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In order to deal with the long-time behavior of the time correlations of spins and take 

into account the life-time effects of all critical variables involved, we formulate a generalized 

continued fraction expansion of the time correlation functions. It is shown that, if the cor

relation length of spin fluctuations K-1 and the wave-length of external disturbance K-1 are very 

long, then the long range correlations of spin fluctuations involved yield the most dominant 

part in the limit of long times or small frequencies. 

The asymptotic behavior of the most dominant part is determined by the equal-time 

correlations of long wave-length spin fluctuations which are treated with the static scaling 

laws. It is shown that, in the case of n=O, n being the parameter measuring the deviation of 

the spin pair correlation from the Ornstein-Zernike form, the dynamic scaling law proposed 

by Halperin and Hohenberg holds with the characteristic frequencies of the form KlJg (k/K) , 

where {}=5/2 in ferromagnets and 3/2 in antiferromagnets. In the case of n~O, however, the 

dynamic scaling law does not hold. In ferro magnets, this is due to a non-similarity between 

the longitudinal and transverse components in the ordered phase, and in antiferromagnets, 

this is due to a non-similarity between the critical slowing-down of the staggered polarization 

and the kinematical slowing-down of the small wave-number polarization. In ferromagnets in 

the paramagnetic region, however, there exists a characteristic frequency with {}= (5+n)/2. 

These results are derived by first using the pair correlation approximation and then removing 

such an approximation. 

§ 1. Introduction 

In the vicinity of the critical point there appear enormous fluctuations of 

macroscopic scale. Critical phenomena/),2) both static and dynamic, are believed 

to be due to these anomalous fluctuations_ Dynamic critical phenomena which 

we know at present may be classified into the following types: (A) the critical 

scattering of light and neutron, (B) the critical slowing-down in return to equi

librium, (C) the anomalous increase in transport and relaxation coefficients and 

in their temperature derivatives, (D) the existence of diffuse oscillatory modes 

even in the magnetic disordered phases_ 

The fundamental processes underlying these critical phenomena would be 

(1) the critical fluctuation of critical variables involved, (2) their critical slowing

down in decay, (3) the kinematical slowing-down of conserved quantities involved, 

and (4) the memory effects. All the variables which show the .critical fluctuation 

should show the critical slowing-down in decay, since a large fluctuation is difficult 

to occur unless its return to equilibrium is slow. Thus in the vicinity of the 

critical point, microscopic processes associated become very slow so that the. 

microscopic time can be of the· same order of magnitude as the macroscopic 
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1288 H. Mori and H. Okamoto 

relaxation time. Then the memory effect becomes important, and could lead to a 

new type of motion which largely differs from the macroscopic motion. In the 

present paper, we attempt to formulate a systematic theory of dynamic critical 

phenomena, ~hich. enables us to study how these fundamental pr~cesses give 

rise to anomalous phenomena in the vicinity of the critical point. 

The critical fluctuation of a usual critical variable is equivalent to the ap

pearance of a long range correlation. The theory of th~ static scaling laws is 

ba'sed on the assumption of the existence of a unique correlation length;; which 

becomes infinite at the critical polnt.3
) Let us take the Heisenberg model and 

denote the Fourier components of the spin operator by 

N 

Ska = ~ S/ exp[ik·rj], (a=O, ±), (1·1) 
,i=1 

where 

(1· 2) 

Then the static scaling laws would imply in the case of isotropic ferromagnets 

tha t the pair correlation functions of spins are homogeneous functions of k and 

/1;(=1/;;) , 

(1· 3) 

, if the values of k and /1; are very small compared to the inverse range of interac

tion between spins. 

If the system has an axial symmetry about the z axis, the linear dynamic 

responses of magnetization can be described in terms of the relaxatio'n functions 4
),5) 

f3 

. (Sk a (t), Sk a*) _ ~ ) <exp (A $,) Sk a (t) exp ( - A $,) Sk a*)dA, 

o 

(1· 4) 

where ~l is the hamiltonian of the system, and j3 the inverse temperature I/kBT. 

