
To appear in Proceedings of the Tenth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2004), Toronto, ON,
May 25–28, 2004.

Dynamic CPU Management for Real-Time,
Middleware-Based Systems

Eric Eide Tim Stack John Regehr Jay Lepreau
University of Utah, School of Computing

50 South Central Campus Drive, Room 3190
Salt Lake City, Utah 84112–9205

{eeide,stack,regehr,lepreau}@cs.utah.edu http://www.cs.utah.edu/flux/

Abstract— Many real-world distributed, real-time, embedded
(DRE) systems, such as multi-agent military applications, are built
using commercially available operating systems, middleware, and
collections of pre-existing software. The complexity of these sys-
tems makes it difficult to ensure that they maintain high quality
of service (QOS). At design time, the challenge is to introduce
coordinated QOS controls into multiple software elements in
a non-invasive manner. At run time, the system must adapt
dynamically to maintain high QOS in the face of both expected
events, such as application mode changes, and unexpected events,
such as resource demands from other applications.

In this paper we describe the design and implementation of
a CPU Broker for these types of DRE systems. The CPU Broker
mediates between multiple real-time tasks and the facilities of a
real-time operating system: using feedback and other inputs, it
adjusts allocations over time to ensure that high application-level
QOS is maintained. The broker connects to its monitored tasks in
a non-invasive manner, is based on and integrated with industry-
standard middleware, and implements an open architecture for
new CPU management policies. Moreover, these features allow
the broker to be easily combined with other QOS mechanisms
and policies, as part of an overall end-to-end QOS management
system. We describe our experience in applying the CPU Broker
to a simulated DRE military system. Our results show that the
broker connects to the system transparently and allows it to
function in the face of run-time CPU resource contention.

I. INTRODUCTION

To meet the requirements of the market, real-time and
embedded software systems must increasingly be designed
atop commercial, off-the-shelf (COTS) operating systems and
middleware. These technologies promote rapid software de-
velopment by allowing system developers to concentrate on
their application logic rather than on low-level “infrastruc-
tural” code. In addition, commercial operating systems and
middleware promote software quality by providing tested, ef-
ficient, and reliable implementations of low-level functionality.
Finally, these technologies promote scalability across different
types of embedded platforms, configurability of features and
feature selection, and evolvability of the embedded software
systems over time. These so-called “-ilities” are essential in

This research was largely supported by the Defense Advanced Research
Projects Agency, monitored by the Air Force Research Laboratory, under
agreement F33615–00–C–1696. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation hereon.

a world where embedded system technologies change rapidly
and where the high cost of software development must be
amortized over several products, i.e., across the life cycle of
a product family rather than the lifetime of a single product.

COTS operating systems and middleware are also increas-
ingly required to support the development of distributed, real-
time, embedded (DRE) systems. Many real-time systems are
built containing multiple processors or processing agents,
either tightly connected (e.g., within an automobile or aircraft)
or loosely connected (e.g., multi-player networked games,
sensor networks, and networked military systems). Middleware
such as CORBA [1] promotes the development of these systems
by providing high-level and scalable abstractions for commu-
nication between multiple processes. Real-time middleware,
such as RT CORBA [2], also provides high-level and portable
abstractions for scheduling resources for real-time tasks.

Even with modern middleware, however, it can be a sig-
nificant software engineering challenge for system developers
to design and build DRE systems that meet their real-time
requirements. First, because the parts of an embedded software
system must often be designed to be reusable across many
products, the code that implements real-time behavior for any
particular system must be decoupled from the “application
logic” of the system’s parts. Decoupling makes it possible to
collect the real-time specifications for all of the system’s parts
in a single place — in other words, to modularize the real-
time behavior of the system — but leads to the new problem
of reintroducing that behavior into the software. Second, even
if the implementation of real-time behavior is modularized,
developers are challenged with specifying the desired behavior
at all. It is a common problem for the execution times of
parts of a system to be data-dependent, mode-dependent,
configuration-dependent, unpredictable, or unknown. In a dis-
tributed real-time system, the sets of communicating tasks and
available processor resources may not be known until run time,
or may change as the system is running. In sum, the challenges
of implementing real-time behavior in many systems include
not only decoupling and modularizing of the behavior, but the
ability to describe a variety of policies in a high-level and
tractable manner, and ensuring that the system continues to
operate (perhaps at reduced capacity) in the face of events
that occur at run time, both expected and unexpected.

c© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

http://www.cs.virginia.edu/rtas04/
mailto:eeide@cs.utah.edu
mailto:stack@cs.utah.edu
mailto:regehr@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/

To address these challenges, we have designed and imple-
mented a novel CPU Broker for managing processor resources
within real-time systems. Our CPU Broker is a CORBA-based
server that mediates between the multiple real-time tasks and
the facilities of a real-time operating system, such as TimeSys
Linux [3]. The broker addresses design-time challenges by
connecting to its managed tasks in a non-invasive fashion
and by providing an expressive and open architecture for
specifying CPU scheduling policies. The broker can manage
resources for both CORBA and non-CORBA applications. At
run time, the broker uses feedback and other inputs to monitor
resource usage, adjust allocations, and deal with contention
according to a configured policy or set of policies. The broker
is configured at run time through a command-line tool or via
invocations on the CORBA objects within the broker: policies
are easily set up and changed dynamically. Finally, the broker
is designed to fit into larger, end-to-end architectures for
quality of service (QOS) management. A single instance of the
broker manages CPU resources on a single host, but because
its architecture is open and extensible, the broker’s policies
can be directed by higher-level QOS systems like QuO [4].
This enables coordination of brokers on multiple hosts, coor-
dination with other resource managers, and cooperation with
application-level QOS such as dynamic adaptation strategies.

Our CPU Broker was designed to ensure that the CPU
demands of “important” applications are satisfied insofar as
possible, especially in the face of dynamic changes in resource
requirements and availability, in the set of managed tasks, and
in the relative importances of the tasks. We have evaluated
the broker in these situations through micro-benchmarks and
synthetic application scenarios. In addition, we have applied
and evaluated the CPU Broker in the context of a simulated
DRE military application. Our results show that the broker
correctly allocates CPU resources in our synthetic tests and
in a “real world” system of target-seeking unmanned aerial
vehicles (UAVs). The broker connects to applications in a
transparent fashion and improves the ability of the UAV system
to identify targets in a timely manner.

