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Abstract
Weconsider a large population dynamic game in discrete timewhere players are characterized
by time-evolving types. It is a natural assumption that the players’ actions cannot anticipate
future values of their types. Such games go under the name of dynamic Cournot-Nash equi-
libria, and were first studied by Acciaio et al. (SIAM J Control Optim 59:2273–2300, 2021),
as a time/information dependent version of the games devised by Blanchet and Carlier (Math
Oper Res 41:125–145, 2016) for the static situation, under an extra assumption that the game
is of potential type. The latter means that the game can be reduced to the resolution of an
auxiliary variational problem. In the present work we study dynamic Cournot-Nash equilib-
ria in their natural generality, namely going beyond the potential case. As a first result, we
derive existence and uniqueness of equilibria under suitable assumptions. Second, we study
the convergence of the natural fixed-point iterations scheme in the quadratic case. Finally we
illustrate the previously mentioned results in a toy model of optimal liquidation with price
impact, which is a game of non-potential kind.

Keywords Optimal transport · Mean field games · Causal transport · Nash equilibrium ·
Potential games

Mathematics Subject Classification 90C08 · 47H10 · 91A25

JEL codes C55, C61, C72

1 Introduction

In this paper we consider a discrete-time dynamic game of mean field type. In this game, a
representative player takes actions in time so as to minimize a cost functional which depends
on her type, her action, and the distribution of actions of the whole population of players.
Crucially, players’ typesmay encode different characteristics or preferences, andmay change
progressively in time. The players’ actions on a given date are only allowed to depend on
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their types up to that date, introducing an adaptability, or non-anticipativity, constraint into
the game. The solutions to this game are dubbed dynamic Cournot-Nash equilibria following
Acciaio et al. [2]. As in mean field games, searching for equilibria in dynamic Cournot-Nash
games boils down to solving a fixed point problem, and an equilibrium to these games allows
to build approximate equilibria in related large population games. See [2, Section 2] for
a detailed discussion on the connection between finite and infinite population versions of
dynamic Cournot-Nash games.

Building on the work [16] by Blanchet and Carlier, it was shown in [2] that the emerging
field of causal optimal transport provides the right framework to describe dynamic Cournot-
Nash games. However, when it comes to establishing existence or uniqueness of equilibria,
the aforementioned paper makes the crucial assumption of the game being of potential type.
In a nutshell, this amounts to a structural assumption under which equilibria correspond to
minimizers of an auxiliary variational problem. However the assumption of being poten-
tial type is not ideal for multiple reasons. First, there are commonly used games/models
of non-potential structure. Second, the link between causal optimal transport and dynamic
Cournot-Nash games is blurred when one superimposes such structural assumption. Finally,
the proposed method in [2] was not only restricted to the potential case, but also a further
cost-separability assumption was made, namely that the type of a player does not interact
with the distribution of actions within the cost function. The goal of the present paper is to
remedy these shortcomings, following the blueprint set forth in [15], by Blanchet and Carlier,
for the static case.

We now summarize our contributions in some details.
In Sect. 2 we define the problem, recall the connection and the elements of causal optimal

transport, and study the question of existence of (mixed) Nash equilibria. As customary, this
is done by considering the best-response correspondence, which in our case assigns to any
prior distribution ν of actions for the population of players the set �(ν) of optimal responses
by a single player. Using causal transport, we establish the closedness and convexity of the
set�(ν). Applying Kakutani fixed point theorem, we obtain the existence of equilibria in our
games under suitable assumptions. Finally, a uniqueness result is derived from a Lasry-Lions
monotonicity condition.

In Sect. 3 we assume a specific structure of the cost functional of the game, which allows
us to find the equilibrium using the contraction mapping theorem. To do so, we use the
structure of the game in order to get a hold on the best response correspondence. To this goal
we use the fact that, conditioning on the past evolution of types, the optimal response can be
constructed backwards (i.e. recursively) in time. Under appropriate Lipschitz and convexity
assumptions, we prove that the best response is a contraction.

In Sect. 4, we introduce and study a simple optimal liquidation problem in a price impact
model. We first describe this model, and then establish the applicability of the results of
Sect. 3. We prove that the game is not of potential type, and hence cannot be covered by the
existing literature. Furthermore, we provide an example which illustrates how to compute
the optimal response map and equilibrium.

We close this introduction by giving a broader overview of the related literature.

1.1 Related literature

The games we are concerned with are closely related to mean field games (MFG) in a
discrete-time setting (see e.g. Gomes et al. [20]). For this parallel, the different types of
agents considered in our setup correspond to different subpopulations of players in the MFG.
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The theory of mean field games aims at studying dynamic games as the number of agents
tends to infinity. It was established independently by Lasry and Lions [24, 25] and by Huang,
Malhamé and Caines [21, 22], and has since seen a burst in activity, as e.g. documented
in the monograph by Carmona and Delarue [18]. See Cardialaguet’s notes [17], based on
P.L. Lions’ lectures at Collége de France, for seminal results on mean field games, and also
Bayraktar et al. [9–11] or Cecchin and Fischer [19] for the study of finite state mean field
games. The key assumption is that players are symmetric andweakly interacting through their
empirical distributions, and the idea is to approximate large N -player systems by studying
the behaviour as N → ∞.

On the other hand, the notion of Cournot-Nash games has been pioneered by Blanchet
and Carlier [14, 16] who, building on the seminal contribution of Mas-Colell [27], devel-
oped a connection between static Cournot-Nash equilibria and optimal transport. From a
probabilistic perspective, large static anonymous games have been studied by Lacker and
Ramanan in [23], with an emphasis on large deviations and the asymptotic behaviour of
the Price of Anarchy. We also refer to this paper for a thorough review on the (vast) game
theoretic literature. Building from this body of work, Acciaio et al. introduced in [2] the
concept of dynamic Cournot-Nash game/equilibria. Working in the so-called potential case,
that article studied questions of existence, convergence from finite to infinite populations,
and computational aspects. Crucially, the article observed that instead of optimal transport,
it is the theory of causal optimal transport, which we discuss in the next paragraph, that
plays the main role in the mathematical analysis of these games. Another article that took a
similar, variational point of view is [12] wherein competitive games with mean field effect
were studied. The advantage of the potential / variational setting, is that instead of studying
an equilibrium problem, an auxiliary optimization problem is solved, which is in many ways
better suited for analysis and computational resolution. To the best of our knowledge, the
only article where non-potential (with non-separable costs) static Cournot-Nash games have
been studied is Blanchet and Carlier’s [15]. That article serves us as inspiration as we carry
out our analysis of the dynamic case in similar non-potential settings.

As already mentioned, to deal with our dynamic setting, it is the tools from causal optimal
transport (COT) rather than classical optimal transport that play a role. In a nutshell, COT is a
relative of the optimal transport problem where an extra constraint, which takes into account
the arrow of time (filtrations), is added. This in turn is crucial to ensure, in our application,
the adaptedness of players’ actions to their types in a dynamic framework. The theory of
COT, used to reformulate our asymptotic equilibrium problem, has been developed in the
works [7, 26]. This theory has been successfully employed in various applications, e.g. in
mathematical finance and stochastic analysis [1, 3, 6, 8], in operations research [28–30], and
in machine learning [4].

