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Abstract. Phenomenological hydrodynamic equations
are

proposed for entangled polymer

blends
as

generalization of those for polymer solutions. They
can

describe coupling between

macroscopic flow and relative diffusion. The key concept we use
is the "tube velocity" introduced

by Brochard in the problem of mutual diffusion in polymer blends. As applications, (I)
we

give
a general expression for the time-correlation function of the polymer concentration around

equilibrium and examine its relaxation in
some

typical
cases.

It
can

be strongly influenced by the

viscoelastic effect when the two polymers have different lengths. Our expression
can

also be used

for gelling solutions and explains previous dynamic light scattering experiments at the sol-gel

transition. (ii) Detailed calculations
are

performed for the
case

of
a

single rheological relaxation

time (the Maxwell model). The steady state structure factor is obtained to Iinear order in

macroscopic flow. (iii) We predict that composition inhomogeneity is created in mixtures oflong

and short polymers undergoing nonuniform flow. Its origin is that the longer chains support

stress more
than the shorter

ones
and the resultant imbalance of stress causes

relative motion

of the two polymers. These results
are

applicable both to solutions and blends.

1 Introduction.

In the usual treatment of flow in polymeric liquids, the polymer composition is assumed to be

uniform in space. However, it has been suggested that the composition should not be uniform

under nonuniform velocity gradients [1, 2]. An early argument for the effect
was

based
on

consideration of the elastic free energy. That is, chains in spatial region with higher velocity

gradients
are more

deformed than those in regions with lower velocity gradients, and have

larger values of the chemical potential. As
a

result, they will migrate toward regions with

lower velocity gradients in order to reduce the total free energy of the system. However, this

argument has recently been criticized
as

it
uses

the principle of minimizing the free energy in

nonequilibrium states [3, 4].
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Experimental studies of the flow-induced polymer migration
are

still not abundant [5], al-

though the effect has been discussed in
a

broad range of problems such
as

the polymer retention

in flow through porous media [2], the anomalous size effect of the viscosity in polymer solutions

through
narrow

tubes [2], and the shear-induced phase separation [6, 7]. Unfortunately, most

of these experiments have not been decisive enough to establish the effect and the existence of

the effect itself has often been questioned [8].

However, we
should mention experiments by Zimm and his coworkers reported in biological

journals [9, 10], which clearly evidenced the effect. They found that, when
a

DNA solution is

sheared between two cones, DNA molecules migrate toward the center and longer
ones move

faster than shorter
ones.

This effect has been utilized
as a

DNA separator [10]. Zimm et al.

also showed, using
a

bead spring model for DNA molecules, that the migration
can

take place

due to the normal stress effect ill], although detailed comparison between their theory and

experiments has not been made furthermore.

Very recently interest toward the problem has revived in connection with the shear-induced

phase separation, which is
now

being observed by dramatic light scattering experiments [12-14].
Theoretically, Helfand and Fredrickson [3], and Onuki [4] criticized the early theory based

on

the free energy principle, and proposed
new

kinetic equations in the presence of flow
near

the

consolute point. Doi [15] proposed
a two fluid model and predicted macroscopic concentration

gradient induced in entangled polymer solutions under nonuniform flow. Although controversy

existed
on

the form of kinetic equations at an
early stage, it has

now
settled, and the kinetic

approach has converged to a common
framework [15-17].

The kinetic equations developed
so

far
are

those for polymer solutions consisting of polymer

and solvent, the latter having
a

low molecular weight. It is naturally expected that analogous

effects should also exist in polymer melts consisting of two kinds of polymers with different

molecular weights, ML and MS In the extreme limit, MS « ML, the mixture should behave

like
a

polymer solution and composition inhomogeneity should be induced by shear in the
same

manner.
Indeed it has been reported that in polymer blends phase separation

can
be triggered

by shear [18]. A question then arises
:

how
can

the kinetic equations for polymer solutions be

generalized for mixtures of polymer melts with general Ms and ML? The purpose of this paper

is to give such
a

generalization
on

the basis of two early works;
one is the two fluid model for

polymer solutions ii 5], and the other is Brochard's theory jig]
on

mutual diffusion in polymer

melts. Since these theories
were

published both in conference proceedings,
we

shall first review

them in
some

detail in sections 2 and 3 and then generalize the ideas to derive kinetic equations

for polymer melts in section 4. The theory will be applied to examine the viscoelastic effect

on
dynamic scattering in section 5, the steady state structure factor in weak shear for the

Maxwell model in section 6, and compositional inhomogeneity in the cone-and-plate rheometer

in section 7.

2. Two fluid model for polymer solutions.

2.I iIAYLEIGH'S VARIATIONAL PRINCIPLE. Let
us

consider
a

polymer solution in which

bulk flow and diJfusion
are

taking place simultaneously, where the polymer velocity differs from

the solvent velocity. Let v~(r,t) and vs(r,t) be the average velocities of polymer and solvent,

respectively, and #(r,t) be the volume fraction of polymer at point
r

and time t. We
assume

that the solvent and polymer have the
same

specific volume,
so

that the polymer
mass

density

p~ divided by # is equal to the solvent
mass

density p~ divided by I #. It follows from the

conservation law that

~ '~~~~~ ~~ '~~~ ~~~~~ ~~'~~
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The volume average velocity
v

is given by

v =
<vp + (i <)v~ (2.2)

It follows from (2.I) that

V
.v =

0 (2.3)

To determine v~ and v~, we
shall

use
Rayleigh's variational principle [20, 21]. This is simply

a

variational statement for the following kinetic equation for thermodynamic quantities ~i (I
=

1, 2, n),

~~
~"~~~~~~~~)~~

~~'~~

where F is the thermodynamic free energy and Li; the kinetic coefficients; the matrix made of

L;; is positive-definite. Let M;; be the inverse matrix of L;;,

Z;M,;L;k
=

b;k
,

(2.5)

then equation (2A)
can

be written
as

Equation (2.6)
can

be stated in
a

variational principle that the following function, which
we

shall call Rayleighian,

R
=

EMU ii z> +
L )xi

(2.7)

1,j i

be minimized with respect to k; with z; held fixed. We shall call

W
=

£ M;;k;k; (2.8)

;,;

the dissipation function since it represents the energy dissipation for given I;. The second term

in (2.7)

#
=

Elk;
(2.9)

; '

denotes the free energy change due to £;.

In the present problem, k; correspond to v~(r,t) and vs(r,t), and the dissipation function is

written
as

W
=

dr ((v~ v~)~ + ns(T7v~ Vv~) (2.10)

The first term is the energy dissipation caused by relative motion between polymer and solvent,

and the second term represents the energy dissipation caused by solvent velocity gradients.

Rere q~ is the solvent viscosity and ( stands for the friction constant per unit volume and is

of order %fp~, fb being the so-called blob size [22]. In entangled polymer systems, the second

term is much smaller than the first and will be dropped in the following discussion.

It must be noted that (2.10) does not represent the whole energy dissipation taking place in

the system. Equation (2.10) represents only the part of the energy dissipation which is directly

coupled with the velocities v~ and v~. The total energy dissipation involves other terms which

arises from the local motion of polymer segments, but it does not affect the equations for v~ and

v~ such
as

(2.16) and (2.17) to follow. Hence
we can use

(2.10) to generate kinetic equations,

but
we

have to remember that W does not represent the whole energy dissipation.