The primary contributions of this paper are threefold. First,
we describe our architecture for dynamic CPU management in
real-time systems: an architecture that addresses the critical
software engineering challenges of specifying and controlling
real-time behavior in the presence of anticipated and unan-
ticipated events. Second, we present our CPU Broker, which
effectively implements our architecture atop a commercial
RTOS and industry-standard middleware, enables non-invasive
integration, and provides an open and extensible platform for
CPU management. Finally, we demonstrate the use of our
CPU Broker and evaluate its performance in both synthetic
scenarios and a simulated DRE military application. Our results
show that the broker approach can effectively address both the
design-time and run-time challenges of managing real-time
behavior in COTS-based real-time systems.

II. RELATED WORK

A great deal of work has been done in the areas of feedback-
driven scheduling, real-time middleware, and middleware-
based QOS architectures. In this section we summarize rep-
resentative work in each of these areas and compare it to
the CPU Broker. In general, our focus has been to improve
on previous work by addressing the practical and software
engineering barriers to deploying adaptive, feedback-driven
scheduling in modern COTS-based embedded and real-time
systems. These goals are elaborated in our previous work [5].

In the area of feedback-driven scheduling, Abeni and But-
tazzo [6] describe a QoS Manager that is similar to our
CPU Broker. The QoS Manager handles requests from three
types of real-time tasks: pseudo-proportional-share tasks, (pe-
riodic) multimedia tasks, and (aperiodic) event-driven tasks.
Tasks are weighted with importance values, and the QoS
Manager uses feedback from multimedia and event-driven
tasks to adjust those tasks’ scheduling parameters. Our work
differs from theirs in three important ways. First, whereas the
QoS Manager is implemented within the HARTIK research
kernel, our CPU Broker is built atop a COTS operating
system and industry-standard middleware. (In later work [7],
Abeni et al. implemented and analyzed a feedback-driven
scheduler for Linux/RK [8].) Second, our focus is on non-
invasive approaches: Abeni and Buttazzo do not describe
how to cleanly separate the feedback from the applications
being controlled. Third, our CPU Broker is based on an open
architecture, making it easy to implement new policies, inspect
the broker, or otherwise extend it. The QoS Manager, on the
other hand, has a more traditional, monolithic architecture.
Similar differences distinguish our CPU Broker from Naka-
jima’s adaptive QOS mapping system [9], which was used to
control video streaming applications under Real-Time Mach.

In the area of real-time middleware, there has been signif-
icant work in both commercial standards and novel research.
For instance, the Object Management Group has defined and
continues to evolve standards for RT CORBA [2], [10]. These
standards are concerned with issues such as preserving thread
priorities between clients and servers in a distributed system
and proper scheduling of I/O activities within an ORB. This is
in contrast to our CPU Broker, which manages the resources
of a single host, is feedback-driven, and which operates above
the ORB rather than within it. RT CORBA is similar to our
CPU Broker, however, in that both provide an essential level
of abstraction above the real-time services of an underlying
operating system: it would be interesting to see if the (priority-
based) RT CORBA and the (reservation-based) CPU Broker
abstractions could be used in combination in the future. Other
researchers have incorporated feedback-driven scheduling into
real-time middleware: for example, Lu et al. [11] integrated a
Feedback Control real-time Scheduling service into nORB, an
implementation of CORBA for networked embedded systems.
Their service operated by adjusting the rate of remote method
invocations on server objects: i.e., by adjusting the clients to
match the resources of the server. Our CPU Broker, on the

2

other hand, would adjust the resources available to the server
in order to meet its clients’ demands. Our approaches are com-
plementary: a robust DRE system might use both client-side
and server-side adaptation effectively, and our CPU Broker is
open to integration with other QOS adaptation mechanisms.
Finally, it should be noted that our CPU Broker can manage
both middleware-based and non-middleware-based processes,
in contrast to the systems described above.

While many middleware-based QOS architectures operate
by mediating between applications and an operating system,
other architectures are based on applications that can adapt
themselves to changing resource availability. The Dynamic
QOS Resource Manager (DQM) by Brandt et al. [12] is of this
second type and is perhaps the most similar to our CPU Broker
in both its goals and approach. Like our broker, DQM is
implemented as a middleware server atop a commercial OS. It
monitors a set of applications, and based on CPU consumption
and availability, it tells those tasks to adjust their requirements.
The primary difference with our CPU Broker is in the level
of adaptation. Our broker changes (and enforces) tasks’ CPU
allocations by interfacing with an RTOS. DQM, on the other
hand, requests (but cannot enforce) that applications switch
to new “execution levels,” i.e., operational modes with dif-
fering resource needs. DQM and the CPU Broker implement
complementary approaches to CPU management, and it would
be interesting to combine our broker with a framework for
benefit-based, application-level adaptation like DQM. Several
researchers, including Abeni and Buttazzo [13], have demon-
strated the benefits of combining adaptive reservation-based
scheduling with application-specific QOS strategies.

The CPU Broker uses QuO [4] to connect to CORBA-
based applications in a non-invasive manner and to integrate
with other QOS management services such as application-
level adaptation. QuO provides an excellent basis for coor-
dinating multiple QOS management strategies in middleware-
based systems, both for different levels of adaptation and for
different resource dimensions. For example, Karr et al. [14] de-
scribe how QuO can coordinate application-level and system-
level adaptations, e.g., by dropping video frames and reserv-
ing network bandwidth. More recently, Schantz et al. [15]
demonstrated that the distributed UAV simulation (described in
Section V-C) could be made resilient to both communication
and processor loads by applying network reservations in
combination with our CPU Broker.

III. DESIGN

The conceptual architecture of the CPU Broker is illustrated
in Figure 1, which depicts a sample configuration of the
broker. At the top of the figure are the set of tasks (e.g.,
processes) being managed by the broker. Under those, within
the dashed box, are the objects that make up the CPU Broker.
As described later in Section IV, these objects are normally
located all within a single process, but they do not have
to be. The broker mainly consists of two types of objects,
called advocates and policies, that implement per-application
adaptation and global adaptation, respectively.

Global

App.App.
Real−Time Real−Time

Policy

RTOS

Scheduler Proxy

Per−App.