We close this part by clarifying the similarities and differences between Cournot-Nash
and mean field games (see also [2, Remark 3.8] for a related explanation). To simplify the
matter we only discuss a static situation. In an N -player symmetric game, if players adopt
the decisions {yNj } j then the cost faced by player i is F(yNi , 1

N

∑
j �=i δyNj

). In a (pure) Nash

equilibrium we have F(yNi , 1
N

∑
j �=i δyNj

) ≤ F(zi ,
1
N

∑
j �=i δyNj

) for each i ≤ N and any

zi . Taking averages in these inequalities and a compactness argument, which gives a subse-
quence that 1

N

∑
j≤N δyNj

→ ν̂, provides us heuristically with a staticmean field equilibrium:
∫
F(y, ν̂)ν̂(dy) ≤ ∫

F(y, ν̂)ν(dy) for all ν probability measure over decisions. For the static
Cournot-Nash case the N -player game story is quite similar, but nowplayer i has a type xNi and
faces the type-dependent cost F(xNi , yNi , 1

N

∑
j �=i δyNj

). In a Nash equilibrium we thus have
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F(xNi , yNi , 1
N

∑
j �=i δyNj

) ≤ F(xNi , zi ,
1
N

∑
j �=i δyNj

) for each i ≤ N and any zi . If we take

averages, assume that the types xNi are e.g. i.i.d. samples distributed according to η, and apply
a compactness argument, which yields a subsequence 1

N

∑
j≤N δ(xNj ,yNj ) → π̂ , we get heuris-

tically a static Cournot-Nash equilibrium:
∫
F(x, y, ν̂)π̂(dx, dy) ≤ ∫

F(x, y, ν̂)π(dx, dy)
for all π probability measures over types and decisions with x-marginal η, while here ν̂ is
the y-marginal of π̂ . If we consider players of the same type belonging to the same sub-
population, then Cournot-Nash games are very close to multi-population mean field games
(cf. [5]), with the caveat that it is the aggregate distribution of decisions that is included in the
cost criterion, i.e. we do not disaggregate the decisions of the population along the various
sub-populations. Mathematically this corresponds to ν̂ (the second marginal of π̂ ) being the
last argument of F , instead of x �→ π̂x (the family of conditional probabilities given the first
coordinate).
Notation.LetX1, . . . ,XN ,Y1, . . . ,YN bePolish spaces, and takeX := X1×. . .×XN ,Y :=
Y1 × . . . × YN . Define Xs:t = Xs × . . . × Xt and Ys:t = Ys × . . . × Yt for 1 ≤ s ≤ t ≤ N .
For x ∈ X , we denote xs:t = (xs, . . . , xt ) for 1 ≤ s ≤ t ≤ N , and similarly define ys:t for
y ∈ Y . Denote the canonical filtration on X and Y by (FX

t )Nt=1 and (FY
t )Nt=1 respectively.

For any Polish space Z, we denote by P(Z) the space of Borel probability measures on Z.
Given η ∈ P(X ), and ν ∈ P(Y), we denote the set of all couplings between η and ν by

�(η, ν) := {π ∈ P(X × Y) : π(A × Y) = η(A), π(X × B) = ν(B), ∀ A ∈ FX
N , B ∈ FY

N }.
The letterL stands for Law and if T : X → Y is measurable we denote by T (η) := η◦T−1 ∈
P(Y) the push-forward of η by T .

2 Existence by set-valued fixed point theorem

In this section,we formulate theCournot-Nash equilibriumas a fixed point problem, and solve
it by applying Kakutani fixed point theorem. First we recall the notion of causal coupling.

Definition 2.1 Suppose η ∈ P(X ), ν ∈ P(Y). A coupling π ∈ �(η, ν) is said to be casual
if under π it holds that

FY
t ⊥⊥

FX
t

FX
N , t = 1, . . . , N .

Denote by �c(η, ν) the collection of all causal couplings from η to ν.

Remark 2.1 In words, the above means thatFY
t andFX

N are conditionally independent under
π given the information in FX

t , and this for each t . See [7, 26] for equivalent formulations
of this condition, or our proof of Lemma 2.2 below. The set �c(η, ν) is never empty, as the
product of η and ν is always an element thereof. It is instructive to consider the case when
π is supported on the graph of a function T from X to Y: in this case causality essentially
boils down to the named function being adapted (T (x) = (T1(x1), T2(x1:2), . . . , TN (x1:N )).

In the rest of this paper, N stands for a fixed time horizon. At each time t ∈ {1, . . . , N },
a representative player is characterized by her type at that time, denoted by xt ∈ Xt , and her
control/action undertaken at that time, denoted by yt ∈ Yt . Hence x ∈ X and y ∈ Y denote
the type-path and action-path of a player. We fix once and for all η ∈ P(X ). The measure η

is the distribution of the types in the population of players, and is known in advance by the
players.
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We denote

�c(η, ·) = ∪
ν∈P(Y)

�c(η, ν).

We now recall the notion of dynamic Cournout-Nash equilibrium (see [2]), which we will
simply call equilibrium in the rest of the work.

Definition 2.2 An equilibrium is a coupling π̂ ∈ �c(η, ·) such that

(i) π̂ ∈ argmin
π∈�c(η,·)

∫

X×Y
F(x, y, ν̂) π(dx, dy) for some ν̂ ∈ P(Y),

(ii) The Y − marginal of π̂ is ν̂. (2.1)

Above F : X × Y × P(Y) → R is a given cost function, assumed lower-bounded for
the time being. Here ν̂ represents the distribution of controls/actions by the population of
players, which is only determined at equilibrium, and π̂ characterizes the optimal response
of each type of player given the cost function that they face (x, y) �→ F(x, y, ν̂).

Remark 2.2 The above should be interpreted as randomized, ormixed strategies, equilibrium.
A pure equilibrium would be an adapted map T̂ : X → Y satisfying

(i′)
∫

X
F(x, T̂ (x), ν̂) η(dx) = inf

T adapted

∫

X
F(x, T (x), ν̂) η(dx) for some ν̂ ∈ P(Y),

(ii′) T̂ (η) = ν̂, i.e. the image of η by T̂ is ν̂.

As usual in game theory we introduce the best-response set-valued map, or correspon-
dence, defined by

�(ν) :=
{

π ∈ �c(η, ·) :
∫

F(x, y, ν) π(dx, dy)

≤
∫

F(x, y, ν) π ′(dx, dy),∀π ′ ∈ �c(η, ·)
}

, (2.2)

and also the projection from �c(η, ·) to P(Y)

P j : π �→ Y − marginal of π.

Finally we introduce

R(ν̂) := P j ◦ �(ν̂),

theY-marginals of the best responses to ν̂, i.e. the possible distributions of actions in response
to ν̂.

It can be readily seen that ν̂ is a fixed point as in (2.1) if and only if ν̂ ∈ R(ν̂). We will
show the existence of fixed points of R applying Kakutani fixed point theorem, which we
recall in the following lemma.

Lemma 2.1 Let R : Z → 2Z be a set-valued map. Then R has a fixed point, i.e. ∃z s.t.
z ∈ R(z), if

(i) Z is a nonempty compact, convex set in a locally convex space.
(ii) R is upper semi-continuous, and the set R(y) is nonempty, closed, and convex for all

z ∈ Z.

Proof See [31, Theorem 9.B]. ��
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The following lemma will be used to show that R(ν) is closed and convex for any ν ∈
P(Y). See [7, 26] for similar statements: We present it here, separately, for the sake of clarity.

