uδ
i

)2

/n







. (34)

The first part of this formula is the optimization objective of

the equal reduction policy. The second part of formula (34)

is scaled from the optimization objective of the minimizing

branch penalty policy by squaring and division to be compara-

ble to the objective function of equal reduction; that is, the P-M

inverse method minimizes the sum of the objective functions

minimized by the equal reduction and minimal branch penalty

methods, respectively. Therefore, the P-M inverse policy has

a smaller value in the first part of formula (34) than what the

minimal branch penalty policy has; and a smaller value in the

second part of formula (34) than the corresponding value the

equal reduction policy has. Hence, the P-M inverse method

balances the trade-off between equal reduction and minimal

branch penalty.

It is noted that the P-M inverse reduction policy is not

the only method that balances the optimization objectives of

(1) identify the most loaded link l in the set

of non-saturated links:

l = arg minj∈Lu

{

xj =
cj−allocated capacity

∑

i∈P
aj,i

}

;

(2) increase allocation to all ingress

aggregates in P by xl, and update the

allocated capacity for links in Lu;

(3) remove ingress aggregates passing l from P,
and remove link l from Lu;

(4) if P is empty, then stop; else go to (1).

Fig. 7. Edge Rate Alignment Algorithm Pseudo-Code

fairness and minimizing branch penalty. However, we choose

it because of its clear geometric meaning (i.e., minimizing the

Euclidean distance) and its simple closed-form formula.

4) Algorithm Implementation: The implementation com-

plexity of the preceding three reduction algorithms lies in the

boundary conditions where the rates of some traffic aggregates

are reduced to zero. Because all three algorithms have similar

structure, we can show the procedure of these algorithms in a

coherent manner, as shown in Fig. 6.

C. Edge Rate Alignment

Unlike edge rate reduction, which is triggered locally by a

link scheduler that needs to limit the impact on ingress traffic

aggregates, the design goal for the periodic rate alignment

algorithm is to re-align the bandwidth distribution across the

network for various classes of traffic aggregates and to re-

establish the ideal max-min fairness property.

However, we need to extend the max-min fair allocation

algorithm given in [28] to reflect the point-to-multipoint topol-

ogy of a DiffServ traffic aggregate. Let Lu denote the set

of links that are not saturated and P be the set of ingress

aggregates that are not bottlenecked, (i.e., have no branch of

traffic passing a saturated link). Then the procedure is given

as in Fig. 7.

Our modification of step (1) changes the calculation of

remaining capacity from (cl − allocated capacity)/||P|| to

(cl − allocated capacity)/
∑

i∈P
al,i.

Remark: The convergence speed of the max-min allocation

for point-to-multipoint traffic aggregates is faster than for

point-to-point aggregate because it is more likely that two

traffic aggregates send traffic over the same congested link. In

the extreme case, when all the traffic aggregates have portions

of traffic over all the congested links, these aggregates are

only constrained by the most congested bottleneck link. In

this case, the algorithm takes one round to finish, and the

allocation effect is equivalent to the equal reduction (in this

case, “equal allocation”) method with respect to the capacity

of the most congested bottleneck link.

The edge rate alignment algorithm involves increasing edge

bandwidth, which makes the operation fundamentally more

difficult than the reduction operation. The problem is essen-

tially the same as that found in multi-class admission control

because we need to calculate the amount of offered bandwidth

cl(i) at each link for every service class. Rather than calculate
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cl(i) simultaneously for all the classes, we take a sequential

allocation approach. In this case, the algorithm waits for an

interval after bandwidth allocation for a higher priority. This

allows the lower priority queues to take measurements on the

impact of the changes, and to invoke Regulate Down() if rate

reduction is needed. The procedure is on a per class basis and

follows the decreasing order of allocation priority.

VI. SIMULATION RESULTS

A. Simulation Setup

We evaluate our algorithms by simulation using the ns-2

simulator [29]. Unless otherwise stated, we use the default

values in the standard ns-2 release for the simulation param-

eters.