The free energy of the system consists of two terms; one
is the mixing free energy Fm;x, and

the other is the elastic free energy Fej associated with the conformational entropy of polymer

chains. Their explicit forms will be given in the subsequent sections.
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2.2 DIFFUSION NEAR EQUII~IBRIUM. if the polymer conformation is in equilibrium, the

free energy consists of Fm;x only, which is written
as

Fm>x =

/
drf(#(r)) (2.ll)

where f(#) is the free energy per unit volume of
a

solution with polymer concentration #. For

simplicity
we

have neglected the gradient free energy (oc(V # (~) arising from inhomogeneity of

#(r). The time derivative of (2.ll)
can

be written
as

Fm>x
-

f II <dr
=

f II v .(<vP)dr (2.12)

Thus the Rayleighian to be minimized is

R
=

/
()((#)(vp ns)~

)
V

(#np)j
dr (2.13)

This has to be minimized under the incompressible condition,

v .lvp# + vs(i #)I
=

o (2.14)

which is accounted for by adding the term,

jdrp(r,t)V.ivp#+v~(I-#)j
,

(2.15)

to the Rayleighian (2.13). The condition that the functional derivative of the Rayleighian with

respect to up and ns be zero
gives

~~~~ ~~~ ~ ~ ~
~

~ ~'~ ~
'

~~'~~~

((v~ up) (I #) V p =
0 (2.17)

Elimination of V p yields

~P ~S "
~(#(i #) v

~j
(2.18)

The right hand side of (2.18) can
be rewritten in terms of the osmotic pressure

~r(#)
=

#§
f (2.19)

as

up us =

~
V

gr
(2.20)

(

This is the formula used in the theory of the concentration fluctuation in polymer solutions

[22].
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2.3 BULK FLOW IN POLYMER SOLUTIONS. if the polymer conformation is not in equilib-

rium,
we

have to account for the elastic free energy. To see
how this effect enters in the above

formulation, let
us

consider
a

homogeneous system in which vp and v~ are
equal to v as

in the

conventional theory of polymer rheology.

It is generally accepted in polymer rheology that stress in polymeric liquids originates from

the conformational entropy of polymer chains and that there exists
a

free energy Fei associated

with the chain conformation. The Fei is
a

functional of the past history of deformations, and

is related to the stress tensor Yap as
follows. Suppose that

a
small deformation is applied

to a
polymeric liquid in

a very short time and that each point in the system is displaced
as

r -
r'

= r + u(r); then, the change of Fei for arbitrary u(r) is given by

bfei
"

/
Yap

'~"
dr (2.21)

rp

Equation (2.21) implies that the change of the free energy for the velocity v(r) is written
as

Fei
=
j,~p (jj dr (2.22)

Hence the Rayleighian is given by

R
=

la
:V vdr

/
p V .vdr (2.23)

(Notice that the term W of the dissipation function is
zero

in this case.) Thus the variational

principle gives the force balance equation,

V .(a pI)
=

0 (2.24)

To obtain v(r,t) for given boundary conditions,
we

need
a

constitutive equation which deter-

mines the stress tensor «
for

a
given velocity gradient V

v.
A classical example is the following

upper convective Maxwell model [26],

~
(V v)t

« «.
V

v + (« GeI)
=

0 (2.25)

where DIM
%

alai + v.
V is the convective time derivative,

r
is the rheological relaxation

time, and Ge is the shear modulus. The zero-frequency viscosity q in this model is equal to

GeT. More accurate and elaborate constitutive equations
are

known
as

described in detail in

the literature [24, 26, 27]. Given
some

constitutive equation, the force balance equation (2.24)
and the incompressible condition V

.v =
0 determine v(r,t) and p(r, t).

2.4 VISCOELASTIC EFFECT ON DIFFUSION. if up and us are not equal, the above story has

to be modified. It is clear that
v

in (2.22) should be replaced by up since it is the deformation

of the polymer which
causes

the change of the free energy. Hence Fej is given by

Fej
= la~") .V vpdr (2.26)

Here
«

has been replaced by a~") in order to emphasize their difference. The «(") will be called

the network stress and the distinction will be explained later. Therefore, the Rayleighian to

be minimized with respect to up and v~ is
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which gives

((up v~)+ V
gr-

V .«(")
+ # V p =

0
,

(2.28)

((v~ up) + (I #) V p =
0 (2.29)

Thus,
we

obtain

VP v~ =
I(i <) v

~rI ~"~l
(2.30)

V .(«(") (gr + p)1)
=

0
,

(2.31)

which
are

the basic equations derived in reference [15].

Equation (2.30) shows that the motion of polymers relative to the solvent is driven by not

only the gradient of the osmotic pressure gr, but also the gradient of the elastic stress «(").

Indeed several authors pointed out that the elastic stress should contribute to the diffusion of

polymers. Tanaka and Filmore [28] proposed that the swelling speed of gels is driven by the

elastic stress and the osmotic pressure. Brochard and de Gennes argued that the
same

effect

should exists in entangled polymer solutions, and discussed its consequences on
relaxation

of the concentration fluctuations in semidilute solutions with theta solvent [29, 30] and
on

diffusion kinetics [31]. The physics underlying these theories is that the stress in the entangled

polymer systems is supported by chains and thus, if there is
a

gradient in the stress, it creates

a net force
on

the chains resulting in their migration relative to the solvent.

In these early theories, however, attention
was

focused
on

diffusion in quiescent states and

the convective motion
was not examined. On the other hand, above theory accounts for both

the polymer and solvent velocities explicitly and, consequently, it
can

describe the coupling

between convection and diffusion.

In the two fluid model, the bulk flow is determined by the second equation (2.31) which

represents a
force balance. Hence the tensor,

« =

«(")
(gr + p)1

,

(2.32)

represents the total stress tensor. Now the distinction between the network stress a~") and the

mechanical stress «
is explained. The network stress a~") differs from the mechanical stress

by the isotropic tensor (gr + p)I. For incompressible fluids with homogeneous composition this

distinction has
no

significance since the isotropic term pI is determined by the incompressible

condition V .v =
0. However, if the diffusion is taking place, the isotropic term matters since

it appears in the driving force for up, the divergence of which generally remains.

To determine a~"),
a new

constitutive equation is needed. Conventional rheological consti-

tutive equations
can

be used for the deviatopic part of the tensor a~"), I-e-, a~") (1/3)Tra~"),

which is equal to that of the mechanical stress tensor «.
On the other hand, very little is known

on
the isotropic part (1/3)Tr«("). In reference [15], it

was
assumed that Tr«(") vanishes. This

assumption is justified for
a

certain molecular model. Indeed, for the reptation model, it
can

be

shown that lh«(") is
zero

if the length of the polymer along the tube is equal to the equilibrium

value. Since
no

precise information is available
on

Tra~"),
we

proceed assuming that Tra~") is

zero.
Thus from (2.35)

we
have

a~")
= «

(Tr«)1 (2.33)
3

Therefore, in polymer solutions, if the rheological constitutive equation for
«

and the osmotic

pressure gr(#) are
known, up and us are

determined by (2.30) and (2.31). On the other hand,
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in polymer gels the diagonal part ~(Tr«)I gives rise to an
important contribution to the total

3
osmotic pressure. (In Ref. [32] it is included into the definition of gr).

Note that, since a~") arises from network deformations, it should be determined by the

gradient of up. For example, in the linear response regime a~") is generally written
as [15]

a))~ =
/~ dt'G(t t')<j(~(t') (2.34)

-«

~~~~~

~ii)
=

i~p> + ivP; l~v vP~~i> ~~'~~~

The G(t) is the stress relaxation function related to the complex shear viscosity q*(w) by

n*(W)
=

/~ dte~'~~G(t) (2.36)

Here V up is used in the place of V
v

in the conventional rheological equation. We claim that

V up should be used when up #
v.