Lemma 2.2 Causality is preserved under weak convergence, i.e., π ∈ �c(η, ·) if π =
lim
n→∞ πn for a sequence (πn)n≥0 ⊂ �c(η, ·), and so �c(η, ·) is closed. Also �c(η, ·) is

convex, i.e., aπ1 + (1 − a)π2 ∈ �c(η, ·) for any π1, π2 ∈ �c(η, ·) and a ∈ [0, 1].
Proof Clearly the X -marginal of π is η. Let us prove that FY

t ⊥⊥
FX

t

FX
N under π for any

t ∈ {1, . . . , N }. This is equivalent to proving that, for any bounded continuous function
g : Y1:t → R, it holds

E
π

[
g(Y1:t ) |FX

t

] = E
π

[
g(Y1:t ) |FX

N

]
,

where Y1:t : Y → Y1:t is the projection map on the first t coordinates. Denote by
ηx1:t (dxt+1:N ) the disintegration of η on the first t components x1:t . Then it suffices to prove
that

∫

X×Y
g(y1:t ) f (x) π(dx, dy) =

∫

X1:t×Y1:t
g(y1:t )

(∫

Xt+1:N
f (x1:t , xt+1:N ) ηx1:t (dxt+1:N )

)

π(dx1:t dy1:t ), (2.3)

for any bounded continuous function f : X → R. Since the function

f̄ (x1:t ) :=
∫

Xt+1:N
f (x1:t , xt+1:N ) ηx1:t (dxt+1:N )

is measurable, by Lusin’s Theorem, there exists a closed V ⊂ X1:t such that η(V) > 1 − δ

and f̄ is continuous restricted to V . Then by Tietze’s Theorem, we extend f̄ to a bounded
continuous function f̄ ′ on X1:t , and it is clear that f |V = f̄ ′|V and ‖ f − f̄ ′‖∞ < 2‖ f ‖∞.

The equality (2.3) holds for each causal coupling πn . It can be readily seen that

lim
n→∞

∫

X×Y
g(y1:t ) f (x) πn(dx, dy) =

∫

X×Y
g(y1:t ) f (x) π(dx, dy),

lim
n→∞

∫

X×Y
g(y1:t ) f̄ ′(x1:t ) πn(dx1:t , dy1:t ) =

∫

X×Y
g(y1:t ) f̄ ′(x1:t ) π(dx1:t , dy1:t ),

and
∣
∣
∣
∣

∫

X×Y
g(y1:t )

(
f̄ ′(x1:t ) − f (x1:t )

)
π̃(dx1:t , dy1:t )

∣
∣
∣
∣ ≤ 2δ‖ f ‖∞‖g‖∞, ∀ π̃ with X − marginal η.

Therefore we conclude that
∣
∣
∣
∣

∫

X×Y
g(y1:t )

(∫

Xt+1:N
f (x1:t , xt+1:N ) ηx1:t (dxt+1:N )

)

π(dx1:t , dy1:t )

−
∫

X×Y
g(y1:t ) f (z) π(dx, dy)

∣
∣
∣
∣ ≤ 4δ‖ f ‖∞‖g‖∞.

Letting δ → 0, we finish proving (2.3).
Convexity of �c(η, ·) is a direct consequence of (2.3). ��
Now we are ready to show our main result of this section. The precise assumption on the

cost function F is:
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Assumption 2.1 (i) F : X × Y ×P(Y) is non-negative, F(·, ·, ν) is continuous for each ν,
and ν �→ F(·, ·, ν) is continuous in supremum norm.

(ii)
{
y : inf(x,ν)∈X×P(Y) F(x, y, ν) ≤ r

}
is compact for any r > 0.

(iii) There exists a y0 ∈ Y and C < +∞ such that

sup
ν∈P(Y)

∫

F(x, y0, ν) η(dx) ≤ C .

Here are two simple examples that satisfy Assumption 2.1

Example 2.1 (i). Suppose X and Y are compact. Then any non-negative continuous function
F : X × Y × P(Y) → R satisfies Assumption 2.1

(ii). Suppose X = Y = R
N and η has finite second moment. Let α, β, γ be three positive

constants and g : RN ×R
N → R be a non-negative, bounded and uniformly continuous

function. Then it can be easily verified that

F(x, y, ν) = α‖x − y‖2 + β‖y‖2 + γ

∫

g(y, ȳ) ν(d ȳ)

satisfies Assumption 2.1.

Theorem 2.1 Under Assumption 2.1, a solution to the fixed point problem (2.1) exists.

Proof We show that the composition R = P j ◦ � has a fixed point. In Step 1, we prove
that R(ν) is relatively compact for any ν ∈ P(Y), and hence we can restrict R to a compact
domain. In Step 2, invoking Lemma 2.2, we show that R(ν) is closed and convex. In Step 3
we prove the R is upper-semicontinuous and therefore the existence of a fixed points for R
according to Lemma 2.1.

Step 1 Take y0 ∈ X andC < +∞ as in Assumption 2.1 (iii). It is clear that η(dx)δy0(dy) ∈
�c(η, ·). Then for any putative π ∈ �(ν) we would have

∫

X×Y
F(x, y, ν) π(dx, dy) ≤

∫

X×Y
F(x, y0, ν) η(dx) ≤ C .

From Assumption 2.1 (ii), we know that for any r > 0, a compact subset Vr ⊂ Y
exists such that

F(x, y, ν) ≥ r ( all x, ν) whenever y /∈ Vr .

Therefore we obtain the inequality

P j(π)[y /∈ Vr ] ≤ π [(x, y) : F(x, y, ν) ≥ r ] ≤
∫
X×Y F(x, y, ν) π(dx, dy)

r
≤ C

r
.

Define a subset E ⊂ P(Y) as

E := {ν ∈ P(Y) : ν[y /∈ Vr ] ≤ C/r , ∀r > 0} .

It is clear that E is relatively compact, by Prokhorov theorem, as it is tight. By
Portmanteau theorem, E is also closed, since each set Y\Vr is open. Hence E is
compact, and clearly convex too. By design we have R(ν) ⊂ E for any ν ∈ P(Y).
We restrict the domain of R to E , which is a compact and convex subset of the space
of finite signed measures equipped with the weak topology.
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Step 2 We define �c(η, E) as the subset of �c(η, ·) consisting of measures with a Y-
marginal lying in E . Note that �(ν) ⊂ �c(η, E), by Step 1. The compactness of E ,
Lemma 2.2, and Prokhorov theorem, yield that �c(η, E) is compact and so �(ν) is
relatively compact. We notice that

�(ν) =
{

π ∈ �c(η, E) :
∫

F(x, y, ν) π(dx, dy)

≤
∫

F(x, y, ν) π ′(dx, dy),∀π ′ ∈ �c(η, E)

}

,

and by the compactness of �c(η, E) and Assumption 2.1 (i) we obtain that �(ν)

is non-empty. By the same token, �(ν) is closed and hence compact, and clearly
�(ν) is convex too. On the other hand, the map P j is continuous and linear. Hence
R(ν) = P j(�(ν)) is also nonempty, convex and compact.

Step 3 We prove that R : E → E is an upper-semicontinuous set-valued map. Thus there
exists a fixed point in E , as a result of Lemma 2.1. Since E is compact, it is equivalent
to show that the graph of R is closed in E×E . Take any sequence (νn, ν

′
n)n≥0 ⊂ E×E

such that

ν′
n ∈ R(νn), νn → ν̂, ν′

n → ν̂′.