C
on

tr
ol

Adaptation

Adaptation
Policy

{
{ E

xt
er

na
l Q

oS

Advocate

Advocate

Advocate

Fig. 1. Overview of the CPU Broker architecture

A. Advocates

As shown in Figure 1, every task under the control of the
CPU Broker is associated with one or more advocate objects.
The purpose of an advocate is to request CPU resources on
behalf of a task. More generally, an advocate transforms an
incoming request for resources into an outgoing request.

The primary input to an advocate is a request for a periodic
CPU reservation: i.e., a period and an amount of CPU time
to be reserved in each period. This is shown as the arrow
entering the top of each advocate. On a regular basis —
usually, at the end of every task cycle — the topmost advocate
for a task receives a report of how much CPU time was
consumed by the task since its last report: this is called the
status. (The details of obtaining a task’s status are described
in Section IV.) The status amount may be more than what
is currently reserved for the task: the CPU Broker normally
manages “soft” reservations, which allow tasks to consume
unreserved CPU resources in addition to their own reserves.

From this information, the topmost advocate decides how
its task’s reservation should be adjusted. The CPU Broker
provides a family of different advocates, implementing dif-
ferent adaptation algorithms, and is an open framework for
programmers who need to implement their own. A typical
advocate works by producing a reservation request that closely
matches its task’s observed behavior. For instance, if the status
amount is greater than the task’s currently reserved compute
time, the advocate would request a new reservation with an
increased compute time that (better) meets the task’s demand.
If the status amount is smaller, on the other hand, then the
requested compute time would be reduced. The details of
the adaptation strategies are up to the individual advocates;
for instance, different advocates may use historical data or
may adapt reservations quickly or slowly. Advocates can also
take input from a variety of sources in order to implement

3

Other QoS

Request

Reservation
Request

application
/proc

...
Advocate

Monitors

} Systems

Reservation

Fig. 2. Advocate

their policies, as illustrated in Figure 2. For instance, our
architecture allows an embedded systems designer to deploy
an advocate that observes application-specific data, such as
mode changes, in order to make more predictive reservation
requests. The different strategies that we have implemented are
described in Section IV-C. In general, the strategies we have
implemented for periodic tasks adjust a task’s reservation so
that the allocated compute time is within a small threshold
above the task’s demand, thereby allowing the task to meet its
deadlines. Other implemented advocates are appropriate for
controlling aperiodic and continuous-rate tasks, for example,
by requesting user-specified fixed shares of the CPU.

The reservation that is requested by an advocate is called
the advice. An advocate computes its advice and then invokes
the next advocate in the chain, passing it both the task status
and the computed advice.

Subsequent advocates are used to modify the advice or
perform some side-effect: allowing advocates to be composed
in this way greatly increases the CPU Broker’s flexibility
and allows existing advocates to be reused. For example, an
advocate can be used to cap the resource request of a task, or
alternately, ensure that the request does not fall below some
minimum reserve. A side-effecting advocate might read or
write information from other QOS management middleware,
such as QuO. Another kind of side-effecting advocate is a
“watchdog” that wakes up when some number of expected
status reports have not been received from a monitored task.
Reports are normally made at the end of task cycles, but this
granularity may be too large, especially in the case of a task
that has an unanticipated dynamic need for a greatly increased
reservation. Without the intervention of a watchdog, the task
might not be able to report its need until several task periods
have passed — and several deadlines missed.1 A watchdog can
be used in these cases to mitigate the effects of dynamic work-
load increases: the watchdog wakes up, (possibly) inspects
the state of its task, and requests an increased reservation
on behalf of the task. In sum, composed advocates are a
powerful mechanism for building complex behaviors from
simple ones, for introducing and modularizing application-
specific adaptations, and for conditioning the requests that are
presented to the broker’s contention policy object.

1In cases where missed deadlines are unacceptable, a system designer can
easily configure the CPU Broker with different advocates to ensure that critical
tasks have sufficient CPU reserves to process dynamic loads without missing
deadlines. The essential point is that the CPU Broker enables system designers
to choose the strategies that best meet the QOS needs of their applications.

B. Policies

The last advocate in the chain passes the task’s status and the
advice to a policy object that is responsible for managing the
requests made on behalf of all tasks. A policy has two primary
roles. First, it must resolve situations in which the incoming
requests cannot all be satisfied at the same time, i.e., handle
cases in which there is contention for CPU resources. Second,
a policy must communicate its decisions to an underlying
scheduler, which implements the actual CPU reservations.

The usual input to a policy object is a reservation request
from one of the advocates in the CPU Broker. In response,
the policy is responsible for re-evaluating the allocation of
CPU resources on the host. Conceptually, a policy recomputes
the reservations for all of the broker’s managed tasks in
response to an input from any advocate, but in practice, this
recomputation is fast and most reports do not result in changes
to the existing allocations. As with advocates, the CPU Broker
provides a set of policy objects, each implementing different
behaviors and conflict resolution strategies. In addition, if
necessary, the implementer of a real-time system can imple-
ment and deploy a custom policy object within the broker’s
open framework. Most policies depend on additional data in
order to be useful: for instance, the broker provides policies
that resolve scheduling conflicts according to user-determined
task importances. Dynamic changes to these importances —
signaled via a (remote) method invocation on a policy object
— will cause a policy to redetermine its tasks’ allocations.
The broker also provides a policy that partitions tasks into
groups, where each group is assigned a maximum fraction
of the CPU, and contention with each group is resolved by a
secondary policy. The details of these policies, how they are
set up, and how they can be changed dynamically are provided
in Section IV.

Once a policy has determined the proper CPU reservations
for its task set, it invokes a scheduler proxy object to imple-
ment those reservations. The scheduler proxy provides a facade
to the actual scheduling services of an underlying RTOS. The
RTOS (not the CPU Broker) is responsible for actually imple-
menting the schedule and guaranteeing the tasks’ reservations.
If the RTOS rejects a reservation that was determined by the
broker’s policy, then the policy is responsible for modifying its
request. (In practice, our implemented policies avoid making
inadmissible reservation requests.)