This point has very important implications
as

it will be

discussed later.

With (2.30) # obeys the following diffusive equation,

I<
=

v .(<v)+ v ll<(i
)~ll<

v
I/-

v «~"~l (2.37)

This form of the equation
was

first proposed in reference [3] for the Rouse model and rederived

in references [16] and [17] for the entangled
case.

The gradient free energy can
be taken into

account if df/d# in the above equation is replaced by bF/6#, F being the total free energy

for #.

3. Brochard's theory for mutual diffusion in polymer blends.

3. I ENERGY DISSIPATION FUNCTION IN THE REPTATION THEORY. To introduce another

key concept, we
shall describe Brochard's theory for mutual diffusion in entangled polymer

melts in the framework of the Rayleighian formalism. Consider
a

mixture of long (L) and

short (S) polymers, each having degree of polymerization, NL and Ns, with NL > Ns > Ne,

where Ne is the degree of polymerization corresponding to the entanglement molecular weight.

Let vL and us be their average velocities. As in the previous section,
we assume

that the

volume fraction #L and #s satisfy

'

=
i7 .(V;~$;) and

~$; =
1

,

(3.1)~
i

where I stands for L
or

S.

To determine vi, let
us

first suppose the situation in which the polymers L and S
are

moving

through
a

fixed network. This is the case
treated in the classical reptation theory [33], which

assumes
that each polymer

moves
through

a
tube made of the network. If

a
polymer

moves

with
a

curvilinear velocity wi along the tube, its center of
mass moves

with the velocity

vi =
w;h; (I

=
L, S)

,

(3.2)
L;
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where L; is the contour length of the tube, and h; is the end-to-end vector of the polymer. At

equilibrium, L; is related to the square average of h;
as

Ll
=

~fl
(3.3)

Taking the square of the average of (3.2) and using (3.3),
we

have

~i f~°I (~.~)~
~

~

Here
we

have assumed that the polymer conformation is not significantly altered from that

in equilibrium. This assumption is not valid in the non-Newtonian regime where rheological

responses become
non

linear. However, the main point of the present theory is to elucidate the

coupling between stress and diffusion in the simplest manner, so we
wfll neglect this effect.

Now the energy dissipation W in this system is caused by the relative motion between

polymers and networks, and is proportional to the square of the curvilinear velocity w;. Let

(o; be the microscopic friction constant of the polymer I; then, the energy dissipation function

is written
as

W
=

dr #;(o;w) (3.5)
/ £

;

Using (3A), this
can

be rewritten
as

W
=

/ dr£ #;'(o;v)
=

/ dr£ (;v)
,

(3.6)

;
fi~e

;

where

(I
"

~i f(0i (3.~)
~

For simplicity
we

shall
assume

that the microscopic friction is
common to both species and

write (o
"

(oL
"

(os. This dependence of (; on
#; and N; will be crucial in the following

discussions. We note that it
can

also be found from
more

straightforward considerations
on

dynanfics given in the last part of section 4 below.

3. 2 ENERGY DISSIPATION IN A MOVING NETWORK. Now let
us come

back to the diffusion

problem in polymer-polymer mixtures. Brochard assumed that the topological constraints

imposed
on

each polymer can
be modeled by

a
molecular field represented by

a
network. The

network is common to all polymers and
moves

with
a

certain velocity VT, which she called the

tube velocity. If the network
moves

with VT, (3.2) should be modified
as

v; VT =
w;h; (3.8)

Hence the dissipation function is of the form,

W
=

/
dr ~j #;'(oi(v;

vT)~
"

/ dr£ (;(v; vT)~ (3.9)

;
fi~e

;

Brochard determined the tube velocity VT from the condition that the frictional force acting

on
the network should balance. Since the force in unit volume is (1/2)bW/bvT> the force

balance equation is written
as

~j (;(v; VT) =
0

,

(3.10)

;
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which gives VT in linear combination of vL and vs as

~T =

~~

l
~~

i(L~L + (s~s) 13.i i)

From (3.9) and (3.ll) the dissipation function is expressed
as

W
=

dr((vL vS)~ (3.12)

where

"

()([s
°~ "

)
~ ~~'~~~

3.3 MUTUAL DIFFUSION COEFFICIENT. Given the form of the dissipation function, the

subsequent development is straightforward. Following Brochard,
we

shall consider the
case

in

which the elastic energy of polymers is negligible. Hence Fm;x is given by

Fm.x
=

f
an v .i<L~L)

-

f
dr~ v .i<L~L) 13.141

where ~ =
df/d#L is equal to the difference in the monomeric chemical potentials

(~
= ~L ~s). Thus the Rayleighian becomes

R
=

/
dr (j((vL vs)~ ~ V .(#LVL) p V L(#;v;)j

,

(3.15)

from which
we

find

((uL
us + IL V ~ + IL V p =

0
,

(3.16)

((us uL) + Is V p =
0 (3.17)

Addition of these equations leads to

V p + #L V ~ =
0

,

(3.18)

and elimination of V p yields

v~ us = [<s<~ v ~ (3.igi

Equation (3.19)
can

be written using the volume average velocity,

v =
#LVL + Is us

,

(3.20)

Thus the
flux

the long

in the
eference rame

j~

~v~
-

~i

=
-

i
<i<i

v ~
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The mutual diffusion constant Dm is defined by

JL
=

-Dm V #L
,

(3.23)

so
it follows Brochard's result jig],

Dm
= l~

Ii
+

&I <i<ii (3.241

This expression
was

already presented by Kramer et al. [34] and Silescu [35], and has been

confirmed by experiments [36, 34]. It interpolates the diffusion constants in the dilute limit,

D;
=

lim Dm
oc

Ne/N/
,

(3.25)

where I
=

L
or

S and
use

has been made of the relation d~ flail
oc

I/#;N;
as

#;
-

0. However,

it should be noted that Brochard's theory derives (3.24) for the incompressible polymer model,

whereas the other theories [34, 35] are
based

on
the compressibility of polymer melts. We

believe that the compressibility assumption is not necessary to reach (3.24).