Let us prove that ν̂′ ∈ R(ν̂). Note that for each n, there exists a πn ∈ �(νn) such
that P j(πn) = ν′

n . Since (πn)n≥0 ⊂ �c(η, E), there exists a subsequence (πnk )k≥0

converging to π̂ . According to Lemma 2.2, we know that π̂ ∈ �c(η, ·) as well. It is
clear then that P j(π̂) = ν̂′. Let us verify that

∫

X×Y
F(x, y, ν̂) π̂(dx, dy) ≤

∫

X×Y
F(x, y, ν̂) π ′(dx, dy), ∀π ′ ∈ �c(η, ·). (2.4)

According to the definition of πnk ∈ �(νnk ), we know that
∫

X×Y
F(x, y, νnk ) πnk (dx, dy) ≤

∫

X×Y
F(x, y, νnk ) π ′(dx, dy), ∀π ′ ∈ �c(η, ·).

Now using the uniform continuity of F in Assumption 2.1 (i), and letting k → ∞
in the above inequality, we conclude (2.4).

��
Remark 2.3 Inspection of the previous proof shows that Assumption 2.1 (i) could be weak-
ened to

(i’) The function ν �→ F(·, ·, ν) is continuous in sup-norm and for each ν the function
F(·, ·, ν) jointly lower semicontinuous and continuous in its second argument.

As this seems to be a technicality, we do not develop this further.

To guarantee the uniqueness of fixed point, we impose the following monotonicity con-
dition on F .

Assumption 2.2 For any π ∈ �c(η, ν), π ′ ∈ �c(η, ν′), if π �= π ′ then
∫

X×Y

(
F(x, y, ν) − F(x, y, ν′)

)
(π − π ′)(dx, dy) > 0.

Corollary 2.1 There exists at most one equilibrium under Assumption 2.2.
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Proof Suppose there are two distinct equilibria π ∈ �c(η, ν̂) and π ′ ∈ �c(η, ν̂′), so π ∈
�(ν̂) and π ′ ∈ �(ν̂′). Then by definition

∫

X×Y
F(x, y, ν̂) π(dx, dy) ≤

∫

X×Y
F(x, y, ν̂) π ′(dx, dy),

∫

X×Y
F(x, y, ν̂′) π ′(dx, dy) ≤

∫

X×Y
F(x, y, ν̂′) π(dx, dy).

Adding the above inequalities, we obtain that
∫

X×Y

(
F(x, y, ν̂) − F(x, y, ν̂′)

)
(π − π ′)(dx, dy) ≤ 0,

which contradicts Assumption 2.2. ��

Here is a simple example of F that satisfies Assumption 2.2.

Example 2.2 F(x, y, ν) = c(x, y) + V [ν](y), where V is strictly Lasry-Lions monotone:
∫

Y

(
V [ν](y) − V [ν′](y)) (ν − ν′)(dy) > 0 for any ν �= ν′.

3 Fixed point iterations in the quadratic case

In this section, we apply fixed point iterations/the contraction mapping theorem, in order to
find the fixed point of (2.1). As it is known, this is an algorithmic recipe unlike the result in
Lemma 2.1. Let us assume that Xt = Yt = R, t = 1, . . . , N , and

F(x, y, ν) = 1

2

N∑

t=1

|xt − yt |2 + V [ν](y),

where y �→ V[ν](y) is lower semicontimuous and bounded from below for any ν ∈ P(Y).
Due to the explicit structure of F , for any ν ∈ P(Y) we can actually solve the minimization
problem

min
π∈�c(η,·)

∫

X×Y
F(x, y, ν) π(dx, dy) (3.1)

recursively. We first present the construction of minimizers of (3.1), and hence obtain a
map � : P(Y) → P(Y). Then we prove that � is actually a contraction under further
assumptions.

3.1 Minimizer of (3.1)

We first sketch the idea. For any η ∈ P(X ), define its disintegration

η1(A) := η(A × R
N−1), A ⊂ R,

ηx1:t := Lη(xt+1 |FX
t ), t = 1, . . . , N − 1.
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Then we have that η = η1 ⊗ ηx1 ⊗ . . . ⊗ ηx1:N−1 . Denote V [ν]N (x, y) := V [ν](y). For
t = N , . . . , 1, we define recursively

Opt(x,y)1:t−1(xt ) := inf
ȳ∈Yt

{
1

2
|xt − ȳ|2 + V [ν]t (x1:t , y1:t−1, ȳ)

}

(3.2)

T [ν](x,y)1:t−1
t (xt ) ∈ P

(

argmin
ȳ∈Yt

{
1

2
|xt − ȳ|2 + V [ν]t (x1:t , y1:t−1, ȳ)

})

, (3.3)

and also

V [ν]t−1(x1:t−1, y1:t−1) :=
∫

xt∈Xt

Opt(x,y)1:t−1(xt ) ηx1:t−1(dxt ), (3.4)

with the understanding that, when t = 1, we interpret 1 : 0 = ∅ and hence ηx1:t−1 :=
η1 and so forth, in the above equation. We assume implicitly, for the time being, that the
optimal value (3.2) depends measurably on the various parameters, and likewise that at
least one optimizing kernel (3.3) exists. With each measurable choice of optimizing kernels
in (3.3) it is possible to paste together a coupling as follows: by induction one defines
first π[ν]1 ∈ P(X1 × Y1) as η1(dx1)T [ν]∅1(x1)(dy1) and then π[ν](x,y)1:t−1(dxt , dyt ) :=
ηx1:t−1(dxt )T [ν](x,y)1:t−1

t (xt )(dyt ). Setting

π [ν] := π [ν]1 ⊗ π [ν](x,y)1 ⊗ . . . ⊗ π[ν](x,y)1:N−1 , (3.5)

we construct a causal coupling with X -marginal η. It can be proven that, given ν, the set of
all such couplings π[ν] is equal to �(ν), i.e. the best responses to ν. In particular T (ν), the
set of Y-marginals of best responses, is equal to the set of Y-marginals of all such π[ν].

In the particular case that the selection (3.3) is a Dirac measure (we still denote by
T [ν](x,y)1:t−1

t (xt ) the support of such Dirac measure), then the above recipe allows us to
build an adapted map T [ν](x) = (T [ν]1(x1), T [ν]2(x1:2), . . . , T [ν]N (x1:N )) inductively as
follows: T [ν]1(x1) := T [ν]1(x1) and T [ν]t (x1:t ) := T [ν](x1:k−1,T [ν]1:k−1(x1:k−1))

k (xk). Hence
this defines a causal coupling with X -marginal η, supported on the graph of an adapted map,
via π[ν] := (id, T [ν])(η).

Proposition 3.1 If (3.2) admits a minimizer (for any t = 1, . . . , N, x1:t ∈ X1:t and y1:t−1 ∈
Y1:t−1), thenπ[ν] defined in (3.5)minimizes (3.1). If (3.2) admits a unique minimizer (for any
t = 1, . . . , N, x1:t ∈ X1:t and y1:t−1 ∈ Y1:t−1), then so does (3.1) and its unique minimizer
is supported on the graph of an adapted map.