The policy finishes with the scheduler and finally sends
information about any changed reservations back to the ad-
vocates, which send the data up the advocate chains. An
advocate may use this information to inform future requests,
to cooperate with other QOS management frameworks, or to
signal its application to adapt to its available CPU resources,
for example. Eventually, a new CPU status report is received
from one of the broker’s managed tasks, and the process of
the advocates and policies repeats.

IV. IMPLEMENTATION

In this section we describe how the design goals of the
CPU Broker are met in its actual implementation. To achieve

4

our goal of providing an open and extensible framework for
dynamically managing real-time applications, we implemented
the CPU Broker using CORBA. To achieve non-invasive in-
tegration with middleware-based real-time applications and
other QOS management services, we used the QuO framework.
Finally, to apply and demonstrate our architecture atop a
commercial off-the-shelf RTOS, we implemented the broker
for TimeSys Linux. The rest of this section describes how
these technologies are used in our implementation, and also,
the advocate and policy algorithms that we provide as part of
the CPU Broker software.

A. Scheduling and Accounting

At the bottom of our implementation is TimeSys Linux [3],
a commercial version of Linux with support for real-time
applications. TimeSys Linux provides several features that
are key to our implementation. First, the kernel imple-
ments reservation-based CPU scheduling through an abstrac-
tion called a resource set. A resource set may be associated
with a periodic CPU reservation; zero or more threads are also
associated with the resource set and draw (collectively) from
its reservation. Second, the TimeSys kernel API allows a thread
to manipulate resource sets and resource set associations that
involve other threads, even threads in other processes. This
makes it straightforward for the CPU Broker to manipulate
the reservations used by its managed tasks. Third, whenever
one thread spawns another, and whenever a process forks a
child, the parent’s association with a resource set is inher-
ited by the child (by default). This makes it easy for the
CPU Broker to manage the reservation of a task (process)
as a whole, even if the task is internally multithreaded.
Finally, TimeSys Linux provides high-resolution timers that
measure the CPU consumption of threads and processes. These
timers were essential in providing accurate reservations —
and allowing high overall CPU utilization — in the real-time
task loads we studied. To allow the CPU Broker to obtain
high-resolution information about all of the threads in another
process, we made a very small patch to the TimeSys Linux
kernel to expose processes’ high-resolution timers through the
“/proc/pid /stat” interface.2

The combination of a flexible reservation-based scheduling
API and high-resolution timers allowed us to implement the
CPU Broker on TimeSys Linux. The architecture of the broker
is general, however, and we believe that it would be straight-
forward to port our current CPU Broker implementation to
another RTOS (e.g., HLS/Linux [16], [17]) that provides both
CPU reservations and accurate accounting.

B. Openness and Non-Invasiveness

We chose to implement the CPU Broker using CORBA [1],
an industry-standard middleware platform for distributed ob-
jects. CORBA provides two main features for achieving the

2Only the Linux-standard low-resolution timers (with 10 ms granularity)
are exposed in the “/proc/pid /stat” interface by default. TimeSys’ high-
resolution counters are made available through the getrusage system call,
but that cannot be used to inspect arbitrary processes.

broker’s goals of openness and non-invasiveness. First, CORBA
defines a standard object model and communication mecha-
nism. By implementing the broker’s advocates and policies
as CORBA objects, we provide a framework for real-time
systems designers to use in configuring and extending the
broker. Second, CORBA abstracts over the locations of objects:
communicating objects can be located in a single process,
on different processes on a single machine, or on different
machines. This has practical significance for both usability
and performance. The broker can be easily extended with
new advocates and policies without modifying existing broker
code: this enables rapid prototyping, late (e.g., on-site) and
dynamic customization, and cases in which a custom broker
object is tightly coupled with an application (and therefore is
best located in the application process). When performance is
critical, new objects can be located in the same process as
other broker objects; high-quality implementations of CORBA
can optimize communication between colocated objects.

As described in Section I, middleware in general and
CORBA in particular are increasingly important for the cost-
effective development of reliable real-time and embedded sys-
tems. Using CORBA in the implementation of the CPU Broker
allows us to leverage this trend. We can rely on high-quality
real-time middleware — in particular, the TAO [18] real-time
CORBA ORB — in our implementation and also take advantage
of the increasing popularity of CORBA for the development
of DRE systems. More important, however, is that CORBA
provides a basis for non-invasively connecting the CPU Broker
to the real-time CORBA-based tasks that it manages.

A primary goal in designing and implementing the broker
was to support applications that are not developed in conjunc-
tion with our system: in other words, to support programs
in which the “application logic” is decoupled from the man-
agement and control of the application’s real-time behavior.
This makes both the applications and our CPU Broker more
flexible, and it allows real-time control to be modularized
within the broker rather than being scattered throughout many
programs. Effective support for this programming style re-
quires that the broker be able to integrate with its managed
tasks in a non-invasive manner, i.e., in ways that require
minimal or no changes to the code of the managed tasks.
The broker itself runs as a user-level process that acts as
the default container for the advocate, policy, and scheduler
objects described previously. Integration with real-time appli-
cations therefore requires that we build “transparent bridges”
between the CPU Broker and those real-time tasks. We have
implemented two strategies for non-invasive integration as
illustrated in Figure 3.

The first strategy inserts a proxy object, called a delegate,
into a CORBA-based real-time application. This strategy is
appropriate when the real-time work of an application is
modularized within one or more CORBA objects, as shown
in Figure 3(a). The broker’s delegates are implemented with
QuO [4], which provides a family of languages and other
infrastructure for defining and deploying delegates. The im-
plementation of the reporting delegate class is generic and

5

CORBA Request
Periodic

Real−Time App.

Broker
CPU QuO

Impl.
Object

Delegate

(a) Via QuO

TimeSys Linux

CPU

proc_advocate

Process 1234Broker

/proc/1234/stat

(b) Via proc_advocate

Fig. 3. Non-invasive connections between tasks and the CPU Broker

reusable, not application-specific. Further, delegates can typi-
cally be inserted in ways that are transparent to the application,
or localized to just the points where objects are created. A C++
or Java programmer might add just a few lines of code to a pro-
gram’s initialization or to a factory method [19]; alternatively,
the code can be integrated in a non-invasive manner via aspect-
oriented programming [20]. In our experience, delegates can
often and effectively modularize the monitoring and control
of real-time behavior in CORBA servers.