4. Two fluid model for polymer blends.

4. I GENERALIZED BROCHARD'S THEORY. Having described the basic physics,
we

shall

now
make

a
generalization of Brochard's theory. It is straightforward to account for the stress

gradient in her diffusion equation. A natural way of doing this is to assume
that F

=
Fm;x + Fez

is given by

F
=

dr -~T7 (#LVL) +
a~") .V VT

(4.1)

Notice that V vp in equation (2.27) has been replaced by V VT- This is consistent with

the reptation theory for viscoelasticity. According to Doi and Edwards [23], macroscopic

deformation changes conformation of the tube and
causes stress, so

it is natural to assume

that the network stress «(") acts on
the tube. Substitution of (3.ll) into (4.I) gives

fl
=

j
dr (-~ v .(#LVL) + o~") .v ((L + (s)- ~((LVL +

(svs)1(4.2)

Following the
same

procedure
as

in subsection (2A) we can
determine

vL and vs as

((~L ~s) + <L v ~ + <L VP ~~l
~~

v .°~"~
=

0 (4.3)

~~~~ ~~~ ~ ~~ ~ ~ (~)
(s

~ '"~"~
"

° ~~~~

Hence the counterparts of (3.18) and (3,19)
are

#L V ~+ V p- V .a~")
=

0
,

(4.5)

vL Us =
#L#s [- V ~ + a

V «(")]
,

(4.6)
(
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where
tY

in (4.6) is the following dimensionless coefficient,

* " (~

(
(s

()~~ )~~)

"
(NL Ns)/(#LNL + #sNs) (4.7)

On the second line of (4.7)
use

has been made of (3.7) and the assumption (oL
"

(os
=

(o. The

tY
tends to I/#L in the polymer + solvent limit, NL » Ns and #LNL » #sNs,

so
that (4.6)

reduces to (2.30). It vanishes for NL
=

Ns,
as

ought to be the case, where the two species of

polymers undergo the
same

deformations. We
can

also check that the tube velocity VT given

by (3. II may be expressed in terms of
tY

in the form,

VT = v + #L#sty(vL us) (4.8)

For NL
"

Ns
we

simply have VT " v even
in the presence of diffusion.

As in the previous sections, (4.5) represents the force balance equation. If the osmotic

pressure 1r
is introduced by

~ "

#L)
f (4'9)

L

(4.5) is written
as

V'li'~"~ l'r + P)Il
"

° (4.1°)

Thus the total stress is given by

« =

«(")
(gr + p)1 (4.ll)

On the other hand, (4.6) represents the diffusion driven by the chemical potential and the

network stress.

Equation (4.6) is the main result of
our

generalization of the previous two theories reviewed

in sections 2 and 3. In fact,
we can

check the following. I) Without V .«("), (4.6) reduces to

Brochard's result for mutual diffusion. ii) For NL » Ns and #LNL » #sNs it reduces to

(2.30) if I/( Et Ne/(oNs in the melt
case

is identified with I/( in (2.30) for solutions.

4. 2 EFFECT OF ACCELERATION. So far
we

have completely neglected the inertia force in

the previous formulation. The acceleration of the velocities
can

be accounted for if
we start

from the Lagrangean formalism with dissipation [20]. As
a

result
we

should obtain, instead of

(4.3) and (4A),

p~

DVL

Dl
~~L ~S #L i7 ~ ~j~ i7 p +

~L
~ ~~~

Dvs

(L + (s '

(4.12)

PS $ "
-((vs vL) j~ v p ~

(s
~ ~~~

(L + (s
~'

'

(4.13)

where pL and ps are
the

mass
densities of the two polymers. Here

we are
assuming pL/#L

"

ps/#s
" p are constants as

in section 3, and Dv; /Dt
=

fin; /dt+ (v;. T7)v; Gt fin; /dt for I
=

L, S.

In terms of
v =

#LVL + #svs and the relative velocity
w

defined by

w = vL vs
,

(4.14)
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(4.12) and (4.13)
can

be rewritten
as

p~~ + (p~#L) w =V
a~") (p +

r)Ij
,

(4.15)
fit

~
=

V~ + ~tYV «(")
+ )(w

,

(4.16)
P P PL Ps

tY
being defined by (4.7). In most cases

the second term on
the left hand side of (4.15) and the

left hand side of (4.16)
are

much smaller than the other terms in the equations. If they
are

neglected,
we

obtain the usual equation of motion for bulk flow,

(4.~~~
DV

~~ [,(") (p + '~)~j
'

and (4.6) for the relative velocity
w = vL vs. We may set Dv/Dt ££ dv/dt here. For

completeness,
we

write down the diffusion equation for #L using (3.I) and vL " v + is
w

in the

form,

Replacement of d

iscussed below (2.37).

We

((vL vs)
=

-(L(vL VT)
,

(4.19)

(ivs vL)
=

-(sins VT)
,

14.20)

where the tube velocity
VT is given by (3.ll) and t(e friction coefficients (L and (s

are
defined

by (3.7). These terms can
hence be interpreted

as
the friction terms between the polymers

and the tubes, the latters being
common to the two species of polymers and playing the role of

mean
field constraints, in accord with the discussion in section 3. It is then natural that (;

are

linearly dependent
on

#;
as

(3.7). Their molecular weight dependence (oc N;/Ne)
can

simply

be derived from the requirement that the equation for #L
or

#s should tend to the diffusion

equation d#;/dt
=

D;T7~#; with D;
oc

Ne/N/ in the dilute limit #;
-

0 (see (3.25)).

In the polymer + solvent
case we

have claimed in subsection 2A that the network stress is

created by V vp. In the melt
case vp should be replaced by the tube velocity VT, so

that in the

linear response regime the counter part of (2.34) is

aj/~
= /~ dt'G(t t')<j)~(t')

,

(4.21)

-«

where

~(T)
d

~~ ~
d

~~

2
~~ ~~~

" fix; ' fix; ' 3 "

/;
~' ~

/; 'j
~ ~~~~° (/;

'~ ~
/;

'°' ~~ '°~~" ~~'~~~

On the second line of (4.22),
use

has been made of (4.8) and V
.u =

0. The second term on

the right hand side (oc T7w) will be crucial in section 5.
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We also note that the Rayleighan formalism used here is essentially the
same as

the usual

principle of positive entropy production. We may construct another theoretical scheme to reach

(4.12) and (4.13) by introducing conformation tensors for the two polymers
as in references

[16] and [17]. If these tensors are
convected by vL and vs but

are
both rotated by the

same

V VT in their convective equations, the network force V .of") turns out to be divided
as

(4.12)
and (4.13) between the two polymers.

5. Viscoelastic effect
on

diffusion
near

equilibrium.

5.I RELAXATION OF SMALL DEVIATIONS. We here examine the effect of the coupling
between stress and diffusion around equilibrium. We may treat both polymer solutions and

polymer blends by the
same equations with general coupling constant tY. We assume that there

is
no

macroscopic flow and all the deviations from equilibrium depend
on space and time

as

exp(iq
r + iwt). Then (4.18) may be linearized

as

fi2 f
~~i~L -Lo

q~ (q)
~i~L + *Zj (5.I)

L

'~~~~~

z =vv: o~n)
=

L
~~((~ ,li~ (5.2)

,, , ,

The Lo is the kinetic coefficient given by

The network stress is expressed
as

(4.21) together with (4.22) in the linear regime, leading to

Z
=

I#L#scYn* (W)q~liq
W

,

(5.4)

where q*(w) is the complex shear viscosity defined by (2.37). Further using

ild&#L
"

~(#L#S)i~'W (5'5)

we may express Z in terms of 6#L and rewrite (5.I)
as

lfi2 f ~
iW + Lo~~

Ii
+

iw~Y~n*(W))16<L
-

0 (5.6)

This result is consistent with Brochard and de Gennes' theory for the
case

of polymer solution

(where
tY =

1/#) [29, 30]. They assumed that b# follows the
same

relaxation
as

(5.6). This is

because the decay rate should tend to that of gels [37], rgej
=

(~~q~(#~d~ f/d#~ +
~

Ge), in the

high frequency limit,
wT > > I, and to that of fluids in the low frequency limit,

wT

~<
l, where

Ge is the shear modulus and
T

is the rheological relaxation time. The viscoelastic correction

can
be important for 0 solvents, whereas it is very small for good solvents. This is because

#~(d~f/d#~)/Ge is of order I in 0 solvents but is very large (-J 10~) in good solvents [38].
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However, it has not been stated that the viscoelastic effect
can

be important
even at very

low frequencies,
wT « I, if

we are
interested in physical processes on

spatial scales shorter

than
a

characteristic length fve. By setting q*(w) E£ q*(0)
= q for

wT « I in (5.6),
we

define

tve by

fle
"

L0£Y~Q (5.7)

Then,
on

time scales longer than T,
b#L(r,t) in the real space obeys

a
modified diffusion

equation,

~~ ~~~~~~ ~~~~ ~~~~~~~
'

~~'~~

where Dm is defined by (3.24). It is important that fve can
be much longer than the gyration

radius of chains
or

the thermal correlation length. To
see

this, let
us

rewrite (5.7)
more

explicitly
as

fle
"

)
)#L#S

(NL
NS)~/NLNS(#LNL +

SNS)j
Q 15.9)

o

where
use

has been made of (3.7), (4.7), and (5.3). Order estimations will be made in typical

cases:

(I) When NL and Ns
are

of the
same

order (say, NL/Ns
"

2),
we

find

~2
~_

~j~ ~j~(~
~S

~2
~2 (~ ~~)

ve fi~ tube

where Ltube(oc N7~/~NL
-J

N7~/~Ns) is the tube length in the reptation theory.

(ii) In the dilute limit #;
-

0 (I
=

L
or

S),f]~ becomes proportional to #;
as