Proof First of all we stress that the proposed construction of π[ν] is well-founded. This is
proved by backwards induction from t = N − 1 to t = 0, and standard measurable selection
arguments: Details aside, one applies [13, Proposition 7.50] so that (3.2) is analytically
measurable in its parameters, and (3.3) admits analytically measurable selectors. By the same
token (3.4) is well-defined and analytically measurable. Then one iterates these arguments.
The same arguments, applied to the case when (3.2) admits a unique minimizer (for any
t = 1, . . . , N , x1:t ∈ X1:t and y1:t−1 ∈ Y1:t−1), show the well-foundedness of the mentioned
coupling supported on the graph of an adapted map. Hence, it remains to discuss optimality.

Let γ ∈ �c(η, ·). Denote its disintegration by γ1 ⊗ γ (x,y)1 ⊗ . . . ⊗ γ (x,y)1:N−1 . Since γ

is causal, the Xt -marginal of γ (x,y)1:t−1 is just ηx1:t−1 , and hence we have the disintegration
γ (x,y)1:t−1(dxt , dyt ) = ηx1:t−1(dxt ) ⊗ γ (x,y)1:t−1(xt , dyt ).
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For any fixed (x, y)1:N−1, according to our construction of π , it is clear that
∫

XN×YN

F(x, y, ν) γ (x,y)1:N−1(dxN , dyN )

= 1

2

N−1∑

t=1

|xt − yt |2 +
∫

XN×YN

(
1

2
|xN − yN |2 + V [ν]N (x, y)

)

γ (x,y)1:N−1(dxN , dyN )

= 1

2

N−1∑

t=1

|xt − yt |2

+
∫

XN

ηx1:N−1(dxN )

∫

YN

(
1

2
|xN − yN |2 + V [ν]N (x, y)

)

γ (x,y)1:N−1(xN , dyN )

≥ 1

2

N−1∑

t=1

|xt − yt |2 + V [ν](x1:N−1, y1:N−1)

=
∫

XN×YN

F(x, y, ν) π[ν](x,y)1:N−1(dxN , dyN ),

since by definition π[ν](x,y)1:N−1(xN , dyN ) is concentrated on the set of minimizers of (3.2).
Similarly, for any fixed (x, y)1:N−2, it can be readily seen that

∫

XN−1:N×YN−1:N
F(x, y, ν) γ (x,y)1:N−2 (dxN−1, dyN−1) ⊗ γ (x,y)1:N−1 (dxN , dyN )

≥ 1

2

N−2∑

t=1

|xt − yt |2

+
∫

XN−1×YN−1

(
1

2
|xN−1 − yN−1|2 + V [ν]N−1(x1:N−1, y1:N−1)

)

γ (x,y)1:N−2 (xN−1, dyN−1)

≥ 1

2

N−2∑

t=1

|xt − yt |2 + V [ν]N−2(x1:N−2, y1:N−2)

=
∫

XN−1:N×YN−1:N
F(x, y, ν) π[ν](x,y)1:N−2 (dxN−1, dyN−1) ⊗ π[ν](x,y)1:N−1 (dxN , dyN ).

Repeating the above argument iteratively for t = N − 2, . . . , 1, one can show that
∫

X×Y
F(x, y, ν) (γ − π [ν])(dx, dy) ≥ 0.

��

3.2 W1 contraction

As a first step, the convexity of y1:t �→ V [ν]t (x1:t , y1:t ) will be analyzed quantitatively
in Proposition 3.2 under a convexity assumption on V [ν]. Then we will prove the con-
tractivity of the best response map in Propositions 3.3 and 3.4 using the convexity of
y1:t �→ V [ν]t (x1:t , y1:t ) together with a Lipschitz property of ν �→ ∇V [ν](y). In addi-
tion, to exchange derivatives and integrals in Proposition 3.2, we need to assume that η has
finite first moment. We now give the precise assumptions we need. These will be of quan-
titative flavor. The reason is that, as we will be arguing with backwards induction, we will
need to make sure that neither convexity nor the Lipschitz property are destroyed.
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Assumption 3.1 (i) For any ν ∈ P(Y), y �→ V [ν](y) is twice continuously differentiable,
and there exist two constants κ ≥ λ ≥ 0 such that κ IN ≥ ∇2V [ν] ≥ λIN , and

κ + λ ≥ 3 × 5 × . . . × (2N − 1) × (κ − λ).

(ii) There exists a constant L > 0 such that ν �→ ∇V [ν](y) is L-Lipschitz for any y ∈ Y .
(iii) η has finite first moment.

Remark 3.1 In Point (ii) of Assumption 3.1, the Lipschitz property is meant to hold under
the 1-Wasserstein distance, defined by:

W1(μ, ν) := sup
f :RN→R

N

1−Lipschit z

∫

f d(μ − ν).

For the convexity of y1:t �→ V [ν]t (x1:t , y1:t ), we need the following lemma whose proof
is trivial and so it is omitted.

Lemma 3.1 Suppose M is a symmetric N × N matrix such that κ IN ≥ M ≥ λ IN . Then

Mii ∈ [λ, κ], i = 1, . . . , N ;
|Mi, j | ≤

√
(Mii − λ)(Mj j − λ) ≤ κ − λ, 1 ≤ i �= j ≤ N .

In the rest of the paper, let us denote by ∇y1:k V [ν]k and ∇2
y1:k V [ν]k the gradient and

Hessian of y1:k �→ V [ν]k(x1:k, y1:k) respectively.
Proposition 3.2 Under Points (i) and (iii) of Assumption 3.1, the function y1:k �→
V [ν]k(x1:k, y1:k) is twice continuously differentiable, and κk Ik ≥ ∇2

y1:k V [ν]k ≥ λk Ik , where

λk := κ + λ − (2k + 1) . . . (2N − 1)(k − λ)

2
,

κk := κ + λ + (2k + 1) . . . (2N − 1)(k − λ)

2
. (3.6)

Proof Suppose t = N − 1. The minimization problem (3.2) is strictly convex for each value
of x and y1:N−1. Hence the first order conditions of (3.3) completely characterize the unique
minimizer T [ν](x,y)1:N−1

N (xN ), and we obtain that

T [ν](x,y)1:N−1
N (xN ) + ∂yN V [ν]N

(
x, y1:N−1, T [ν̂](x,y)1:N−1

N (xN )
)

= xN . (3.7)

Let us show that T [ν](x,y)1:N−1
N (xN ) is Lipschitz in xN , which is necessary for us to

exchange integral and derivative later in this argument. Denote yN = T [ν](x,y)1:N−1
N (xN ),

y′
N = T [ν](x,y)1:N−1

N (x ′
N ). Due to the first order condition, we have that

(yN − y′
N )2 + (yN − y′

N )
(
∂yN V [ν]N (x, y1:N−1, yN ) − ∂yN V [ν]N (x, y1:N−1, y

′
N )

)

= (yN − y′
N )(xN − x ′

N ).

According to Assumption 3.1 (i), the left hand side is bounded from below by (1+ λ)(yN −
y′
N )2, and hence we obtain that

∣
∣
∣T [ν](x,y)1:N−1

N (x ′
N ) − T [ν](x,y)1:N−1

N (x ′
N )

∣
∣
∣ = |yN − y′

N | ≤ |xN − x ′
N |

1 + λ
. (3.8)
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As abbreviations, we take TN := T [ν](x,y)1:N−1
N (xN ), VN = V [ν]N (x, y1:N−1, TN ), and

VN−1 = V [ν]N−1(x1:N−1, y1:N−1)

=
∫

xN∈XN

1

2
|x − T [ν](x,y)1:N−1

N (xN )|2

+ V [ν]N (x, y1:N−1, T [ν](x,y)1:N−1
N (xN )) ηx1:N−1(dxN ).