The A integral arises from the noncommutativity of Sk a and !f{, which may be 

neglected for small values of k in the vicinity of the critical point.' The dynamic 

scaling law, proposed by Ferrell et a1. 6
) and by Halperin and Hohenberg/) would 

amount to assuming that the time-correlation functions are functions of the form 

(1· 5) 

and that the characteristic imaginary frequency Zlc is a homogeneous function of 

k and /1;, being of the form 

(1· 6) 

Equation (1· 5) is a generalization of (1· 3) . It IS the crucIal point to assume 

that the critical index {} is constant irrespective of the lower or upper critical 

region, and of the transverse or longitudinal component.7) For example, it is 

assumed that the frequency and damping constant of spin waves have the same 
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Dynamic Critical Phenornena zn Magnetic Systems. I 1289 

value of 0, and the diffusitivity of sp"ins (the d;;tmping constant of the longitudinal 

component in the hydrodynamic regime) also has the identical value of O. It 

is thus quite interesting to assume that the frequency spectrum and the damping 

constant should obey the same law with respect to the k and /C dependence. 

Such a law cannot be seen in the usual examples of collective motion, such as 

the spin waves in the magnon region (where /C represents the average wave 

number of thermal magnons). Thus the dynamic scaling law casts a challenging 

problem on the statistical mechanics of irreversible processes. 

It would be the most fundamental problem to clarify whether and how the 

long range correlations of spin fluctuations involved determine dynamic critical 

phenomena as the most dominant part. Properties like the dynamic scali11g law 

are believed to hold for the asymptotic behavior of such most dominant part. 

Such a separation of the most dominant part would be possible by taking into 

account the life-time effects of all critical variables involved, and thus by dealing 

with their long time behavior in the liinit of .long times or small frequencies. 

The moment method and its modifications which are short time expansIons cannot 

deal with either of these t~o correctly. The simple continued fraction e~pan

sion cannot deal with the life-time effects correctly. Therdore we first develop 

a generalized continued fraction expansion of the time correlation functions with 

the aid of the theory of generalized Brownian motion presented by one of the 

authors.8) 

With the aid of this expansion we study the dynamic scaling law and collec

tive motion in the vicinity of the critical point. Preliminary results have been 

reported elsewhere. 9
) This formulation can be modified also to study anomalous 

transport phenomena, such as anomalous sound attenuation and ESR line width. 

Thus this is the first of a series of papers, presenting a systematic theory of 

dynamic critical phenomena . 

. § 2. Generalized continued fractions 

We consider the Heisenberg model whose hamiltonian is gIVen by 

~= -I:; ~ Jj~[S/S~o+ (I-A) (Sj+S~-+Sj-SL+)J -nwo ~S/, 
j+l j . 

(2 ·1) 

where wo denotes the Zeeman frequency g/.1BH, and A is an ani~otropy parameter, 

A = 0 leading to the isotropic case. Rewriting (2 ·1) in terms of the Fourier 

components and using the commutation relations 

(2·2) 

we obtain 

Sko=iLSko= [2(1-A)/inNJ~q JqkSq+S"k_q , 

Sk ±=iLSk± = =r= i{))OSk ± ± (2IiItN) ~q J qk (A) SqOS~_q , 
(2·3) 

where L IS the Liouville operator, LF denoting the commutator [~, FJ liz, and 
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1290 H. Mori and H. Okamoto 

Jqk-::=Jqk (0), J qk (}.) -::=J(q) - (1- A) J(k - q), 

J(q) -::=.~ Jj~ exp (iq· (rj - rL)) = J( - q), 
j(+L) 

and the inversion symmetry of the crystal lattice has been assumed. 

(2·4) 

In order to study the time evolution of the relaxation functions, we define 

,the normalized relaxation functions 

Ek a (t) _ (Sk a (t), Sk a*) / (Sk a, Sk a*) 

and introduce its Laplace transform 

ro 

" Ek C< (z) ~ ~ Eka (t) exp (-zt) dt . 

o 

Then, usmg the theory of generalized Brownian motion,S) we obtain 

where 

Uh,;C<==' (Sk a, Ska*) Ii (Sk a, Sk C<*), 

CfJk a (z) = (/k a (z), Ik a*) I (Sk a, Sk a*). 