~~~ ~' ~'N/Ns ~~~ ~S~~~~Ube
,

(5.ll)

where Ltube is the tube length composed of the host chains. We notice that fve
can

be very

long
even

for extremely small #;.

(iii) In the polymer + solvent case we
have Lo E+ #~/(

'-

n7~#~f( and
tY =

I/#, where qs is

the solvent viscosity and fb is the blob size (see the last sentence of subsect. 4.I). Therefore,

f~e
~'

f(Q/Qs (5.12)

The ratio q Ins becomes very large in the entangled case, so
that fv~ » fb there.

In
a

forthcoming paper we
will show that the viscoelastic effect

can
severely slow down the

growth of nucleating droplets in metastable states.

5.2 TIME~CORRELATION FUNCTION. We then calculate the time-correlation function for

the thermal fluctuations of #L in equilibrium,

s(q,i) =< iq(i)iq(o)* >
,

(5.13)

where < > is the equilibrium average and #q(t) is the Fourier component of #L(r,t). The

equal-time correlation function will be assumed to be of the Ornstein-Zernike form,

xq =
S(q, 01

=
xo/(i + q~fih) (5.14)
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The fth is the thermal correlation length and grows on
approaching to thermodynamic insta-

bility points. To account for the q-dependence of xq the gradient term (oc (T7#L)~) in the

free energy, which has been neglected
so

far, should be added to the mixing free energy. This

generalization simply amounts to replacing d~ f/d#[ in (5.6) etc. by kBT/xq, which obviously

indicates

Xo =
lim Xq =

kBT/(d~ f/d#[)
=

kBT#L/(dgr/d#L) (5.15)
q-o

The Laplace transformation (or the one-sided Fourier transformation) with respect to time is

written
as

~

ii(q,w)
=

dte~'~'s(q,t)
,

(5.16)

which is analytic for Imw < 0. The so-called dynamic structure factor S(q, w) is then given by

S(q,W)
=

/~ dte~'~'s(q,t)
=

2Rel@(q,w)1 (5.17)

where
w

is supposed to be real.

In Appendix A, it(q,w) is calculated to have the following form,

§(q, w)
=

xqll + M*(W)q~l/liw(i + M*(W)q~) + rql
,

(5.18)

where rq is the usual thermal decay rate without the viscoelastic effect,

r~
=

k~TLoq2/x~

"
Dmq~(I + flhq~) (5.19)

where Dm
=

Lo(d~f/d#[)
as

given by (3.24). In this paper we
consider very viscous systems

and neglect the mode-coupling contribution to the thermal decay rate [39]. The M*(w) is

defined by

M~(~)
"

L0£Y~'l~(~)
"

fle'l~(~)l'l~(0) (5.20)

where fv~ is defined by (5.7) and is expressed
as

(5.9). In the real time representation S(q,t)
satisfies the following non-Markovian equation,

S(~> ti + ~q~(~> ti + (~~<ie/fl) /~ ~~'~(~ ~')i(~> t')
"

° (5.~~)

where S(q,t)
=

dS(q,t)/dt. This formula
seems to be useful for numerical analysis.

We should also note here that
our

phenomenological equations cannot describe small-scale

motions
on

the scale of the tube radius dT (23]. Therefore, the
wave

number q must satisfy

q « I/dT (5.22)

in
our

theory in this present form. In semidilute solutions this condition is replaced by q «

I/fb, where fb is the blob size.

Previously
use

has been made of the single-relaxation approximation [29, 30, 40], which

assumes

n*(W)
=

VIII + iWTl (5.23)
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We may obtain S(q, w) in these references from (5.18) by using the above form and taking the

real part. In this
case

S(q,t) is
a

superposition of two exponential functions,

s(q, i)/x~
=

A~ exp(-r~i) + (i A~) exp(-r~i) (5.24)

See Appendix B for rs and rf. Amis and Han first reported that S(q,t) consists of rapidly

and slowly decaying components [39]. Afterwards Adam and Delsanti analyzed their light

scattering data using the above approximation [38]. Now further data analysis is needed
on

the basis of the general formula (5.18).

We then examine characteristic features in the relaxation of S(q, t) noting that, in
an

inter-

mediate frequency range, I IT £ w £ I/Te, q*(w) behaves
as

n*(W)/n*(0) £t Co(iWT)~~ (5.25)

This implies G(t)
oc

t~~+fl for Te £ t £ T.
Experiments indicate that fl

=
0.6

-J

0.8 and Co
'-

1 [23, 27]. The reptation theory [23] shows that Te is the time of segment diffusion
over

the

distance of the tube radius dT. Here
we are

supposing qdT « I in (5.22) and hence S(q,t)

does not decay appreciably for t £ Te [42].

~(i) Slow thermal relaxation. In the limit rq
-

0 we
have S(q,w)

= xq liw from (5.18) and

find
no

relaxation of S(q, t). Therefore, for sufficiently small rq, the decay of S(q, t) should be

slower than
T

and the w-dependence of q*(w) can
be neglected,

so

§(q, w) + xq/liw + fql
,

(5.26)

and S(q,t)
oc

exp(-rat), where the modified decay rate rq is

~q #
(I + f~~q~)~~~q

"
i~mq~(~ + f/hq~)/(~ + f~eq~) (~.~~)

This result is consistent with (5.8), where qfth « I
was

assumed. The above expression is

valid only when

Tiq « (5.28)

In semidilute solutions with good solvent, however,
we

always have rq £t rq under (5.28)

because [38]
fi2 f

(fveq)~/Trq
~-

Gel (#~q)
« I f°r qfb s (5.29)

Namely, the viscoelastic correction is small for good solvents. On the other hand, it
can

be

apparent close to the critical point
or

the so-called spinodal point, because rqT « I holds

there in
a

wide region of q. Polymer blends
can

be suitable to detect the modified exponential

relaxation (5.26), because criticality
can

be approached with the entanglement density held

fixed in melts (which it is not possible for polymer + solvent systems).