According to the implicit function theorem, which is applicable thanks to Assumption 3.1(i),
TN is continuously differentiable in y. By the envelope theorem, VN−1 is continuously dif-
ferentiable (as VN is) in y, and we have

∂yt VN−1 =
∫

xN∈XN

(
(TN − xN )∂yt TN + ∂yt VN + ∂yN VN ∂yt TN

)
ηx1:N−1(dxN )

=
∫

xN∈XN

∂yt VN ηx1:N−1(dxN ). (3.9)

We can deduce from (3.8) and Lemma 3.1 that ∂yt V [ν]N (x, y1:N−1, TN ) is Lipschitz in xN
and y, which justifies together with Assumption 3.1 (iii) the exchange of derivative and
integral in (3.9). By the same token, we deduce that VN−1 is in effect twice continuously
differentiable in y and we have

∂2yk yt VN−1 =
∫

xN∈XN

(
∂2yk yt VN + ∂2yt yN VN ∂yk TN

)
ηx1:N−1(dxN ).

Taking derivative of (3.7) with respect to yk , it can be seen that

∂yk TN (1 + ∂2yN VN ) + ∂2yk yN VN = 0,

and hence

∂yk TN = − ∂2yk yN VN

(1 + ∂2yN VN )
.

Therefore we obtain that

∂2yk yt VN−1 =
∫

xN∈XN

(

∂2yt yk VN − (∂2yt yN VN )(∂2yk yN VN )

(1 + ∂2yN VN )

)

ηx1:N−1(dxN ). (3.10)

Take any vector ξ = (ξ1, . . . , ξN−1). Using (3.10), Cauchy-Schwarz inequality, and
Lemma 3.1, it can be easily seen that

ξ�∇2
y1:N−1

VN−1ξ ≥ λ‖ξ‖2 − (
∑N−1

j=1 ξ j∂
2
y j yN VN )2

1 + ∂2yN VN

≥
⎛

⎝λ −
N−1∑

j=1

(∂2y j VN − λ)(∂2yN VN − λ)

1 + ∂2yN VN

⎞

⎠ ‖ξ‖2

≥ (λ − (N − 1)(κ − λ)) ‖ξ‖2,
and similarly

ξ�∇2
y1:N−1

VN−1ξ ≤ (κ + (N − 1)(κ − λ)) ‖ξ‖2.
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Therefore, we obtain that

(κ + (N − 1)(κ − λ))IN−1 ≥ ∇2
y1:N−1

VN−1 ≥ (λ − (N − 1)(κ − λ))IN−1,

or equivalently, that

(κ + λ + (2N − 1)(κ − λ))

2
IN−1 ≥ ∇2

y1:N−1
VN−1 ≥ (κ + λ − (2N − 1)(κ − λ))

2
IN−1,

By induction, following the exact same arguments as above, we can get that for each
1 ≤ k ≤ N − 1 the function Vk is twice continuously differentiable in y and

λk Ik ≤ ∇2
y1:k Vk ≤ κk Ik,

where λk, κk are defined as in (3.6). ��
By Proposition 3.2, we know that V [ν]t is convex in yt for any t = 1, . . . , N under

Assumption 3.1 (i). It follows that the problems (3.2) admit a unique minimizer. Then, by
Proposition 3.1, it follows that Problem (3.1) admits a uniqueminimizerπ[ν]. Thisminimizer
is furthermore supported on the graph of an adaptedmap T [ν]. To simplify notation, wewrite

� : P(Y) → P(Y)

ν �→ T [ν](η) = P j ◦ �(ν), (3.11)

which is now an actual function, rather than a set-valued one. Observe that any minimizer of
the problem

min
π∈�c(η,�(ν))

∫

X×Y
F(x, y, ν) π(dx, dy)

= min
π∈�c(η,�(ν))

∫

X×Y

‖x − y‖2
2

π(dx, dy) +
∫

V [ν](y)�(ν)(dy). (3.12)

is also the minimizer of (3.1). Hence we conclude that π[ν] is also the unique minimizer of
(3.12).

Now we analyze the Lipschitz property of the function (ν, y) �→ T [ν](x,y)1:k−1
k (xk), and

after that we will show that � is a contraction under Assumption 3.1. Here the contraction
property is meant to hold under the 1-Wasserstein distance.

Proposition 3.3 Under Assumption 3.1, it holds that

∣
∣
∣T [ν](x,y)1:k−1

k (xk) − T [ν′](x,y′)1:k−1
k (xk)

∣
∣
∣ ≤ Lk

1 + λk
W1(ν, ν′) + (κk − λk)

∑k−1
t=1 |yt − y′

t |
1 + λk

,

where LN := L and

Lk := 1 + κk+1

1 + λk+1
Lk+1, k = N − 1, . . . , 1. (3.13)

Proof

Step 1 First we prove that
∣
∣
∣T [ν](x,y)1:k−1

k (xk) − T [ν′](x,y)1:k−1
k (xk)

∣
∣
∣ ≤ Lk

1 + λk
W1(ν, ν′). (3.14)
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Denote yN = T [ν](x,y)1:N−1
N (xN ), y′

N = T [ν′](x,y)1:N−1
N (xN ). It can be easily seen,

by the first order optimality conditions as in (3.7), that

yN − y′
N + ∂yN V [ν]N (x, y1:N−1, yN ) − ∂yN V [ν′]N (x, y1:N−1, y

′
N ) = 0,

and hence

(yN − y′
N )2 + (yN − y′

N )
(
∂yN V [ν]N (x, y1:N−1, yN ) − ∂yN V [ν]N (x, y1:N−1, y

′
N )

)

= (yN − y′
N )

(
∂yN V [ν′]N (x, y1:N−1, y

′
N ) − ∂yN V [ν]N (x, y1:N−1, y

′
N )

)
. (3.15)

Using the convexity of V [ν]N in yN , the left hand side of (3.15) is greater than

(1 + λ)(yN − y′
N )2,

while the right hand side is smaller than L|yN − y′
N |W1(ν, ν′). Therefore we

obtain that

|yN − y′
N | ≤ LW1(ν, ν′)

1 + λ
. (3.16)

According to (3.9), we know that

∣
∣∇y1:N−1V [ν]N−1 − ∇y1:N−1V [ν′]N−1

∣
∣

=
∣
∣
∣
∣

∫

xN∈XN

(∇y1:N−1VN [ν](x, y1:N−1, yN ) − ∇y1:N−1VN [ν′](x, y1:N−1, y
′
N )

)
ηx1:N−1 (dxN )

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

xN∈XN

(∇y1:N−1VN [ν](x, y1:N−1, yN ) − ∇y1:N−1VN [ν′](x, y1:N−1, yN )
)

ηx1:N−1 (dxN )

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

xN∈XN

(∇y1:N−1VN [ν′](x, y1:N−1, yN ) − ∇y1:N−1VN [ν′](x, y1:N−1, y
′
N )

)
ηx1:N−1 (dxN )

∣
∣
∣
∣ .