The random forces Ika (t) are given by 

Ika(t) =exp[(l-'pk
a)iLtJ (I-'pkCt)Ska, 

where.Pk a IS the projection operator onto Sk a, 

(2 ·5) 

(2·6) 

(2·7) 

(2·8) 

(2·9) 

(2 ·10) 

(2 ·11) 

The time evolution of the random forces is governed by the opera tor (1- .P.k a) 

iL which differs from the mechanical one iL. This difference was the crucial 

point in the theory of generalized Brownian' motion, and enabled us to define 

the correlation time f of the random forces which distinctly differs from the 

macroscopic relaxation time f r =l/Re CfJ//'(iWka).s) It will turn'out in our model 

(2 ·1) that if k~~ and A~l, then f~fr' Thus in the hydrodynamic regime 

where Izlf~l, we have 

(2; 12) 

(2 ·13) 

The imaginary part of ZIG gives us the frequency of the collective motion of 

spins, such as the spin wave frequency and the ESR resonance frequency, and 

the real part leads to their damping and the diffusitivity of spins. In the very 

vicinity of the critical point, however, we could have frvfr if k>~. Then the 

memory effect, namely, the z dependence of CfJk a (z) becomes important, and the 
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approximation (2 ·12) would break down. 

In order to determine whether the relaxation functions (2·7) satisfy the 

dynamic scaling law. (1· 5) or not, and also to study whether its characteristic 

imaginary frequency, for instance (2 ·13), has the form (1· 6) or not, we have 

to go into the structure of the damping function ({Jk a (z) in more detail. Inser

tion of (2·3) into (2·10) leads to the form 

where 

fk a (t) = :E [Jqak Aqak (t), 
q 

AqOk= (1- qo k') Sq + S"k-q , ) 

Aq±:k= (1- P k ±) SqOS~_q , 

[JqOk= [2 (I-;t) /ihN] J qk, 

[Jq±k= ± (2/ihN) J qk U). 
) 

(2 ·14) 

(2 ·15) 

(2 ·16) 

It should be noted that Aqak (t) is orthogonal to Sk a and its time evolution is 

governed by the unusual operator Lka= (1- Pka) L. Inserting (2 ·14) into (2·9), 

however, we can .write as 

(2 ·17) 

with the aid of the following theorems. 

[Theorem IJ Consider a quantity A (t) whose equation of motion has the 

form 

d . . r 
diA (t) = l-LA (t), (2 ·18) 

where l' is a linear operator. Then, for an arbitrary quantity B, we have 

where 

(A(z) , B*)/(A; B*) = 1 , 
. z - icuAB + ({JAB(Z) 

CUAB= (1'A, B*) / (A, B*), 

({JAB(Z)=- (i1'j A(Z), B*)/(A, B*). 

The random force fA (z) . is defined by 

fA (t) =exp [(1- !J?A) i1't] (1- PA) i1'A 

with the use of the projection operator P A, 

PAF= [(F, B*) / (A, B*)]A. 

[Theorem 2J Define the hermite conjugate 1" of l' by 

(2· 20) 

(2·21) 

(2·22) 

(2·23) 
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1292 H. Mori and H. Okamoto 

(JA, [1" B] *) = (L j~, B*) . 

Then, introducing the hermite conjugate of g: A, 

g:BG=[(G, A*)/(B, A*)]B, 

we obtain 

CPAB(t) = (JA(t),JB*)/(A, B*), 

= (JA,JB*(-t»/(A, B*), 

where 

(2·24) 

(2·25) 

(2·26) 

(2·27) 

(2·28) 

[Theorem 3J In accordance with the propagators of JA (t) and JB (t), define the 

linear opera tors 

-t1= (1- g:A)L, L 1' - (l-g:B).L'. (2·29) 

If PAF=PBG=O, then we have 

(L1F, G*) = (}t~ [1'/G] *). (2·30) 

Namely, ."C and L/ area hermite conjugate to each other. 