We use the Weighted-Round-Robin scheduler which is a

variant of the WFQ algorithm. In our simulation, we consider

the performance of four service classes that loosely correspond

to the DiffServ Expedited Forwarding (EF), Assured Forward

(AF1, and AF2), and best-effort (BE) classes. The order above

represents the priority for bandwidth allocation. The initial

service weights for the four class queues are 30, 30, 30 and 10,

respectively, with a fixed total of 100. The minimum service

weight wi(min) for each class is 1. The initial buffer size is

30 packets for the EF class queue, 100 packets each of the

AF1 and AF2 class queues, respectively, and 200 packets for

the BE class queue.

The simulation network comprises eight nodes with traffic

conditioners at the edge, as shown in Fig. 8. The backbone

links are configured with 6 Mb/s capacity with a propagation

delay of 1 ms. The three backbone links (C1, C2 and C3)

highlighted in the figure are overloaded in various test cases

to represent the focus of our traffic overload study. The access

links leading to the congested link have 5 Mb/s with a 0.1 ms

propagation delay. The ingress traffic conditioners serve the

purpose of ingress edge routers. Each conditioner is configured

with one profile for each traffic source. The EF profile has a

default peak rate of 500 Kb/s and a bucket size of 10 Kb. The

AF profile has a default peak rate of 1 Mb/s and a token bucket

of 80 Kb. For simplicity, we program the conditioners to drop

packets that are not conforming to the leaky-bucket profile.

The core provisioning algorithm will regulate the ingress

traffic rates by changing the profiles in the traffic conditioners.

A combination of Constant-Bit-Rate (CBR), Pareto On-

Off and Exponential On-Off traffic sources are used in the

simulation, as well as applications including a large number

of greedy FTP sessions and HTTP transactions. The starting

time of all sources is a random variable uniformly distributed

in [0 5 s]. During the simulations, we vary the peak rate or the

number of sources to simulate different traffic load conditions.

Except where specifically noted, we use the default values for

all ns simulation parameters.

Throughout the simulations, we use the same set of DiffServ

SLAs:

• for the EF class, the delay bound D1 = 0.1 s, the loss

bound P ∗
1 = 5 ∗ 10−5;

• for the AF1 class, the delay bound D2 = 0.5 s, the loss

bound P ∗
2 = 5 ∗ 10−4;
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Fig. 8. Simulated Network Topology

• for the AF2 class, the delay bound D3 = 1 s, the loss

bound P ∗
3 = 5 ∗ 10−3.

For the BE class, there is no SLA that needs to be supported.

B. Dynamic Node Provisioning

The dynamic node provisioning algorithm interacts with

the core provisioning algorithm via the Congestion Alarm

and LinkState Update signals. To better stress test the node

provisioning algorithm, we disable the alarm and update

signals to the core provisioning algorithms in the simulations

described in this section. In addition, we simplify the network

shown in Fig. 8 into a dumb-bell topology (by combining

nodes 1 to 4 into one node, and nodes 5 to 8 into another

node). The 5 Mb/s link between these two “super” nodes will

be the focus of simulations in this sub-section.

1) Service Differentiation Effect: We first use traces to

highlight the impact of enabling and disabling the node

provisioning algorithm on our service model. We compare the

results where the algorithm is enabled and disabled.

We use 100 traffic sources: 20 CBR sources for the EF

class; 30 Pareto On-Off sources for the AF1 class; and 40 and

10 Exponential On-Off sources for the AF2 and BE classes,

respectively. Each source has the same average rate of 55 Kb/s,

which translates into an average of a 110% load on the 5 Mb/s

target link when all the sources are active. The simulation trace

lasts 100 s. To simulate the dynamics of traffic overload, we

activate and stop the EF and AF1 class sources in a slow-start

manner, i.e., the activation time for the EF and AF1 traffic

sources is uniformly distributed over the first 30 s. The stop

time for the EF and AF1 sources is uniformly distributed over

the last 40 s. With respect to the AF2 and BE sources, their

slow-start activation time lies within the first 5 s, and their

stop time is at the end of the simulation period. As a result,

congestion occurs between 30 and 60 s in the trace. The node

provisioning algorithm update interval is set to a value of

200 ms.