(ii) Rapid thermal relaxation and long wavelength. Next
we assume

Trq » I. Furthermore,

if fv~q is sufficiently small,
we

have it(q,w) Et xq /[iw + rq] for
w +w

rq*. Using (5.25) the upper

bound of fveq for this condition is obtained
as

f~~q « (Tr~)fl/2 (5.30)
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In this
case we

also find @(q,w) E£ xq(I + M*(w)q~)/rq for
w « rq. Combining these two

results
we

devise the following approximate expression,

~(~>t)/Xq G~ ~XP(~~q~) + (<ie~~/~qfl)~(~) (5.3~)

which is valid under Trq » I and (5.30). Here the first and second terms represent the short-

time and long-time relaxations, respectively. Note that the second term is of order f)~q~/Trq

at t
-J T, which is smaller than I in the present case.

in seruidilute solutions this
case

will be

realized in most realistic conditions of light scattering experiments. The second term of (5.31)

is of the order of the shear modulus divided by the bulk modulus and again very small in good

solvents from (5.29).

(iii) Rapid thermal relaxation and short wavelength. When Trq » I and fv~q » (Trq)fl/~,

we
have M*(w)q~ (» I for most w

of interest. In this
case we

find

ili~>W) ~ Xq/JW + (~q/<ie~~)fl~i°)/fl~iw)1 15.3~)

The resultant relaxation of S(q,t) is very complicated. Interestingly, this kind of relaxation

functions has been studied extensively in connections with glass transitions [43]. Furthermore,

if
wr » 1, (5.25) indicates

§lq, W) £t xq/liw + Aliw)~l
,

15.33)

where A
=

rqTfl /(Cof)~q~). The initial decay is then of the form,

sjq, i) /xq
=

i r(2 p)-iAii-fl +
,

(5.34)

which is valid for At~~fl £ I. The above decay looks like that of
a

stretched exponential

function at short times. For At~~fl 2 and t £ T, we
find

a
power-law decay [43],

Slq, t)/xq £t rift)~~A~~t~~~~~~

e jt]~q2 /r~n)Gji)
,

j5.35)

which coincides with the second term of (5.31). For very large t(» T), the decay will be

exponential if the pole of the right hand side of (5.32) closest to the real axis is distinctly

separated from the others.

Finally
we note that the power-law (5.25) holds

over a very wide region of
w

in gelling

solutions at the sol-gel transition [44]. We believe that the general formula (5.18) is still valid

even
for gelling solutions. In this

case
(5.31) and (5.35) show S(q, t)

oc
t~(~~fl)

over a very wide

region oft- This power-law behavior has already been observed hy dynamic light scattering

[45, 46].

6. Coupled dynamic equations and response to weak shear.

In the previous section
we

have derived the non-Markovian linear equation (5.6) for b#L.

The origin of the memory is the slow viscoelastic response and the time-correlation function

S(q,t) generally exhibits very complicated behavior. In this section
we assume

that the stress

deviation is governed by the Maxwell model (2.25) with single relaxation time
T.

We may then

clarify the underlying physics in
more

depth and perform unambiguous calculations, although
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the model should be too much simplified. We suppose a
macroscopic flow v(r) with small

velocity gradients in the Newtonian regime,

fT «
,

(6,I)

where f is the shear rate. We
are

interested in the linear response of the steady state structure

factor against the flow, because it
can

be detected by scattering experiments, and hence
we

linearize the dynamic equations to follow.

The equation for #L is given by (4,18) and that for the stress deviation 6« from the equilib-

rium value is obtained from (2.25) in the form,

((
+ v. V) b« (T7v)t 6« 6«. V

v =

Ge~~) T~~6«
,

(6.2)
t

where of'~)
=

(Kj)~) is the velocity gradient tensor for the tube velocity and may be expressed

as
(4.22). Hereafter

we
neglect the fluctuations of the

mean
velocity

v
and equate it to the

macroscopic flow. In steady states without any inhomogeneities,
we

would have b«
= qx with

q =
GeT. lithe composition fluctuates, however, Ge and

T
deviate from their spatial averages

by

bGe
=

lit
b<L (6.3)

~~
Ii)

~~~ ~~'~~

Then it is convenient to set up the linearized equation for Z introduced by (5.2),

l~ + v. V) Z
=

T~~(x :VV)bq T~~Z + ~Ge#s#LtYV~(V .w)
,

(6.5)
fit 3

where x=
(K;;) is the average velocity gradient tensor,

K;; =

)v;
+
£v; (6.6)

,

ix :VV= £;
;

K;;d~/dz;dz;, and in is the viscosity deviation,

in
-

GebT + TbGe
=

lln)
b<L (6.7)

Use has been made of the relation,

VV: iv Via (V v)~ b« b«. V v]
=

(v. V)Z
,

(6.8)

which holds for incompressible flows with homogeneous gradients.

Now, by expressing V
.w

in terms of bF/b#L and Z,
we

obtain the desired coupled equations,
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where Lo and fve
are

defined by (5.3) and (5.7), respectively. The first term on
the right

hand side of (6.9) and the first two terms on the right hand side of (6.10) arise from the

macroscopic flow. If these terms are
neglected, elimination of Z yields (5.6) with (5.23) after

the Fourier transformation in time. In principle,
we may calculate the time-evolution of any

small deviations of the composition and the stress with these equations.

To calculate the steady state structure factor Iq =<( #q (~>
we

should treat (6.9) and (6.10)

as
Langevin equations by adding random

source terms on
the right hand sides. They satisfy

the fluctuation-dissipation relations and
ensure

the equilibrium distribution of 6#L and Z for

v =
0. In Appendix B the linear deviation of Iq from its equilibrium value xq will be calculated

to first order in K;; in the form,

Iq/xq i +

ill ;>~;~>)
l-<~~l

q~
+

ve(~)<iel
(6.ii)

where rq is the thermal decay rate (5.19), fth is the thermal correlation length defined by

(5.14), and fve is the viscoelastic length defined by (5.7). For the simple shear flow
we

have

£
K;;q;q; =

2§q~qy. The term proportional to f)~ arises from the vhcoelastic effect and the

'>J

coeflicientls

~~~~~~
l ~~~~~~

~
~~~~

~ ~L ~
~~~~

l

~T~q
~~ ~~~

where fq is the modified decay rate (5.27). The Av~(q) is typically of order I for any q unless

Ni E+ N2. For example, Av~(0)
-J

5 in polymer + solvent systems. Thus, the intensity deviation

consists of the usual part, which is well-known for near-critical fluids with low molecular weight

[47], and the viscoelastic part (oc f]~). These two contributions have the different sign and the

ratio of their amplitudes is crudely of order f]~ /f)~.

In semidilute solutions with 0 solvent
we

find f(~/f]~
-J

qs(Tc n)/q(T n) from (5,12)

and the Flory-Huggins theory [22], where Tc is the critical temperature and n is the so-called

spinodal temperature. If T is not close to n, the viscoelastic contribution
can

dominate
over

the usual
one

giving rise to abnormal scattering patterns as
clearly demonstrated by Wu et al

[14] in their light scattering experiment in the flow-shear (q~ qy) plane. Moreover, they have

reported two maxima of the intensity in the plane at very small q. However, (6. II cannot well

explain it, and calculations to nonlinear orders
seem to be necessary if the maxima

are
real.