These theorems are results of a straightfo'rward generalization of the damping 

theory developed in the theory of generalized Brownian motion, and are proved 

in Appendix A. Equation (2·7) comes out from (2 ·19) by takIng that A = B 

, = Sk a and L = L' = L. Since the evolution operator of Aqak (t), 

,(2·31) 

is linear, (2.17) is derived by applying (2 ·19) and (2·26) to (Aqak (z), A~!};*). 

Therefore, we have 

{J)ak = (L aA ak Aak*) / (A a/£ J1 ak*) 
qq' k q 'q' q, £;Icq' , 

(fJak ("") = (f ak ("') fak*) / (A ak Aalp~) 
'r qq' ... q,<.., q' q, q' • 

Equation (2 ·22) gIves us 

where 

fqak (t) = exp [iLqak t ] iLqaJ. Aqak, 

Lqak= (1- g}qak) Lk a = (1- g:qak - g:k a) L , 

g:qakF=[(F, A~!};*)/(Aqak, A~~*)JAqa'£. 

(2·32) 

(2· 33) 

(2· 3'4) 

(2·35) 

(2·36) 

In deriving (2·35), we have used that g:qakg:k a = g:l£ag:qak = 0 since Ska and Aqak 

are orthogonal to each other. Since Lk a is hermitean in the subspace orthogonal 

to the vector Ska
,8) we obtain from (2·28) 

(2·37) 

where 
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(JA, [1" B] *) = (L j~, B*) . 
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g:BG=[(G, A*)/(B, A*)]B, 
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(2·24) 

(2·25) 

(2·26) 

(2·27) 

(2·28) 
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(2·38) 

Thus the damping function CfJk a (z) is written in terms of the microscopic variables 

Aqak (t). 

In the vicinity of the critical point, the dynamic processes of the critical 

variables become slow (the critical slowing-down). Since (Sk a, Sk a*) and (Aqak, 

Aqexk*) with small wave numbers become anomalously large in the vicinity of 

the ferromagnetic critical point, both Sk a and Aqak with small wave numbers are 

the critical variables. As will be shown later, therefore, not only Wk ex and CfJk a (z) 

but also w~:, and CfJ~:' (z) become small in the vicinity of the ferromagnetic critical 

point when k, q and q' are small wave- numbers, thus representing the critical 

slowing down of Sk ex and Aqak. Equation (2 ·17) will enable us to study how 

these anomalous fluctuations and dynamic processes of the microscopic variables 

Aqak (t) determine the critical behavior of the magnetization. For instance, the 

critical and kinematical slowing-down of w~:, and CfJ~:' (z), together with the 

anomalous increase of (Aqak, A~~*) with small wave numbers, will make the 

contributions of small wave number terms important in the sum of (2 ·17). Such 

a combined effect of the critical fluctuations and their dynamic properties was 

essential to understand the anomalous increase of the NMR line width. This 

is the crucial point in our theory, and removes a serious deficiency in the moment 

method lO
) and its modificationsll

),12) which cannot describe such a life-time effect. 

The random forces fqcxk, (2·34), have the form 

fqal£ = (1- 9?qaJ.: - 9?ka) iLAqak. (2·39) 

Insertion of (2·15) and (2·3), - therefore, leads to 

3 

fqak (t) = ~ ~ g~~q A~~q (t) . (2·40) 
11=1 r 

Explicit expreSSIOns for g~~q and A~~q can be written down easily. For instance, 

SInce 

we have 

iLAqOk = [Sq + Sk-q + Sq + Si-q] 

- [(Sq+Sk_q, Sko*)/(SkO, SkO*) JSko, (2·41) 

A Okq - (1 ([) Ok ([) 0) S °S+ S-
Ir - - ::[ q - :;L- 1£ r q-r k-q' 

A Okq - (1 ([) Ok ([) 0) S +S °S-
2'1' - - :;L-q -:;L 1£ q r k-q-r, (2·42) 

A~~q= [(Sq+Sk_q, Sko*)/(SkO, Sko*)J (1-9?qOk-9?k O)Sr+S"k_r, 

g~~q= (2/i-hN) Jr q ().), 

gg~q= - (2/i-hN)Jrk-q().) , (2·43) 

gg~q~ - [2(1-A)/i-hN]J/£. 