Accurately setting the service weights is very important to

the operation of the scheduler in the case where the node

provisioning algorithm is disabled because its service weights

are not adjusted during the simulation. We use the exact

information of the traffic load mixture to set the service
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Fig. 9. Node Provisioning Service Differentiation Effect

weights to 23, 33, 43 and 1 for the EF, AF1, AF2, and BE

classes, respectively. These settings yield a traffic intensity of

96%, 100% and 102% for the EF, AF1 and AF2 queues,

respectively, while leaving wmin = 1 for the BE traffic

during the congestion interval. These setting represent the

best-case scenario for the scheduler (in the case where the

node provisioning algorithm is disabled) to maintain service

differentiation for services classes that have SLA concerns. We

note that in practice, however, there is no prior knowledge of

traffic load during congestion. Therefore, the setting of service

weights in practice would be less ideal when comparing the

performance of the scheduler in a system where the node

provisioning algorithm is disabled. As we will show later,

even with such a best-case advantage, the scheduler still under-

performs the node provisioning algorithm in both delay and

loss performance because a fixed set of service weights can

not deal with the varying mixture of traffic loads from different

classes.

The statistical traces collected in this simulation are end-to-

end throughput, packet loss rate, and mean delay for all the

classes except BE. Each sample is averaged over a window of

0.5 s from the per-packet samples.

Fig. 9(a) and (b) show the throughput trace. When the

system is not overloaded, both plots exhibit the same shape of

curve. During congestion between 30 and 60 s into the trace,

however, the plot with node provisioning disabled (Fig. 9(a))

shows almost flat throughput curves for the EF, AF1 and AF2

classes, with a ratio of 2:3:4 matching the service weight

settings, respectively. In contrast, significant variations occur

for the results with the node provisioning algorithm enabled,

as shown in Fig. 9(b).

The effect of the node provisioning algorithm can be clearly

observed in the delay plots of Fig. 9(c) and (d). Unlike

Fig. 9(c) where both AF1 and AF2 delays exceed their bound

of 0.5 s and 1 s, respectively, Fig. 9(d) shows that only the AF2

class exceeds its delay bound. In addition, the delay values for

all three classes are smaller than the results shown in Fig. 9(c).

In the packet loss comparison, the lack of loss differentiation

is clearly evident in Fig. 9(e), where both EF and AF2 classes

have the same magnitude of loss rate of approximately 10%.

In contrast, in Fig. 9(f) with node provisioning enabled, only

AF2 has packet loss and the loss rate is comparable to the

result shown in Fig. 9(f).

2) Update Interval: In this set of simulation, we investigate

the appropriate value for the update interval when invoking

the node provisioning algorithm. An update interval that

is too small, increases the variations in the measured traffic

arrival rate and leads to frequent oscillations in bandwidth

allocation. In contrast, an update interval that is too large,

delays the detection of under-load in some traffic classes and

hurts service differentiation.

We experiment with five different values of

update interval: 50 ms, 100 ms, 200 ms, 500 ms, 1 s

and 2 s. There are a total 70 traffic sources, with 20% for the

EF class, 30% for the AF1 class, 40% for the AF2 class and

10% for the BE class. The EF source is CBR with a peak rate

of 100 Kb/s. The AF1 and AF2 sources are Pareto On-Off

sources with default ns values: an average 0.5 s for the on
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Fig. 10. Node Provisioning Sensitivity to update interval, AF1 Class with Pareto On-Off Traffic

and off intervals, and a shape parameter with the value of

1.5. The AF2 sources have a peak rate of 200 Kb/s. The BE

class sources are CBR with 100 Kb/s rate. We vary the peak

rate for the AF1 class to change the offered load. The offered

load is calculated as the ratio between the total arrival rate

of the AF1 class and the available bandwidth to AF1 (which

is the link capacity subtracted by the total EF traffic arrival

rate).

Extensive statistics (e.g., delay, loss, service rate, arrival

rate, etc.) are collected for each queueing classes at each

network node, and for each flow from end-to-end. Most

samples are collected when the node provisioning algorithm

is invoked. Therefore, the maximum sampling interval is the

update interval. The collected samples are then consolidated

by the time-weighted average for the statistics requiring av-

eraging (e.g., traffic load, mean delay, and loss rate, etc.).

Statistics like maximum delay are calculated from the maxi-

mum of all the collected samples. The loss rate samples are

accumulated using the dual-window approach described in

Section IV, with the measurement window τl set to 30 s for

the EF class and 10 s for all the other classes. The collected

samples are then consolidated by time-weighted average for

statistics including loss rate, mean delay, and arrival rate.