For applications that are not built on middleware, how-
ever, a second strategy is required. For these cases, we
have implemented a “process advocate” (proc_advocate)
as illustrated in Figure 3(b). The process advocate is an
adapter between an unmodified application and the broker. The
proc_advocate is a process: it requests a reservation from the
broker and then forks the unmodified application as a child.
The proc_advocate’s reservation is inherited by the child
process, as described in Section IV-A. The proc_advocate is
then responsible for monitoring the CPU usage of the applica-
tion and reporting to the broker. Information about the child’s
resource usage is obtained from kernel’s “/proc/pid /stat”
interface, extended with high-resolution timers as explained
previously. Other data about the child process, such as its
period, are specified as command-line options to the process
advocate.

C. Example Advocates and Policies

The CPU Broker implements an open framework for con-
figurable and extensible control of real-time applications.
To demonstrate the framework, in particular for tasks with
dynamically changing CPU requirements, we implemented a
core set of scheduling advocates and policies. These objects
are generic and reusable in combination to construct a variety
of adaptive systems, but we have not attempted to implement
a complete toolbox. Rather, we have implemented example
advocates and policies that we have found useful to date.

For conditioning the feedback from tasks with dynamically
changing demands, the broker provides two advocates called
MaxDecay and Glacial. MaxDecay tracks recent feedback
from its task: every time it receives a report, a MaxDecay

advocate requests a reservation that satisfies the application’s
greatest demand over its last n reports, for a configured value
of n. A Glacial advocate, on the other hand, is used to adapt
slowly: it adjusts the requested reservation by a configured
fraction of the difference between its task’s current reserva-
tion and the task’s current demand. In general, MaxDecay
advocates are useful for applications whose normal behavior
includes frequent spikes in demand that should be anticipated,
whereas Glacial advocates are useful for tasks whose spikes
represent abnormal situations that are not useful in predicting
future demands.3 Other advocates provided by the broker
include an auxiliary advocate for coordinating with QuO —
the advocate sends the status and advice data to QuO “system
condition” objects — and an advocate for logging data to files.

The broker provides three main policy objects. The first,
called Strict, allocates reservations to tasks in order of their
user-assigned importances. Requests from high-priority tasks
are satisfied before those from low-priority tasks: when there
is contention for CPU time, important tasks will starve less
important tasks. This policy is good for periodic tasks with
critical deadlines, because important tasks can be strongly iso-
lated from less important ones. The second policy, Weighted,
satisfies requests according to a set of user-assigned task
weights. When there is contention for resources, all reser-
vations are reduced, but in inverse proportion to the tasks’
weights: “heavy”/important tasks are less degraded than
“light”/unimportant tasks. This policy implements the adaptive
reservation algorithm described by Abeni and Buttazzo [6],
except that the inputs to our policy are possibly modified by
the advocates described above. Weighted is often preferred
over Strict for aperiodic and CPU-bound tasks. The third policy
provided by the broker is Partition, which divides the available
CPU resources into two or more parts. The resources within
each part are controlled by a separate policy object, i.e., a
Strict or Weighted policy. This allows for isolation between
task groups and combinations of contention policies, e.g., for
managing both periodic and aperiodic tasks. The Partition
policy keeps track of which tasks belong to which groups, and
it allows an administrator to move tasks between groups at run
time. By manipulating the subpolicy objects, the administrator
can also dynamically change the amount of CPU time available
within each subpolicy.

D. Using the CPU Broker

Finally, as a practical matter, the interface to starting and
configuring the CPU Broker is critical to its use. As described
previously, the broker is normally run as a single process that
acts as a container for the broker’s CORBA objects. When
this process begins, it creates a bootstrap object that can be
contacted by other CORBA tools in order to configure the
broker and implement a desired CPU management strategy. We

3Note that the distinction is based on an application’s anticipated behavior
and not its importance. An advocate always considers its application to be
“important.” It is the job of a policy, not an advocate, to make decisions based
on user-assigned importance values.

6

provide a command-line tool, called cbhey, that allows inter-
active communication with the broker, its advocates, and its
policies. For example, setting the importance of a task named
mplayer is as simple as using cbhey to talk to the controlling
policy object and telling that policy to “set priority of

task mplayer to 5.” Connecting an external advocate or
policy object to the CPU Broker is accomplished by using
cbhey to give the location of the object to the broker; CORBA
handles communication between the broker and the external
object. Tighter and automated integration with the CPU Broker
is achieved by making (remote) method invocations on the
CORBA objects within the broker. For example, an end-to-end
QOS management framework would likely interact with the
broker not via cbhey, but instead by making CORBA calls
to the broker’s objects. For performance-critical situations,
we also provide a mechanism for dynamically loading shared
libraries into the main broker process.

V. EVALUATION

Our evaluation of the CPU Broker is divided into three
parts. First, we measure the important overheads within the
broker’s implementation and show that they are small and
acceptable for the types of real-time systems we are targeting.
Second, we evaluate the broker’s ability to make correct CPU
allocations for a set of synthetic workloads, with and without
dynamically changing resource requirements, and with and
without contention. Finally, we demonstrate the CPU Broker
applied to a simulated DRE military application. We extend
the broker with an application-specific advocate, measure the
broker’s ability to make appropriate CPU allocations, and
evaluate the impact on the quality of service achieved by the
system in the face of CPU contention.

All of our experiments were performed in Emulab [21],
a highly configurable testbed for networking and distributed
systems research. Each of our test machines had an 850 MHz
Pentium III processor and 512 MB of RAM. Each CPU Broker
host ran TimeSys Linux/NET version 3.1.214 (which is based
on the Linux 2.4.7 kernel) installed atop Red Hat Linux 7.3.
The CPU Broker and other CORBA-based programs were built
using TAO 1.3.6 and a version of QuO (post-3.0.11) provided
to us by BBN. For experiments with the distributed military
application, the three hosts were connected via three unshared
100 Mbps Ethernet links.