On the other hand, the experiments in references [12] and [13] have been performed in the flow-

vorticity (q~ qz) plane,
so

they have detected nonlinear effects of shear beyond the scope of

this section. Very recently two groups have observed transient behavior of the structure factor

after changing the shear rate in
a

step-wise
manner

in the Newtonian regime [48, 49]. They

have shown that its relaxation is governed by the slower decay rat i
rs in (5.24)

or
in (B10)

and (Bll). Fuller's group has also detected large signals of form bi efringence and dichroism

induced by shear [13, 49]. It then
seems to be interesting to measure i

cattering generally under

oscillatory shear. Calculations of such time-dependent responses are
straightforward from

our

model equations (6.9) and (6,10).

We give further supplementary comments in the following. The calculation of Iq has been

much facilitated by the assumption of
a

single relaxation time. We conjecture that,
even

for

general constitutive models, the form of (6.ll) still holds with the order of magnitude of Ave(q)

unchanged. In particular,
we

notice that the long wavelength limit Ave(0)
=

lima-o Ave(q) is

model-independent
as

calculated in reference [16] for solutions. For Trq « I and q « fj~,
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the stress relaxes much
more

rapidly than 6#L,
so

z l~

Ii)
i~ .vv)b<L

,

16.13)

Then b#L obeys

1&<~ st -v
v &<~ + Lo lv21 lot)

ix
vv)&<~l

,

16.14)

which is of the
same

form
as

the equation by Helfand and Fredrickson [3]. Adding the random

force term on
the right hand side of (6.14),

we
readily obtain (6.ll) with Ave(q)f]~ replaced by

~~~~°~~~~ ~l"~~ ~
(L~~~

~~~~~°~~ Is IL ~~~~~ iL
~~'~~~

This result holds irrespectively of the detail of the constitutive equation. The positivity of

Ave(0) is assured because q increases with increase of the longer component and dq/d#L > 0.

Equation (6.14) shows that the effective diffusion constant is dependent
on

the direction

l

~ q~ °~~

~

~~~~~~
"

~°
ii "i~'. ~~j

'

~~'~~~

which is minim12ed in the direction giving the maximum of
x :

ii. As
a

result, the viscoelas-

tic contribution in (6,ll) turns out to have the sign opposite to that of the usual normal

contribution.

Finally
we

remark that
a very analogous effect has recently been observed by small angle

neutron scattering from stretched polymer gels with heterogeneities [50-52]. There, the scat-

tering patterns closely resembles those from sheared polymer solutions. The origin is that

density variations
are

induced around heterogeneities in the shear modulus from mechanical

equilibrium and they give rise to a structure factor most enhanced in the stretched direction.

7. Compositional gradient induced in cone-and-plate rheometer.

To examine the composition gradient in the cone-and-plate rheometer [15, 16], let
us

take
a

spherical coordinate (r,0,#) with the origin located at the top of the cone and the reference

axis for 0 being the symmetry axis of the
cone.

We may assume
that the velocity field is almost

a
simple shear flow; I-e-, the velocity is in the direction of increasing #, and the shear plane is

normal to the direction of increasing 0. Hence nonvanishing stress components are
given by

shear stress ar~ = a~r
(7.I)

first normal stress difference Ni
" ajj a~~

(7.2)

s<,cond normal stress difference N2
= a~~ art (7.3)

In the cone-and-plate geometry, these components are
independent of the position. Thus the

the radial component of (4.6) becomes

'°~

~
Is IL

~~~~
~~~ ~"~ ~

N~#s
~

/#L~
~~~~~i ~~j

=
-Dm

(~
+

rj
,

(7.4)
#L

r
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where

i i

),p~
~~

lilt) I<L@ ~~~~

Here

«N =
2«rr an ajj =

Ni + 2N2 (7.6)

is
a

combination of the normal stress difference. For usual polymeric liquids, Ni + 2N2 is

positive
so

that gr is positive. Hence (7A) indicates that if
a

homogeneous blend is sheared,

the larger polymers migrate toward the center.

The physical origin of the migration is the
same as

that of the Weissenberg effect. For

convenience,
we

shall explain this for polymer solutions. It is known that, when
a polymer

solutions is sheared in
a

cone-and-plate rheometer,
a

normal stress which tends to push the

cone
and plate apart is created. In the conventional rheology, this Weissenberg effect has been

explained
as

follows. The shear flow elongates the polymer and creates
a

"hoop stress",
a

tensile force acting along the flow line. The hoop stress acts to move
the liquid toward the

center and tends to push the
cone

and plate apart. This explanation
assumes

that the liquid

remains homogeneous. If
we account for the difference in the velocity of polymer and solvent,

the explanation has to be modified slightly. Since the hoop stress is transmitted by polymers,

it will
cause

motion of polymers toward the center. In the usual polymer solutions, however,

migration has not been observed. This is because concentration inhomogeneity created by the

Weissenberg effect is suppressed by the thermodynamic force,
or more

specifically the osmotic

pressure which opposed the concentration gradient.

The magnitude of the concentration gradient is therefore determined by two factors,
one

is the normal stress aN =
Ni + 2N2> and the other is the osmotic compressibility dgr/d#. In

usual polymer solutions, dgr/d# is large (For example in polystyrene in toluene dgr/d# is of the

order of10~Pa at #
=

0.I) hence the concentration gradient created by the flow is small. On

the other hand, for poor solvents,
a

significant concentration gradient should be observed.

In the
case

of polymer melts, strong compositional inhomogeneity is expected to be observed

in the steady state because (I) the normal stress aN
is much larger in polymer melts than in

polymer solutions and (it) dgr/d# is smaller in melts than in solutions. On the other hand,

the time needed to reach the steady state becomes extremely long in polymer melts. The time

may be estimated by i~/Dm, where I is the characteristic length scale and Dm is the mutual

diffusion constant. In polymer melts, Dm becomes very small. For polyethylene of molecular

weight of10~, Dm is about 10~~ at 176 °C. Thus for I
=

I cm, the time
can

be 10~
s -J

3 years!

Hence the concentration inhomogeneity is negligible in the usual rheological experiment. On

the other hand, since Dm is strongly dependent
on temperature, molecular weight and added

plasticizers, the effect
can

be observed by suitably designed experiments. For example, if
one

uses
polyethylene of10~, and

can measure
the concentration difference off

=
I mm, the time

required would be 10~
s -J

3 hours. Furthermore the time
can

be shortened if the temperature

is raised.

8. Concluding remarks.

We have shown that there is
a

coupling between stress and diffusion in polymer solutions and

blends. The origin is that the stress in entangled polymer systems is not acting equally
on

each component and, if there is
an

imbalance in stress, relative motion between the longer and
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shorter chains takes place. We have proposed
a set of phenomenological equations describing

the coupling
as a

generalization of the earlier theories, the two fluid model in polymer solutions

and the Brochard theory for mutual diffusion in polymer blends. Our equations include those

proposed previously
as

special
cases.