Fig. 10 shows both the packet loss and maximum delay

performance. For the purpose of clarity, we only show the

results for the AF1 class. Each sample point on the plot is a

simulation run of 100 s. In general, the algorithm performance

is not very sensitive to the value of the update interval. This

is expected because the node provisioning algorithm can also

be invoked by the virtual queues detecting an onset of SLA

violation. Among the small differences, we observe that the

update interval ≥ 1 s is not good because it has packet losses

and large variation of the maximum delay under low offered

load. In addition, we observe that an update interval value

of 200 ms achieves low maximum delay relative to the other

curves. This is consistently observed across the whole range

of offered loads below 80%. When the offered load increases

beyond 80% the system becomes over-loaded and the impact

of a different update interval becomes negligible. In what

follows, we will use an update interval = 200 ms for all the

simulations.

It is also interesting to observe one feature of the node

provisioning algorithm: namely the algorithm always tries to

guarantee the delay bound first. We observe that beyond 80%

load the loss rate starts to exceed the 5∗10−4 bound, while the

delay bound of 0.5 s is always maintained even for an offered

load exceeding 1.

3) Stress Test Under Bursty Traffic: We continue the pre-

ceding simulation runs with different traffic sources for the

AF1 classes, including Pareto On-Off, Exponential On-Off and

CBR traffic sources. Each sample point represents a simulation

run of 1000 s. We use the CBR traffic source to provide a

baseline reference for the two bursty On-Off traffic types.

Fig. 11 presents four sets of consolidated statistics for

comparison. Fig. 11(a) plots the percentage of time that the

Congestion Alarm is raised for the AF1 class. Since we disable

the dynamic core provisioning algorithm to stress test the node

algorithm, the alarm frequency becomes a good indicator of

the node algorithm’s capability of handling bursty traffic. It

is also a convenient indicator of the performance boundary

below which the delay bound D2 = 0.5 s and loss bound

P ∗
loss,2 = 5 ∗ 10−4 should hold and above which the loss

rate and maximum delay will grow to exceed these bounds.

We observe that the algorithm performs equally well for

both Pareto and Exponential On-Off sources, even though

the Pareto source is heavy-tailed and more bursty. It is clear

that the algorithm can handle up to 70% load for both the

Pareto and Exponential On-Off traffic under the D2 and P ∗
loss,2

bounds. For the CBR traffic, the sustainable load reaches

85% as observed from the loss and delay measurements in

Fig. 11(c) and 11(d), respectively. This falls short of 100%

because the CBR traffic is also bursty being an aggregate of

21 individual CBR sources.

Fig. 11(b) shows the measured traffic intensity in the AF1

queue. Even though measuring the arrival rate is trivial,

measuring the per-class service time is not easy for a multi-

class queueing system. In the simulations, we use the sum

of the per-packet transmission time and the Head-of-the-Line
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Fig. 11. Node Provisioning Algorithm Performance, AF1 Class with Bursty Traffic Load

(HOL) waiting time as the total service time. The HOL waiting

time is the time after a packet enters the HOL position of

the queue, waiting for scheduler to finish serving the HOL

packets of other queues. From this plot we can observe the

algorithm’s efficiency in allocating bandwidth. For the CBR

traffic, the service bandwidth utilization remains at 100% until

the incoming traffic exceeds the maximum service capability.

For the Pareto and Exponential On-Off traffic, the utilization

stays at 100% until the offered load reaches 50%. After that

the utilization dips by about 10%. This is the amount of over

allocation necessary to maintain the SLA.

Fig. 11(c) and 11(d) plot the loss rate and maximum

delay measured at this AF1 class queue, respectively. The

results verify that when the alarm signal is not raised, the

system performance will remain below the SLA bounds. Once

again we observe that the algorithm gives precedence in

guaranteeing the delay bound first. Except two spikes for

the Pareto source, all the maximum delay curves are below

the 0.5 s bound. In addition, one can also discover the fact

that only when the alarm frequencies exceed 10%, the loss

rate will exceed the loss bound of 5 ∗ 10−4. This is true for

both the Pareto and Exponential On-Off sources, where the

10% alarm frequency corresponds well to the 70% maximum

sustainable load, and for the CBR source, where the 10% alarm

frequency matches the 85% maximum sustainable load. This

information is important for the core provisioning algorithm

as it allows the core algorithm to gauge the overload severity

from the frequency of Congestion Alarm signals sent by the

node provisioning algorithms.