Similarly, we have 
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A ±kq- (1 m ±k m ±)S +S- S± 1r - - :;;;:L q - :;;;:L k r q-r k-Y, 

Ar!q = (1- pq±k - P k ±) SqOSrOS~_q_r , (2·44) 

At:;:q = [(SqOS~_q, Sk ±*) / (Sk ±, Sk ±*)] (1- pq±k - Pk±) S/S~_r, 

gt!q= [2 (l-A)/ihN]Jr
q

, 

gtrkq = ± (2/ihN) Jr k-q (A), (2·45) 

gtr
kq 

= =F (2/ihN) J r
k (A). 

The random forces f~'f, (2·37), have the same form as (2· 40). Thus, inserting 

(2·40) into (2·33), and then applying (2 ·19) we obtain 

1 3 3 

<P~~' (z) = (A ak A ak*) ~ L: ~ 4 g~~qg~'frq:* 
q, q' ",-1 r '''' -1 r ' 

(A akq A akq' "*) 
X ",r, ",'r' 

. . akqq' ctkqq' ( ) 
Z - Uf) ",r, p/r' + <P /W, /1'r' Z 

(2·46) 

This gives us the damping function <p~~, (z) in terms of the variables A~~q (t). 

The new damping function <p~~,q;:r' (z) also can be written down similarly with 

the aid of (2 ·19). Proceeding in this manner, we obtain a continued fraction 

expansion of the relaxation functions, which has the form 

1 
Ek (z) =--------------------

M(1) (q, q'; k) 
z - iU.hc + 2.: L:: 

(2·47) 

q q' 

. k +" "M;'2~, (r, r'; q, q';k) z - l(i) , ,L.J ,L.J . 
qq , .' kqq' +'. 

~:' z - l(i) ",r",'r' . 

Explicit expressions for the numerators can be written down easily; for instance, 

M(1)(q, q'; k) =gqakg~'f*(Aqak, A~'f*)/(Ska, Ska*) , 
(2·48) 

M (2)' ( '. '. k) _gakqgakq'* (Aakq Aakq'*)/(A ak Aak*) /1/1' r, r , q, q , - /1r /1'r' /1r, /1'r' q, q' . 

The n-th denominator consists of the double summation over wave vectors and 

of the double summation over n (n + 1) /2 indices. Thus (2·47) is a generaliza

tion of the continued, fraction expansion previously presented by one of the 

authors. B) The· continued fraction expansion (2·47) has the following properties: 

(A) Its coefficients, the frequencies (i)'S and the numerators M's, are determined 

entirely by the equal-time correlation functions of spins. (B) The long time 

behavior of Ek a (t) can be obtained by taking small values of Iz I. For instance, 

the damping constants' of . spins in the hydrodynamic regime are given by 

<Pk
a (z = 0 +). (C) The life-time effects of all critical variables involved can be 

taken into account explicitly. 

§ 3. Above the critical point 

We consider the isotropic Heisenberg model (A = 0) above the critical tem

perature Tc in the absence of a magnetic field. Then the correlation functions 
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of the odd numbers of spins vanish due to the time reversal symmetry. This 

leads to 

A Ol<-S +S- A +k-S °S± q - q k-q' q- - q k-q' (3·1) 

A 0/;;q - (1- (7) 0) S °S+ S- I lr - :::L k . l' q-r k-q, 

A Okq - (1 (7) 0) S +S °S-2r - - :::L k q r k-q-r, 
(3·2) 

(3·3) 

Since the variables Ska, Aqak, A~:q, ... are thus odd or even with respect to the 

time reversal, we also have 

a _ ak akqq' - - 0 
(j) k - Wqq, = (j) pr, p'r' - ... - • (3 ·4) 