As applications of the present theory,
we

have studied (I) the viscoelastic effect in the

compositional fluctuations
near

equilibrium, (it) change in the structure factor under shear

flow, and (iii) compositional inhomogeneity produced in the cone-and-plate rheometer. In

particular,
we stress that

our
expression for the dynamic structure factor (5.18) is very general

and
can

be used to explain the power-law relaxation at the sol-gel transition
as

discussed at

the end of section 5. In these problems, the effect of the coupling is suppressed if the osmotic

rigidity dgr/d#L is increased
as

in semidilute solutions with good solvent. On the other hand,

enhanced effects of the coupling exist
near

the critical point of phase separation in polymer

blends, where dgr/d#L becomes very small. There, critical slowing-down and entanglements
can

both play important roles and experiments to elucidate their interplay
seem to be challenging,

although experiments in blends have to overcome
difficulty arising from very slow diffusion.

The present theory is essentially
a

phenomenological one, and involves various assumptions.

Our major assumptions
are

that the isotropic part of the network stress is
zero

and that the

entanglement network is
common to all polymers participating the entanglement and

moves

with Brochard's tube velocity. They
are

placed mainly because they provide
us

the simplest

theory consistent with the existing molecular models and the experimental results, but of

course
their validity has to be checked in future study. At the

same
time, there

are
various

possibilities of other generalizations, which may be pursued also. The advantage of the present

scheme is that all the parameters involved
can

be determined by independent measurements of

diffusion and viscoelasticity. We thus hope that
our

predictions will be checked experimentally.

Shear-induced phase separation in polymer blends is
a

future problem to be investigated.

It will
occur even

in homolog polymer blends consisting of chemically equivalent long and

short chains
as

pointed out in reference [16]. This is not surprising if
we

notice that long

and short chains
can

have tendency of segregation under unequal deformations in shear flow.

In such
cases

the phase separation is of purely mechanical origin. To detect it, informative

will be neutron scattering experiments from sheared polymer blends in which
one

species is

deuterated.

Note added in proof.

After this paper has been accepted,
we

have noticed
a

theory of dynamic light scattering

from polymer solutions
:

Wang C-H., J. Chem. Phys. 95 (1991) 3788. However, his two-fluid

model
uses Vv in the constitutive equation leading to results essentially different from

ours.

We believe that Vvp should appear instead of Vv in the constitutive equation (2.34).
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Appendix. A.

Following reference [29] we
apply small, fictitious external fields to the polymer blend. The

change in the free energy is

6Fext
"

/
dr(6pLUL + bpSUS)

a
/

drp(UL Us)6#L
,

(Al)

where the total density p = pL + ps is assumed to be a constant. Then the forces
on

the long

and short polymers
are -pL V UL and -ps V Us, respectively, and they should be added to

the right hand sides of (4.12) and (4.13). As
a

result the expression for
w = vL vs, (4.6), is

modified
as

w =
#L#s (- V ~ + tY

V .a(")
p V (UL Us )] (A2)

(

We hereafter
assume

that UL Us
oc

exp(iq
r + iwt) in space and time. Using (5.5)

we
arrive

at
fi2 f ~~~

+ ~0q~
(q

~ j~~~~~(~))j ~~L ~P~0q~(UL US (J~3)

L

On the other hand, the general linear response theory [53] indicates

&#~
=

(~)
lx~ iw§(q, w)j(u~ us

,

(A4)

~where xq and S(q,w)
are

given by (5.14) and (5.16). Comparison of (A3) and (A4) yields

-iw@(q, w) + xq =
kBTLoq~/(iw + Loq~kBT/xq +

iwtY~q*(w)]
(A5)

Here, d~ f/d#[ has been replaced by kBT/xq and,
as a

result, the both hand sides of (A5)

tend to xq as w -
0. Some manipulations readily lead to (5.18). We also notice that taking

the imaginary part of (A5) gives
a

formula for the dynamic structure factor S(q,w) used in

references [29] and [30].

Appendix. B.

We Fourier-transform (6.9) and (6.10)
,

add the random
source terms, 01 and 02, and obtain

(<q
= al hu<~ h12zq + 01 (Bi)

~~~ ~2 h21~q h22Zq + °2 (~~)

where

hll
"

L0kBTq~/X~
" ~q ~~~~

hi~
=

Loo
,

(84)

~21
" (Ge*q~~q

,

~~~~

h22
" ~ ~(~ + f~eq~) ~~~~
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The al and a2 arise from the macroscopic flow. For example, for the simple shear flow,
we

obtain

~~ ~~~
/y ~~

'

~~~~

a2 -
7 l~~kz~ T-~

It) «~~<l
iB8)

The vector x =
(#~, Zq) then obeys in

an
abbreviated form,

~z;
= a;

L huz> + °I lB9)

;

i

There arise two decay rates, rs and rf, determined
as

the eigenvalues of the matrix H
=

(hi
;
)

which appear in (5.24) and satisfy

r~ + r~ =I~H
=

r~ + T-~ Ii + f]~q2)
,

lB1°)

r~r~
=

DetH
=

rqT-i lBll)

In particular, for rs « rf, rs is obtained in the form,

r~ a r~ /jTr~ + i + t]~q2j
,

jB12)

In equilibrium (without
al and a2) the distribution of #q and that of Zq are

independently

Gaussian with variances, <( #q (~>= xq and <( Zq (~>= Cq, where

Cq
= (Gq~ (B13)

The above relation (B13) is obtained from the definition (5.2) and from the fact that the

deviatopic part of the stress fluctuations has
a

variance proportional to G. If
we

rewrite the

right hand sides of (Bl) and (82) in terms of the thermodynamic forces, ii
=

x/~#q and

f2
"

Cl ~Zq, the coefficients in front of them (or hi; multiplied by xq or Cq) are
the so-called

Onsager kinetic coefficients L;;. They
are

~ (B14)Lll
"

r~X~
"

~0kBTq
'

j~~~~L12
"

~21 ~0~~~
'

j~~~)L~~
=

T~~(I + ()eq~)Cq

The reciprocity relation L12
"

L21 holds
as

ought to be the
case.

The variances of the noise

terms are
determined from the fluctuation-dissipation relations,

< o;jq,i)o;jq,11)* >= 2L;;iji -11) jB17)

In the presence of al and a2 in (89) the variances Ii; =< z;zj > in steady states satisfy

dI;; /dt
=

0,
so

that

2 2

£ huh; £ hpli; + 2L;; + A;;
=

0
,

(B18)

t=I t=1
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(B19)

where

~;. =< a;z) > + < ~)~i ~

In equilibrium (A;;
=

0) the above relations
are

surely satisfied for Iii
=

xq>122
"

C~, and

I12
"

0. For A;; # 0 the deviation bI;;
can

be obtained in the form,

&1;; = )(r~ + r~)-i jA;; + r~r~ £ h"tAi~h>mj
,

(B20)

1,m

where H~~
=

(h") is the inverse matrix of H, and r~ and rf
are

determined by (B10) and

(Bll). In particular, the deviation bI~ =
6Iii of the density fluctuations may be expressed

as

$I~
#

j(~s + ~f) ~ [All + )(ji(2All + ji(2A22 2ji12ji22A12)] (B21)

s

We may calculate A;; from (87) and (88) and then obtain (6.ll) for the simple shear flow.

Furthermore it is readily checked that (6.ll) still holds for general incompressible, homogeneous

flows.

In addition
we note that

our
model readily confirms the general form (5.18) for the time-

correlation function
as a

special
case.

In fact, from (89) the time-correlation functions

< z;(t)z;(0)* > in equilibrium satisfy

(
< z;(t)z>(°i* >=

L hw < zi(tiz>(°1* > (822)

The Laplace transformation of (822) and
some

manipulations lead to (5.18).
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