4) Scalability with Adaptive Applications: We further test

our scheme with TCP applications including greedy FTP

and transactional HTTP applications. Because TCP congestion

control reacts to packet loss, the packet dropping action alone

is also effective in reducing congestion for TCP. However,

the adaptive flow control of TCP also will push the traffic

load to 100% even with a small number of sources. To test

our algorithm’s performance in supporting a large number of

TCP sources, we repeat the above test but instead of varying

the peak rate of each source, we vary the number of TCP

applications that are connected to the target node.

The results are shown in Fig. 12 in the same setting as

Fig. 11. The traffic load for the EF, AF2 and BE classes remain

the same as in the previous tests. We vary the number of the

AF1 sessions: from 2 to 40 for greedy FTP traffic, and from

20 to 400 for web traffic. To better understand these results,

we plot the FTP and HTTP results with a corresponding 1:10

ratio in the number of sessions on the x axis.

The web traffic is simulated using the ns-2 “Page-

PoolWebTraf” module. The parameters for the web traffic are

set to increase the traffic volume of each web session so that

on the target link of 5 Mb/s, queueing overload can occur. The

inter-session time is exponentially distributed with a mean of
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Fig. 12. Node Provisioning Algorithm Performance, AF1 Class with TCP Applications

0.1 s. Each session size is a constant of 100 pages. The inter-

page time is also exponentially distributed but with a mean

of 5 s. Each page size is a constant of 5 objects, while the

inter-object time is exponentially distributed with a mean of

0.05 s. Last, the object size has a distribution of Pareto of the

Second Kind (also know as the Lomax distribution) with a

shape value of 1.2 and average size of 12 packets (which is

12 KB).

In Fig. 12(a), for both traffic sources, the alarm frequency

rises above 10% for a small number of sessions, i.e., 5 sessions

for FTP and 20 sessions for HTTP, respectively. The average

traffic intensity (Fig. 12(b)), however, shows a difference. The

FTP traffic intensity increases quickly to 100% and then stays

at 100% after 5 sessions, while the HTTP traffic intensity

increases gradually and reaches 100% much later at 220

sessions. These two plots indicate that the HTTP traffic is more

bursty than the FTP traffic because for the HTTP traffic, its

alarm frequency rises quicker while its average traffic intensity

rises much slower than the FTP traffic. The FTP traffic, on the

other hand, is less bursty only because its average load reaches

100% for most of the cases. However, even with a large value

of alarm frequency, the system perform well for a wide range

of number of sessions. The loss rate exceeds 5 ∗ 10−4 at 25

FTP sessions or 300 HTTP sessions. The delay bound of 0.5 s

is always met for the HTTP traffic. For the FTP traffic, because

of the heavy traffic load, the delay bound is first violated at

25 FTP sessions, but is not exceeded much after that point

(Fig. 12(d)).

In summary, the stress test results from both bursty On-

Off and TCP application traffic have shown that the node

provisioning algorithm will guarantee the delay and loss

bounds when there is no alarm raised, and also with a alarm

frequency below 10%. When there is a SLA violation, the

algorithm will first meet the delay bound sacrificing the loss

bound. For adaptive applications like TCP which respond to

packet loss, this approach has shown to be effective even

without the involvement of core provisioning algorithms.

C. Dynamic Core Provisioning

1) Effect of Rate Control Policy: In this section, we use test

scenarios to verify the effect of different rate control policies

in our core provisioning algorithm. We only use CBR traffic

sources in the following tests to focus on the effect of these

policies.

Table I gives the initial traffic distribution of the four

EF aggregates comprising only CBR flows in the simulation

network, as shown in Fig. 8. For clarity, we only show the

distribution over the three highlighted links (C1, C2 and C3).

The first three data-rows form the traffic load matrix A, and

the last data-row is the input vector u.

In Fig. 13, we compare the metrics for equal reduction,

minimal branch-penalty and the P-M inverse reduction under
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Fig. 13. Reduction Policy Comparison (Ten Independent Tests)

ten randomly generated test cases. Each test case starts with

the same initial load condition, as given in Table I. The change

is introduced by reducing the capacity of one backbone link to

cause congestion which subsequently triggers rate reduction.