In the following we neglect the A integral in (1·4), thus (F, G*) agreeing 

with the correlation function <FG*). The ordering of spins in the correlations 

is not important, since use of the commutation relations merely yields the cor

relation functions of odd numbers of spins which vanish identically. We employ 

the pair correlation approximation which replaces the static correlation functions 

by a product of pair correlation functions. Thus we have, for example, 

where 

Since 

we have 

(A Ok AOk*) ~<S +S- S+ S-) q, q' - q k-q -k+q' -q' , 

~<Sq + S:q' )<S"k-qS"!:.k+q;) , 

=N2oq ,q,(q) (k-q), 

P k °SroS:_rSk_q 

= [(S/S:_rSk_q, S~k) / (SkO, S~k) ]SkO, 

~Or,k< 1 S:_rI2)Sk 0, 

Similarly we have 

(A~:q, Ag~1*) ~01"1"< 1 Sq + 1
2)< 1 S/1

2)< 1 S"k_q_rI
2
), 

(A~~q, Ag~q*) ~01',J"01"o< 1 S/1
2
)<1 Sq + 1

2)< 1 Sk_qI2) . 

(3·5) 

(3·6) 

(3 ·7) 

(3 ·8) 

(3·9) 

(3 ·10) 

Equation (3·10) has two Kronecker. a's, thus giving only' the contribution of 

t~e order of 0 (1/ N) to the sum of the second denominator of (2·47). Similady , 

we can write the static correlations of higher order A's in terms of the pair corre

lation functions (q). The projected parts onto lower order A's always' yield 
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1296 H. Mori and H. Okamoto 

negligible contributions. Since the variables A's were created' from Sk 0 by 

repeated use of the equations of motion (2·3), any of them consists of a cluster 

of spins which are linked by the exchange interaction. The static correlation 

of any of A's has only one term which contributes to the corresponding sum, 

and this term consists of a product of the pair correlations of spins between two 

clusters, e.g. as can be seen in (3·5). Thus writing the numerators of the 

continued fraction (2·47) in terms of the pair correlations, we obtain 

(3 ·11) 

where 

(3 ·12) 

Ml (r, q, k) =M(r, q), 

M2 (r, q, k) = M (r, k - q) , 
) (3 ·13) 

Mu(s, r, q, k) =M(s, r), _ ) 

M21 ( s, r, q, k) -M(s, q r), 

M 31 ( s, r, q, k) =M(s, k-q), 

(3·14) 

M 12 (s,r,q,k)=M(s,q), ) 

M22 (s, r, q, k) ~ M(s, r), 

M 32 (S, r, q, k) =M(s, k-q-r). 

(3 ·15) 

The numerators M's all have the form 

(3 ·16) 

where l' is the summation variable in the corresponding sum. Thus all M's 

have the similar structure, in terms of the pair correlations. Such a similarity 

is basic, though not suf-ficient, for the validity of the dynamic scaling law. As 

can be seen in (2 ·17) and (2·46), the damping functions cp (t) are decomposed 

into the components with two indices, e.g. (fl, r). The numeJ;ators M represent 

the magnitudes of such components at the initial time. Thus the above simila

rity means that the amplitudes of the components of the damping functions have 

the similar structure irrespective of their order. 

Use of the pair correlation a pproxima tion could not be justified in the very 

vicinity of the critical point. In view of the formative stage of our theoretical 

understanding of dynamic critical phenomena, however, it should be useful to 

bav~ a theory of anoma~ous rdaxation which gives us thy main physical f~atu;re$ 
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of the problem clearly as Landau's theory did in the static problem. Important 

results thus obtained are indeed confirmed without usmg the pair correlation 

approximation as will be shown in § 6. 

§ 4. Ferromagnets above the critical point 

We study here the continued fraction (3· 11) in the case of isotropic Heisen

berg ferromagnets with nearest neighbor interaction above the critical point. 