The first term on the right hand side is bounded above by LW1(ν, ν′) due the point (ii) of
Assumption 3.1. By Lemma 3.1, we obtain

∣
∣∂yN ∇y1:N−1VN [ν′](x, y1:N−1, yN )

∣
∣ ≤ (κ − λ),

and thus (3.16) implies

∣
∣∇y1:N−1VN [ν′](x, y1:N−1, yN ) − ∇y1:N−1VN [ν′](x, y1:N−1, y

′
N )

∣
∣ ≤ (κ − λ)LW1(ν, ν′)

1 + λ
.

Combining these estimates, we get that
∣
∣∇y1:N−1V [ν]N−1 − ∇y1:N−1V [ν′]N−1

∣
∣

≤ LW1(ν, ν′) + (κ − λ)LW1(ν, ν′)
1 + λ

.

Recursively, we get that for k = N − 1, . . . , 1,

∣
∣∇V [ν]k − ∇V [ν′]k

∣
∣ ≤ LkW1(ν, ν′),

and also (3.14)
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Step 2 Let us compute |T [ν](x,y)1:k−1
k (xk)−T [ν](x,y′)1:k−1

k (xk)|. By first order condition, we
have that

T [ν](x,y)1:k−1
k (xk) − T [ν](x,y′)1:k−1

k (xk)

+ ∂yk V [ν]k
(
x1:k, y1:k−1, T [ν](x,y)1:k−1

k (xk)
)

− ∂yk V [ν]k
(
x1:k, y′

1:k−1, T [ν](x,y′)1:k−1
k (xk)

)
= 0.

Similar to the derivation of (3.16), using Proposition 3.2 and Lemma 3.1 we get that

∣
∣
∣T [ν](x,y)1:k−1

k (xk) − T [ν](x,y′)1:k−1
k (xk)

∣
∣
∣ ≤ (κk − λk)

∑k−1
t=1 |yt − y′

t |
1 + λk

. (3.17)

Step 3 We combine the first two steps using the triangle inequality.

��
Proposition 3.4 Under Assumption 3.1 the function � defined in (3.11) is a contraction in
W1 metric if

L1

(
κ1−λ1
1+λ1

)N − L1

κ1 − 2λ1 − 1
< 1. (3.18)

Proof Let us recall the construction from Sect. 3.1: Using T [ν]1, . . . , T [ν]N , we can define
T [ν] = (T [ν]1, . . . , T [ν]N ) : X → Y inductively via

T [ν]1(x1) = T [ν]1(x1),
T [ν]k(x1:k) = T [ν](x1:k−1,T [ν]1:k−1(x1:k−1))

k (xk), k = 2, . . . , N .

It is clear that �(ν) = (T [ν])(η), and therefore

W1(�(ν),�(ν′)) ≤
∫

x∈X
∣
∣T [ν](x) − T [ν′](x)∣∣ η(dx).

Now according to Proposition 3.3, we have that

|T [ν]1(x1) − T [ν′]1(x1)| ≤ L1

1 + λ1
W1(ν, ν′),

and

|T [ν]2(x1:2) − T [ν′]2(x1:2)| =
∣
∣
∣T [ν](x1,T [ν]1(x1))

2 (x2) − T [ν′](x1,T [ν′]1(x1))
2 (x2)

∣
∣
∣

≤ L2

1 + λ2
W1(ν, ν′) + κ2 − λ2

1 + λ2
|T [ν]1(x1) − T [ν′]1(x1)|

≤ L1

1 + λ1

(

1 + κ1 − λ1

1 + λ1

)

W1(ν, ν′).

By induction, one can prove that

|T [ν]k(x1:k) − T [ν′]k(x1:k)|

≤ L1

1 + λ1

(

1 + · · · +
(

κ1 − λ1

1 + λ1

)k−1
)

W1(ν, ν′),
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and hence

|T [ν](x) − T [ν′](x)| ≤ L1

1 + λ1

(

1 + · · · +
(

κ1 − λ1

1 + λ1

)N−1
)

W1(ν, ν′).

Therefore � is a contraction if (3.18) is satisfied. ��
In the contracting case, it is well-known that there exist a unique fixed-point, which is

furthermore determined by repeatedly iterating a map (fixed-point iterations). This tells us
how to completely solve our equilibrium problem:

Corollary 3.1 Under Assumption 3.1 and Condition (3.18), we have

(1) The Cournot-Nash problem (3.1) has a unique equilibrium π;
(2) The second marginal of π is the unique fixed point of �, and it can be determined by the

usual fixed-point iterations “νm+1 = �(νm)”.
(3) Conversely, after determining ν the unique fixed point of �, the unique Cournot-

Nash equilibrium π is determined by minimizing (3.12) or equivalently by taking
π = (id, T [ν])(η) with T [ν] adapted and being uniquely (η-a.s.) determined via the
recursions (3.3).

4 Application to optimal liquidation in a price impact model

We give a description of the price impact model in discrete time. An agent has at time 0 a
number Q0 > 0 of shares on a stock. At time 1, based on the available information, she
aims to sell y1 shares for their current price S1, after which she is left with Q1 = Q0 − y1
shares. This is iterated until time N , where she chooses to sell yN shares based on her current
information, at the current price of SN , leaving her with QN = QN−1 − yN shares. The total
earnings from this strategy is then

EN :=
N∑

i=1

yi Si .

As for the behaviour of the share prices Si , we suppose that S0 ∈ R is known and that
otherwise

Si − Si−1 = xi − xi−1 − mi [ν],
where x ∼ η is noise (wlog. we assume x0 = 0) and mi [ν] stands for the mean of the
i-th marginal of a measure ν. The idea is that the i-th marginal of ν is (in equilibrium) the
distribution of the number of shares sold at time i , and so the term mi [ν] in the dynamics of
S indicates a permanent market impact caused by a population of identical, independent and
negligible agents who at time i decide to sell a number of shares.

We define

F(x, y, ν) := AQ2
N + K

N∑

i=1

y2i − EN ,

where the first term accounts for a final cost of inventory and the second term models the
accumulated transaction costs. Given a distribution ν of decisions taken by a population of
agents, a negligible agent will aim to minimize the η-expectation of F over the strategies
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adapted to the information of the share prices, or equivalently, the strategies adapted to x .
More precisely, a pure equilibrium for this game would be an adapted map T̂ and a measure
ν̂ such that

(i) T̂ ∈ argmin
T adapted

∫
F(x, T (x), ν̂) η(dx);

(ii) T̂ (η) = ν̂.

For this model we easily check that F(x, y, ν) = 1
2‖x − y‖2 + V [ν](y) where

V [ν](y) :=
(

K − 1

2

) ∑

i

y2i − S0
∑

yi + A

(

Q0 −
∑

i

yi

)2

+
∑

i

yi
∑

k≤i

mk[ν]. (4.1)

Let us denote by 1N an N -dimensional vector with 1 in each coordinate, and by 1N×N an
N × N matrix equal to 1�

N1N . On the other hand IN denotes the identity matrix. Hence
∇V [ν](y) = (2K − 1)y + {2A(

∑
yi − Q0) − S0}1N + (

∑
k≤i mk[ν])Ni=1, and so ν �→

∇V [ν](y) is N -Lipschitz with respect to the 1-Wasserstein distance, uniformly in y. More-
over,∇2V [ν](y) = 2A1N×N + (2K −1)IN , and so we have that κ IN ≥ ∇2V [ν](y) ≥ λIN ,
where κ = 2K − 1 + 2AN and λ = 2K − 1.