A. Monitoring and Scheduling Overhead

There are two primary overheads in the broker: obtaining
CPU data from the kernel, and communication between the
broker objects via CORBA. When an application is moni-
tored by a QuO delegate or proc_advocate, communication
involves inter-process communication (IPC). To measure the
total overhead, we built three test applications. The first was
monitored by our ordinary QuO delegate, which performs two-
way IPC with the broker: it sends the task status and waits to
receive new reservation data. The second was monitored by a
special QuO delegate that performs one-way IPC only: it does
not wait for the broker to reply. The third was monitored by an

TABLE I
AVERAGE MEASURED OVERHEAD OF REPORTS TO THE CPU BROKER

Configuration Monitor+Broker Monitor Only
CPU Time (usec) Real Time (usec)

Two-way QuO delegate 1742 1587
One-way QuO delegate 1716 660
In-broker process advocate 400 400

“in-broker process advocate”: an advocate that functions like
proc_advocate, but which lives in the main CPU Broker
process and is run in its own thread. (The performance of
an ordinary proc_advocate is similar to that of a two-way
QuO delegate.) Each test application ran a single sleeping
thread. Periodically (every 33 ms), each monitor measured the
CPU usage of its task plus itself via the “/proc/pid /stat”
interface and sent a report to the broker. Each test was run
on an unloaded machine with a CPU Broker containing a
MaxDecay advocate and a Weighted policy. We ran each test
and measured the CPU and real time required for processing
each of the first 1000 reports following a warm-up period.

The average times for the reports are shown in Table I.
The first data column shows the average of the total user
and kernel time spent in both the monitor and broker per
report: this includes time for obtaining CPU data, doing IPC
if needed, and updating the reservation. The second column
shows the average wall-clock time required for each report
as viewed from the monitoring point. This is a measure
of per-report latency: in the QuO delegate cases, it is less
than total CPU time because it does not account for time
spent in the broker. We believe that the measured overheads
are reasonable and small for the class of real-time systems
based on COTS operating systems and middleware that we
are targeting. Increasing the number of tasks or decreasing
the tasks’ periods will increase the relative overhead of the
broker, but when necessary, additional optimizations can be
applied. For example, one might configure the monitors with
artificially large reporting periods, at some cost to the broker’s
ability to adapt allocations quickly.

B. Synthetic Applications

To test the broker’s ability to make correct CPU reservations,
we used Hourglass [22] to set up two experiments. Hourglass
is a synthetic and configurable real-time application: its pur-
pose is to analyze the behavior of schedulers and scheduling
systems such as the CPU Broker.

Our first experiment tests the CPU Broker’s ability to track
the demands of a periodic real-time task with a dynamically
changing workload. The goal is for the reservations over time
to be both adequate (allowing the task to meet its deadlines)
and accurate (so as not to waste resources). We assume that the
system designer does not know the shape of the application’s
workload over time, only that it goes through phases of
increased and decreased demand. In a typical case like this,
a MaxDecay advocate is appropriate for adapting to the task.
There is no CPU contention in this experiment, so the policy
is unimportant: we arbitrarily chose to use the Strict policy.

7

 0

 50

 100

 150

 200

 250

 80 85 90 95 100 105 110

C
P

U
 T

im
e

(m
s)

Time (s)

CPU Usage
Reservation

Fig. 4. Actual compute time and reserved compute time for a task with a time-
varying workload. The broker is configured to adapt to increased demands
immediately, and to reduced demands only after several periods of reduced
need. The MaxDecay task advocate used in this experiment can be configured
to track the actual demand more or less closely.

To drive this experiment, we created a test program that
uses the core of Hourglass in a simple CORBA application.
Our program’s main loop periodically invokes a colocated
CORBA object, which computes for a while and then returns
to the main loop. The object’s compute time can be fixed
or variable in a configured pattern. We introduced a QuO
delegate between the main loop and the object in order to
connect our application to the CPU Broker. We configured
our test application to have a period of 300 ms and to run a
time-varying workload. The task goes through phases of low,
medium, and high demand (with compute times of 100, 150,
and 200 ms), and each phase lasts for 10 periods.

We ran our test application in conjunction with the
CPU Broker, and the results are shown in Figure 4. The
graph illustrates two points. First, the reservations made by
the CPU Broker accurately track the demand of the applica-
tion over time. Second, the MaxDecay advocate operates as
intended, predicting future CPU demand based on the greatest
recent demand of the task. This prevents the broker from
adapting too quickly to periods of reduced demand, which is
appropriate for tasks that have occasional but unpredictable
periods of low activity.4 If more accurate tracking were
required, a designer would configure the advocate to observe
fewer recent reports or replace the advocate altogether with a
better predictor (as we do in Section V-C).

The second synthetic experiment tests the CPU Broker’s
ability to dynamically arbitrate CPU resources between com-
peting tasks. There are two kinds of dynamic events that
require updates to the broker’s reservations: changes in the
requests from tasks, and changes to the policy. Because the
previous experiment concerned adaptation to tasks, we chose
to focus this experiment on changes to the policy.

4This behavior in turn makes resource allocations more stable in multi-task
systems. When there are several applications competing for resources, it is
often undesirable to adjust resource allocations too frequently.

 0

 20

 40

 60

 80

 100

 120

 140

 16 18 20 22 24

C
P

U
 T

im
e

(m
s)

Time (s)

Task 1
Task 2
Task 3

Fig. 5. Dynamically changing reservations in response to changing task
importances. Task 1 requires 95 ms every 250 ms; tasks 2 and 3 require
125 ms and 40 ms with the same period. The lines show the compute time
reserved for each task. When task importances change, the broker policy
updates reservations according to the Strict policy. Marks on the lines show
the ends of task cycles that met (•) and did not meet (×) their deadlines.

We set up three instances of the (unmodified) Hourglass
application, each connected to the CPU Broker with a “con-
tinuous rate” advocate that makes a single report describing its
task’s desired reservation. The compute times of the tasks were
set to 95, 125, and 40 ms per 250 ms period. The broker was
configured with a Strict (importance-based) policy; further, the
policy was set to reserve at most 75% of the CPU to all tasks.

We then ran the three Hourglass processes and used cbhey

to change the importances of the three tasks dynamically.
The results of this experiment are shown in Figure 5. At the
beginning of the time shown, the importance values of the
three tasks are 10, 5, and 1, respectively. The Strict policy
correctly satisfies the demand of task 1, because it is most
important, and this task meets its deadlines. The remaining
available time is given to task 2, but this reservation is
insufficient and the task generally misses its deadlines, as does
task 3. (These tasks can use unreserved CPU on a best-effort
basis to occasionally meet their deadlines.) At time 16.6, we
raise the importance of task 3 to 7, making it more important
than task 2. In response, the broker reallocates CPU resources
from task 2 to task 3, and task 3 begins to meet is deadlines.
At time 22.5, we lower the importance of task 3 back to 1,
and the broker again recomputes its reservations.