Following the static scaling laws, we assume that if 

q, te~~l/b, (4·1) 

b being the nearest neighbor distance, then 

(4·2) 

where R IS a length of the order of b. Since (4·2) is a homogeneous function 

of q and te, we should have 

O(s) ~1 if 

0(S)~S-2+1] if 

s<l, 

s~l. 

The Ornstein-Zernike formula satisfies these assumptions with r; = o. 

If l, l' <,b-t, then 

Jf,~c[l2 - 21·1'J, 

(4·3) 

(4·4) 

(4·5) 

where c~b2zJ/6~kBTeR2/2. Therefore, if all the wave numbers involved are 

much smaller than b-t, (3 ·16) takes the form 

(4· 6) 

where 

o (s, s') ~[S2 - 2s· s'] 20.(S') 0 (/s - s'/) /0 (s). (4· 7) 

Now return to E k o (z), (3 ·11) . Let us consider a long wave length disturb

ance in the vicinity of the critical point such that k and te are very small com

pared· to b-1
• Then the imaginary frequency z of our interest stays in the 

neighborhood of origin in the complex z plane. Then the most important contribu

tion in the sums of (3 ·11) .will come from the terms with small wave numbers. 

First consider the sum :Eq. If q is small, then (3 ·12) and (3 ·13) lead to the 

factors 

1 1 1 1 

R~q2+te2 (k--q)2+ te2' z+ [q2(q2+te2) + (k-q)2{(k_q)2+te 2
} J¢(q, k; z) , 

(4·8) 

where, for simplicity, the Ornstein-Zernike form has been assumed. Both of 

these factors become larger as q gets smaller. The first represents the critical 

fluctuation of the variable A./k
, and the second effect is due to its kinymatiyal 
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and critical slowing-down. Thus, though the state density and J q
k yield a factor 

of q4, the terms with small values of q give the most dominant contribution. 

The importance of the second factor of (4·8) should be noted. In the other 

sums we also have the same situation provided that the foregoing wave numbers 

and /C are small. Thus in all the sums the main contribution will come from 

the small wav,e number terms. Therefore, we may use (4·6) for all numerators. 

Transforming the sums into the integrals and then changing the integration 

variables by 

we thus obtain 

k/ /C) dsl/ 

(4·9) 

where 

(4 ·10) 

and m(s; k//C) =Q(k//C, s)/n3. Equation (4·9) leads to a function of the form 

(4 ·11) 

whose Laplace inversion gives a function of the form 

(4 ·12) 

The collective modes of spins are determined by the poles of (4·11) in the complex 

z plane, and thus their imaginary frequencies should have the k dependence of 

the form 

(4 ·13) 

Thus it is concluded that the dynamic scaling law holds and the critical exponent 

of the characteristic frequency is given by 

(4·14) 

In the case of r; = 0 this result agrees with the previous theories.7),1l),12) 

So far we have not specified the relative magnitude of k and /C. The prop

erty of EkO(z) , however, critically depends upon their' relative magnitude. In 

the case of k <'/C1 we have 
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(4 ·15) 

k denoting the unit vector directed along k, and in the other numerators we can" 

put k = O. Then (4·9) leads to the form 

EkO(Z) = Z+ [k2~'1+3/~JDF(Z/.Q/C) (4·16) 

Thus III the limit of k<~, neglecting the Z dependence of DF , we obtain 

(4 ·17) 

where 

(4·18) 

This predicts that the spin diffusion constant A decreases as the temperature 

approaches the critical point T c, being proportional to (T - Tc) "', ¢ = (1 + 'lJ) J) /2 . 

In the case of k~~, the memory effect becomes important and the relaxation 

function will deviate from the simple decay (4·17) largely. In the limit of k~/C, 

( 4· 3) and (4· 7) lead to 

(4 ·19) 

(4· 20) 

Thus the numerators m in (4·9) take simpler forms which do not depend on 

either of k and /C. Calculation of the generalized continued fraction, however, is 

not simple. We will study this problem in a later communication. 