Fig. 13(a) shows the fairness metric: the variance of rate

reduction vector u
δ . The equal reduction policy always gener-

ates the smallest variance, in most of the cases the variances

are zero, and the non-zero variance cases are caused by the

boundary conditions where some of the traffic aggregates have

their rates reduced to zero. Here we observe that the P-M

inverse method always gives a variance value between those of

equal reduction and minimizing the branch penalty. Similarly,

Fig. 13(b) illustrates the branch penalty metric:
∑

i(1−al,i)u
δ
i .

In this case, the minimizing branch penalty method consis-

tently has the lowest branch penalty values, followed by the

P-M inverse method. The last figure, Fig. 13(c), shows the

Euclidean distance of u
δ , i.e.,

∑

i(u
δ
i )

2. In this case, the P-M

inverse method always has the lowest values, while there is

no clear winner between the equal reduction and minimizing

branch penalty methods.

The results support our assertion that the P-M Inverse

method balances the trade-off between equal reduction and

minimal branch penalty.

In Fig. 14, we plot the time sequence of rate-regulating

results using the default policies of our core provisioning

algorithm, i.e., the P-M inverse method for rate reduction and

the modified max-min fair rate alignment method for rate re-

alignment. The traffic dynamics are introduced by sequentially

changing link capacity of C1, C2 and C3 as follows:

1) at 100 s into the trace, C2 capacity is reduced to 3 Mb/s

and requires a bandwidth reduction of 0.8 Mb/s from

ingress traffic conditioners

2) at 200 s into the trace, C3 capacity is reduced to 2 Mb/s,

and requires a bandwidth reduction of 0.1 Mb/s,

3) at 300 s into the trace, C1 capacity is reduced

TABLE I

TRAFFIC DISTRIBUTION MATRIX

Bottleneck User Traffic Aggregates

Link U1 U2 U3 U4

C1 0.20 0.25 0.57 0.10

C2 0.80 0.75 0.43 0.90

C3 0.40 0.50 0.15 0.80

Load (Mb/s) 1.0 0.8 1.4 2.0
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Fig. 14. Core Provisioning Allocation Result, Default Policies

to 0.5 Mb/s, and requires a bandwidth reduction of

0.6 Mb/s, and

4) at 400 s into the trace, C1 notices a capacity increase to

6 Mb/s, which leaves C3 the only bottleneck.

The first three cases of reduction are also the first three test

cases used in Fig. 131. The last case invokes a bandwidth

increment rather than a reduction. In this case, we use the

modified max-min fair allocation algorithm to re-align the

bandwidth allocation of all ingress aggregates. The allocation

effect is the same as “equal allocation” because all the traffic

aggregates share all the congested links.

2) Responsiveness to Network Dynamics: We use a com-

bination of CBR and FTP sources to study the joint effect

of our dynamic core provisioning algorithm (i.e., the P-M

Inverse method for rate reduction and max-min fair for rate

alignment) and our node provisioning algorithm. Periodic edge

rate alignment is invoked every 60 s. We use CBR and FTP

sources for EF and AF1 traffic aggregates, respectively. Each

traffic class comprises four traffic aggregates entering the

network in the same manner, as shown in Fig. 8. A large

number (50) of FTP sessions are used in each AF1 aggregate to

simulate a continuously bursty traffic demand. The distribution

of the AF1 traffic across the network is the same as shown in

Table I.

The number of CBR flows in each aggregate varies to

1We note that it does not make sense to plot the performance metrics shown
in Fig. 13 in the same time sequence style as that of Fig. 14. The reason is
that in a time-sequenced test, after the first test case, the load conditions prior
to each rate reduction could be different for different allocation methods, and
the results from the comparison metrics would not be comparable.
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Fig. 15. Average Bandwidth Allocation and Delay Traces for AF1 Aggregates

simulate the effect of varying bandwidth availability for the

AF1 class (which could be caused in reality by changes in

traffic load, route, and/or network topology). The changes in

the available bandwidth for the AF1 class includes: at time

400 s into the trace, C2 (the available bandwidth at link 2)

is reduced to 2 Mb/s; at 500 s into the trace, C3 is reduced

to 0.5 Mb/s; and at 700 s into the trace, C3 is increased to

3 Mb/s. In addition, at time 800 s into the trace, we simulate the

effect of a route change, specifically, all packets from traffic

aggregate u1 and u3 to node 5 are rerouted to node 8, while

the routing for u2 and u4 remains intact.