Corollary 4.1 Take LN = N, κ = 2K − 1 + 2AN, λ = 2K − 1, and define Lt , κt , λt ,
t = N − 1, . . . 1 recursively as in (3.6) and (3.13). Then there exists a unique equilibrium if
Assumption 3.1 (i) and (3.18) are satisfied.

In our model, it can be readily seen that assumptions of Corollary 4.1 are satisfied if
N + A � K . Now we show that it is not a potential game, and therefore cannot be covered
by [2]. Let us only prove it for the simplest case N = 2.

Lemma 4.1 There exists no Fréchet differentiable E : P(R2) → R such that

lim
ε→0

E(ν + εν) − E(ν)

ε
=

∫

R2
V [ν](y) μ(dy) (4.2)

for any μ, ν ∈ P(R2).

Proof Let us define

V̂ [ν](y) := V [ν](y) − m1[ν]y2,
and

Ê(ν) :=
∫

R2

(

K − 1

2

) ∑

i

y2i − S0
∑

yi + A

(

Q0 −
∑

i

yi

)2

ν(dy)

+ 1

2
(m1[ν])2 + 1

2
(m2[ν])2.

It can easily verified that

lim
ε→0

Ê(ν + εν) − E(ν)

ε
=

∫

R2
V̂ [ν](y) μ(dy)

for any μ, ν ∈ P(R2). Therefore it suffices to show that m1[ν]y2 is not potential. Otherwise
suppose there exists some E such that (4.2) holds with V [ν](y) = m1[ν]y2.
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Then it can be readily seen that

E(δT × δ1) − E(δT × δ0)

=
∫ 1

0
dt

∫

(m1[δT × δ0 + t(δT × δ1 − δT × δ0)]y2) (δT × δ1 − δT × δ0)(dy) = T ,

E(δT × δ1) − E(δ0 × δ1)

=
∫ 1

0
dt

∫

(m1[δ0 × δ1 + t(δT × δ1 − δ0 × δ1)]y2) (δT × δ1 − δ0 × δ1)(dy) = 0,

E(δT × δ0) − E(δ0 × δ0)

=
∫ 1

0
dt

∫

(m1[δ0 × δ0 + t(δT × δ0 − δ0 × δ0)]y2) (δT × δ0 − δ0 × δ0)(dy) = 0,

E(δ0 × δ1) − E(δ0 × δ0)

=
∫ 1

0
dt

∫

(m1[δ0 × δ0 + t(δ0 × δ1 − δ0 × δ0)]y2) (δ0 × δ1 − δ0 × δ0)(dy) = 0.

Therefore we obtain that

E(δT × δ1) − E(δ0 × δ0) = E(δT × δ1) − E(δT × δ0) + E(δT × δ0) − E(δ0 × δ0) = T

= E(δT × δ1) − E(δ0 × δ1) + E(δ0 × δ1) − E(δ0 × δ0) = 0,

which is a contradiction. ��
Tofinish the article, let us present a simple examplewherewe can illustrate how to compute

the best response map T [ν] and the fixed point ν.
Example 4.1 Suppose N = 2 and η = 1

2 (δ0 + δ1) × 1
2 (δ0 + δ1). Take Fε(x, y, ν) = 1

2‖x −
y‖2 + εV [ν](y), where V is given by (4.1). In the case of ε = 1, it is just price impact model
above. Hence we know that Fε is non-potential for ε > 0. Let us compute the best response
given ν:

T ε[ν](x1,y1)2 (x2) =argmin
ȳ∈R

{
1

2
|x2 − ȳ|2 + ε

(
(K − 1/2)(y21 + ȳ2) − S0(y1 + ȳ)

+A(Q0 − y1 − ȳ)2 + y1m1[ν] + ȳ(m1[ν] + m2[ν]))
}

= x2 + ε(S0 − 2A(y1 − Q0) − m1[ν] − m2[ν])
1 + ε(2K + 2A − 1)

.

Plugging the above equation into

V ε[ν]1(x1, y1) =1

2

(
1

2
|T ε[ν](x1,y1)2 (0)|2 + V [ν](y1, T ε[ν](x1,y1)2 (0))

)

+ 1

2

(
1

2
|1 − T ε[ν](x1,y1)2 (1)|2 + V [ν](y1, T ε[ν](x1,y1)2 (1))

)

one can express V ε[ν]1(x1, y1) in terms of m1[ν],m2[ν] and y1. Then using the first order
condition

0 = T ε[ν]1(x1) − x1 + ∂y1V
ε[ν]1(x1, T ε[ν]1(x1)),

one can find a formula of T ε[ν]1(x1).
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After some computation, there exists some constants aε
1, . . . , aε

4, b̃
ε
1, b

ε
1, . . . , bε

4 such that

T ε[ν]1(x1) := T ε[ν]1(x1) = aε
1x1 + aε

2m1[ν] + aε
3m2[ν] + aε

4,

T ε[ν]2(x1, x2) := T ε[ν](x1,T ε [ν]1(x1))
2 (x2) = bε

1x2 + b̃ε
1x1 + bε

2m1[ν] + bε
3m2[ν] + bε

4.

Since we assume that η = 1
2 (δ0 + δ1) × 1

2 (δ0 + δ1), the optimal response measure is given
by

ν̂ := �(ν) = 1

4

∑

x1,x2=0,1

δ(T ε [ν]1(x1),T ε [ν]2(x1,x2)), (4.3)

and hence is completely determined by means m1[ν] and m2[ν]. Computing the means of ν̂,
we obtain that

m1[ν̂] = 1

2
aε
1 + aε

2m1[ν] + aε
3m2[ν] + aε

4

m2[ν̂] = 1

2
bε
1 + 1

2
b̃ε
1 + bε

2m1[ν] + bε
3m2[ν] + bε

4.

Therefore, the equilibrium is given by the solution of the linear system

mε
1 = 1

2
aε
1 + aε

2m
ε
1 + aε

3m
ε
2 + aε

4

mε
2 = 1

2
bε
1 + 1

2
b̃ε
1 + bε

2m
ε
1 + bε

3m
ε
2 + bε

4. (4.4)

where variablesmε
1,m

ε
2 stand for the mean of the first and second marginals of the equilibria.

It can be verified that if F(x, y, ν) satisfies assumptions of Proposition 3.4, e.g. when K
is large, then Fε(x, y, ν) also satisfies that for any ε ∈ [0, 1]. Therefore, there always exists
a unique solution of �(ν) = ν in (4.3). As discussed in the paragraph above, the solution of
(4.3) is provided by the linear system (4.4). Therefore there always exists a unique solution
to (4.4).

Although it is not immediate how to interpret this equilibrium, we do notice that as ε → 0
the unique equilibria converge to the intuitive solution for ε = 0. In the case that ε = 0, the
solution sends (x1, x2) to (y1, y2), i.e., T 0[ν]1(x1) = x1, T 0[ν]2(x1, x2) = x2. Indeed, as
ε → 0, we have aε

1, b
ε
1 → 1 and aε

2, a
ε
3, a

ε
4, b̃

ε
1, b

ε
2, b

ε
3, b

ε
4 → 0. Therefore the fixed point

mε
1,m

ε
2 both converge to

1
2 , and thus limε→0 T ε[ν]1(x1) = x1, limε→0 T ε[ν]2(x1, x2) = x2.
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