This experiment highlights three key points. First, the con-
figured broker policy works correctly and allocates resources
to the most important tasks. As described previously, the
broker implements and is open to other policies that arbitrate
in different styles. Second, the broker properly and quickly
adjusts reservations in response to changes to the policy
configuration. In a real system, these kinds of changes could
be made by an automated QOS management system or by a
human operator. Third, the total utilization of the system is
constantly high. In other words, the broker allocates all of the
CPU time that it is allowed to assign, and the sum of the three

8

reservations is always equal to that amount. The broker enables
a system designer to keep utilization high while choosing how
to divide resources in the face of contention.

C. The UAV Application

A primary goal of the CPU Broker is to provide flexible CPU
control in real-time and embedded systems that are developed
atop COTS middleware and that operate in highly dynamic
environments. To demonstrate the benefits of the broker to
these kinds of applications, we incorporated our broker into a
CORBA-based DRE military simulation called the Unmanned
Aerial Vehicle (UAV) Open Experimentation Platform [14].
This software simulates a system of one or more UAVs that fly
over a battlefield in order to find military targets. The UAVs
send images to one or more ground stations, which forward
the images to endpoints such as automatic target recognition
(ATR) systems. When an ATR process identifies a target, it
sends an alert back to the originating UAV.

We applied our CPU Broker to the ATR stage to ensure
that the ATR could reliably keep up with the flow of images
coming from a UAV. The ATR task is a Java program that
receives images at a rate of two frames per second. Because
the ATR is CORBA-based, we used a QuO delegate to monitor
the ATR and report to the CPU Broker after each image is
processed. Inserting the delegate required simply adding a few
lines of code to the application’s main class. This change
was introduced non-invasively by running the ATR with a
modified class path. The Java process contains many threads,
but the details of how these threads are managed by Java are
unimportant to the CPU Broker. Managing the ATR relies on
the broker’s ability to measure the aggregate CPU consumption
of all threads within a process and make a reservation that is
shared by all those threads. (See Section IV-A.)

Because the ATR is a Java process, it periodically needs to
garbage collect (GC). During these periods, the CPU demand
of the ATR is much greater than its demand during normal
periods. This kind of situation is not uncommon in software
that was not carefully designed for predictable behavior.
We could have dealt with this problem by configuring the
CPU Broker with a MaxDecay advocate which keeps the
ATR’s reservation high in anticipation of future GC cycles,
but this would have been unnecessarily wasteful. Instead, we
implemented a custom advocate that predicts when the ATR
will GC and requests an increased CPU reservation only in
those cases — a proactive, rather than a reactive advocate.

The behavior of the ATR and our custom advocate are shown
in Figure 6. The graph shows the periodic demand of the
ATR and the predictions made for the ATR by our advocate.
These lines often match closely, but our advocate is not a
perfect predictor. Still, the forecast from our custom advocate
is better than we could achieve with MaxDecay, which would
consistently over-allocate or be slow to react to spikes.

We then ran the UAV software with and without the
CPU Broker to test the broker’s ability to improve the run-
time behavior of the system under CPU load. We used three
machines running one UAV process, one distributor, and one

 0

 20

 40

 60

 80

 100

 120

 140

 206 208 210 212 214 216 218 220

C
P

U
 (m

s)

Time (s)

Period Usage
Period Reserve

Fig. 6. Comparison of the actual compute time and reserved compute time
for the ATR. The ATR’s demand has regular spikes that correspond to garbage
collections. The custom advocate predicts and adapts to this behavior.

TABLE II
PERFORMANCE OF THE UAV SIMULATION

Metric Unloaded, CPU Load CPU Load,
Baseline With Broker

Frames processed 432 320 432
Avg. frames per second 1.84 1.32 1.81
Min. frames per second 1.67 0.45 1.11
Max. frames per second 2.00 2.01 1.99
Std. Dev. 0.09 0.34 0.09
Alerts received 76 50 76
Avg. latency (ms) 127.67 1560.44 325.72
Min. latency (ms) 101.00 362.00 145.00
Max. latency (ms) 193.00 3478.00 933.00
Std. Dev. 33.46 961.62 153.60

ATR process, respectively. The third machine also ran a simple
process that receives images from the distributor and sends
them to the ATR. We ran this simulation in three configura-
tions, for 220 seconds each time, and collected data about the
reliability of the system.

The results of our tests are shown in Table II. We first ran
the UAV software without introducing the CPU Broker or any
competing CPU loads in order to obtain baseline measures.
The table shows the rate of image processing (measured at the
receiver over 3-second windows), the latency of alerts (delay
seen by the UAV between its sending of a target image and its
receipt of the corresponding alert from the ATR), and the total
numbers of images and alerts processed by the system. We
then added a competing real-time task on the ATR host — an
Hourglass task with a reservation for 90 ms every 100 ms —
and ran the simulation again. The results in the second column
show that the system behaves unreliably: many images and
alerts are lost. Finally, we used the CPU Broker on the ATR
host in order to prioritize the receiver and ATR processes above
Hourglass. The third column shows that image handling in the
broker-managed UAV system is similar to that in the system
without load. Similarly, no alerts are lost, but their latencies
are increased for two reasons. First, our advocate occasionally

9

mispredicts GC cycles: we could use a different advocate to
improve reliability, at a cost in overall system utility. Second,
although the ATR receives its reservation, the RTOS may spread
the compute time over the full period (500 ms), thus increasing
alert latency. We could address this problem in the future by
adding deadline information to our CPU Broker interfaces. In
sum, our experience showed that the broker can non-invasively
integrate with a CORBA-based DRE system and improve that
system’s reliability in the face of CPU contention.