Fig. 15 illustrates the allocation and delay results for the

four AF1 aggregates. We observe that not every injected

change of bandwidth availability triggers an edge rate reduc-

tion; however, in such a case it does cause changes in packet

delay. Since the measured delay is within the performance

bound, the node provisioning algorithm does not generate

Congestion Alarm signals to the core provisioning module,

hence, rate reduction is not invoked. In most cases, edge

rate alignment does not take effect either because the node

provisioning algorithm does not report the need for an edge

rate increase. Both phenomena demonstrate the robustness of

our control system.

The system correctly responds to route changes because the

core provisioning algorithm continuously measures the traffic

load matrix. As shown in Fig. 15(a) and 15(b), after time 800 s

into the trace, the allocation of u1 and u3 at link C1 drops to

zero, while the corresponding allocation at link C2 increases

to accommodate the surging traffic demand.

VII. CONCLUSION

This paper makes two contributions. First, our node provi-

sioning algorithm prevents transient service level violations by

dynamically adjusting the service weights of a weighted fair

queueing scheduler. The algorithm is measurement-based and

effectively uses a multi-class virtual queue technique to predict

the onset of SLA violations. Second, our core provisioning

algorithm is designed to address the unique difficulty of

provisioning DiffServ traffic aggregates where rate-control can

only be exerted at the root of traffic distribution trees. We

proposed the Penrose-Moore (P-M) Inverse Method for edge

rate reduction which balances the trade-off between fairness

and minimizing the branch-penalty. We also extended max-

min fair allocation for edge rate alignment and demonstrated

its convergence property.

Collectively, these algorithms contribute toward a more

quantitative differentiated service Internet, supporting per-

class delay guarantees with differentiated loss bounds across

core IP networks. We have argued that such an approach to

dynamic provisioning is superior to static provisioning for

DiffServ because it affords network mechanisms the flexibility

to regulate edge traffic, maintaining service differentiation

under persistent congestion and device failure conditions when

observed in core networks.

Our service model uses two priority orders in QoS provi-

sioning; that is, the relaxation of the loss bound in favor of

a delay bound, and a static order of relaxation among service

classes. The preference of a delay bound instead of a loss

bound is intended to better support TCP applications with

reduced round trip delays and early congestion notification

through packet drops. However, under high loss rate condi-

tions, low-priority flows would be starved due to the interac-

tion of a high loss rate and TCP congestion control algorithms.

Therefore, it is important for the core provisioning algorithm

to prevent severe congestion from happening by regulating

traffic at the edges. In this paper, we have shown that the
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node provisioning algorithm can provide reliable early warning

signals using a virtual queue technique, which does not require

prior knowledge of traffic characteristics. We are currently

studying how to extend the core provisioning algorithm to also

provide loss guarantees across traffic classes. This problem

bears similarity to the measurement based admission control

algorithms discussed in the related work section (Section II).

The complexity of the proposed algorithms mainly resides

in the node provisioning algorithm, which is distributed across

core routers and is scalable to large network configurations.

The challenge of implementing the centralized core provi-

sioning algorithm lies in the continuous monitoring of the

traffic matrix across the core network. To improve scalability,

we a studying approaches that can enlarge the monitoring

granularity and time scale; for example, focusing on a few

potential bottleneck links instead of every internal link in the

network, or, increasing the update interval provisioning time

scale. Recent work on network measurement [11], [12], [25]

of the AT&T backbone network provides valuable insights and

directions on how we could scale the monitoring process up to

handle large networks. The centralized approach to the current

design of the core provisioning algorithm provides a better

response time to sudden changes in network traffic overloads.

To improve survivability against network failures (e.g., out-

ages, DDoS), fault tolerant practices in network management

can be used to deploy redundant core provisioning algorithms.

We are currently studying a fully distributed core provisioning

algorithm that removes the single point of failure presented

by the existing centralized scheme. A key challenge is to

design and analyze the convergence and stability properties

of a distributed solution in order to recover in a timely

fashion after network failure. We plan to develop some form of

analytical proof or argument guaranteeing the stability of such

a scheme subject to the perturbations unbounded in magnitude,

but bounded in time.
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