VI. CONCLUSION

Embedded and real-time systems are increasingly dependent
on the use of COTS infrastructure and the reuse of software
parts — even entire applications. Furthermore, systems are
increasingly deployed in environments that have changing
sets of computing resources and software with dynamically
changing requirements. We have presented the design and
implementation of our CPU Broker that addresses the needs
of these systems in an open and extensible fashion. Our
architecture supports adaptive, feedback-driven CPU reserva-
tions and explicitly separates per-task and global adaptation
strategies. Our implementation atop a commercial RTOS effec-
tively determines and adapts CPU reservations to the dynamic
requirements of its managed tasks, with low overhead. Finally,
the broker effectively modularizes the strategy for allocation
and adaptation, and connects to both middleware-based and
other applications in a non-intrusive manner. In conclusion,
we believe that the broker approach can provide important
benefits toward achieving understandable, predictable, and
reliable real-time behavior in a growing and important class
of real-time and embedded software systems.

AVAILABILITY

The CPU Broker is open-source software. Complete source
code and documentation for the CPU Broker are available at
http://www.cs.utah.edu/flux/alchemy/.

ACKNOWLEDGMENTS

We thank Craig Rodrigues at BBN for his continual and
ongoing help with the UAV software. We also thank Alastair
Reid for his valuable comments on drafts of this paper. Finally,
we thank Leigh Stoller, Rob Ricci, Mike Hibler, Kirk Webb,
and other members of the Emulab support staff for helping us
deploy and evaluate the CPU Broker in that facility.

REFERENCES

[1] Object Management Group, Common Object Request Broker Architec-
ture: Core Specification, Dec. 2002, revision 3.0.2. OMG document
formal/02–12–06.

[2] ——, Real-Time CORBA Specification, Nov. 2003, version 2.0. OMG
document formal/03–11–01.

[3] TimeSys Corporation, “TimeSys Linux GPL: Performance advantages
for embedded systems,” 2003, white paper, version 1.1.

[4] J. A. Zinky, D. E. Bakken, and R. D. Schantz, “Architectural support for
quality of service for CORBA objects,” Theory and Practice of Object
Systems, vol. 3, no. 1, pp. 55–73, 1997.

[5] J. Regehr and J. Lepreau, “The case for using middleware to manage
diverse soft real-time schedulers,” in Proceedings of the International
Workshop on Multimedia Middleware (M3W ’01), Ottawa, ON, Oct.
2001, pp. 23–27.

[6] L. Abeni and G. Buttazzo, “Adaptive bandwidth reservation for multi-
media computing,” in Proceedings of the Sixth International Conference
on Real-Time Computing Systems and Applications (RTCSA ’99), Hong
Kong, China, Dec. 1999, pp. 70–77.

[7] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
reservation-based feedback scheduler,” in Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS ’02), Austin, TX, Dec. 2002, pp.
71–80.

[8] S. Oikawa and R. Rajkumar, “Portable RK: A portable resource kernel
for guaranteed and enforced timing behavior,” in Proceedings of the Fifth
IEEE Real-Time Technology and Applications Symposium (RTAS ’99),
Vancouver, BC, June 1999, pp. 111–120.

[9] T. Nakajima, “Resource reservation for adaptive QOS mapping in Real-
Time Mach,” in Parallel and Distributed Processing: 10th International
IPPS/SPDP ’98 Workshops, ser. Lecture Notes in Computer Science,
J. Rolim, Ed. Springer, Mar.–Apr. 1998, vol. 1388, pp. 1047–1056, in
the Joint Workshop on Parallel and Distributed Real-Time Systems.

[10] Object Management Group, Real-Time CORBA Specification, Aug.
2002, version 1.1. OMG document formal/02–08–02.

[11] C. Lu, X. Wang, and C. Gill, “Feedback control real-time scheduling
in ORB middleware,” in Proceedings of the Ninth IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS ’03),
Washington, DC, May 2003, pp. 37–48.

[12] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A dynamic quality
of service middleware agent for mediating application resource us-
age,” in Proceedings of the 19th IEEE Real-Time Systems Symposium
(RTSS ’98), Madrid, Spain, Dec. 1998, pp. 307–317.

[13] L. Abeni and G. Buttazzo, “Hierarchical QoS management for time
sensitive applications,” in Proceedings of the Seventh IEEE Real-Time
Technology and Applications Symposium (RTAS ’01), Taipei, Taiwan,
May–June 2001, pp. 63–72.

[14] D. A. Karr, C. Rodrigues, J. P. Loyall, R. E. Schantz, Y. Krishnamurthy,
I. Pyarali, and D. C. Schmidt, “Application of the QuO quality-of-service
framework to a distributed video application,” in Proceedings of the
Third International Symposium on Distributed Objects and Applications
(DOA ’01), Rome, Italy, Sept. 2001, pp. 299–308.

[15] R. E. Schantz, J. P. Loyall, C. Rodrigues, and D. C. Schmidt, “Con-
trolling quality-of-service in a distributed real-time and embedded mul-
timedia application via adaptive middleware,” Jan. 2004, submitted for
publication, http://www.cs.wustl.edu/∼schmidt/PDF/D&T.pdf.

[16] L. Abeni, “HLS on Linux,” Nov. 2002, http://hartik.sssup.it/∼luca/hls/.
[17] J. Regehr and J. A. Stankovic, “HLS: A framework for composing

soft real-time schedulers,” in Proceedings of the 22nd IEEE Real-Time
Systems Symposium (RTSS ’01), London, UK, Dec. 2001, pp. 3–14.

[18] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO
real-time object request broker,” Computer Communications, vol. 21,
no. 4, pp. 294–324, Apr. 1998.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP ’97:
Object-Oriented Programming, ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Springer, June 1997, vol. 1241.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, MA, Dec. 2002, pp. 255–270.

[22] J. Regehr, “Inferring scheduling behavior with Hourglass,” in Pro-
ceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference, Monterey, CA, June 2002, pp. 143–156.

10

http://www.cs.utah.edu/flux/alchemy/
http://www.cs.wustl.edu/~schmidt/PDF/D&T.pdf
http://hartik.sssup.it/~luca/hls/

	Abstract
	Introduction
	Related Work
	Design
	Advocates
	Policies

	Implementation
	Scheduling and Accounting
	Openness and Non-Invasiveness
	Example Advocates and Policies
	Using the CPU Broker

	Evaluation
	Monitoring and Scheduling Overhead
	Synthetic Applications
	The UAV Application

	Conclusion
	Availability
	Acknowledgments
	References