§ 5. Antiferromagnets above the critical point 

Let us consider an isotropic Heiseqberg antiferromagnet whose sublattices 

alternate. The critical variable in this system is the staggered polarization SKa
, 

where I( is the half of the reciprocal lattice vect.or. Instead of (4·2), therefore, 

we assume that 

(q' + K) = (~R) -2+'10(q' /~), (5 ·1) 

where q', ~<K. The uniform polarization does not show a critical fluctuation. 

Let us first study "the relaxation function of the critical variable, E~+I1: (z), 

k<K. This can be measured in the magnetic scattering of neutron by observing 

the scattered neutrons with the scattering vectors around K. We begin to deter

mine the wave number region which yields the most dominant part in the sums 

of (3 ·11). Shifting the wave vector k by 1(, we find that the numerators M's 

take either of the following four types: 

M(r, q)"-/I~.qI2(r) (q-r)/(q), 

M (r' + K, q) "'-' 1 Jr'!+I( 12 (r' + K) (q - r' - K) / (q) , (5.2) 
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M(r, q' + K) '"'--' 1J,.Q'+KI 2 (r) (q' - r + K) / (q' + K), 

M (r' + K, q' + K) rJ I J~:t~}12 (r' + K) (q' - r') / (q' + K), 

where rand r' are the summation variables in the corresponding sum. If the 

wave numbers· q, q', r, r' are small, then the pair correlations which do not 

have .J( are nearly constant and thus only the last three types have the pair 

correlations which show the critical fluctuation. Their kinematical properties 

are determined by 

Jrq~ -c'[q2-2q·r], 

J~'+J(~c [q2 - 2q· r'], 

Jrq'+K~2z1J(1), 
(5·3) 

where Zl is the number of the nearest neighbors, J(l) their exchange interaction 

constant, and 

c-kB TcR2/2, R2=_,-_ .. l .. '_<[b/(~+1) -b2
2( (9, -l)J, 

48(8 + 1) Tc Tc 

~'= [kB Tc/88(8+ 1)] [b12( .. ~- + 1) + b2
2( (9_ -1 )J, 

Tc T" . 

(5·4) 

whe~e (9 is the paramagnetic Curie temperature. 

First consider the q sum. Its numerator M (q, k + I() 'takes the third type 

of (5·2) if q, is small, and the fourth type if q is around K. Thus, if q~K, 

then the summand takes the form 

where~ for simplicity, the Ornstein-Zernike form has been assumed. If q = q' + K, 

q' ~K, then the summand takes the form 

1 1 . 
, .. --.. ,,"-, .. , X -'-~---------,--. - -"'---~---'" 

q'2+1C2 z+ [{q'2+1C2} + (k_q')2]¢(q, k; z) 

In the limit of the. small values of k, IC a nd I it: both of these diverge at the 

small value of q or q' as q-4 or q'-4. Since the state density yields the faCtor 

q2 or q'2, these terms yield the divergence of q-2 or q'-2 in the q sum. It 

should be noted here that the divergence is entirely due to the kinematical 

slowing-down of the small wave number polarization involved and the critical 

slowing-down of the staggered polarization involved, both of whic;h play the 

similar role. Thus the most dominant part arises from the region where qr--../O 

and qrJ K. Even though the divergence is weaker than q-4 in the ferromagnetic 

case, we· may replace the sum by. this mO$t do l11 inantpart, provided that k and 
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JC are very small. 

Next eonsider the r sum which consists of the two terms with Ml (r, q, k +- I() 

. and M2 (r; q, k +- I(). The divergence which arises due to the slowing-down 

effect, is always of the order of 1'-2 or r~-2. Since the first type of (5·2) yields 

the factor of r\ the second r~-2, the third r-2 and the fourth 1"-2, therefore, only 

the last three types yield the divergence. Thus, if the numerator is of the form 

M (r, q), q<.K, then the most dominant part arises from r"--' K. If the numerator 

is of the form M (r, q~ +- I(), q' <.K, however, the most divergent part arises 

from r"--'O and r,,-,K. Thus when q"-'O, the Ml sum has the most dominant 

part at r"-' K, whereas the M2 sum has it at both r"-'O and r"-' K. When q"--' K, 

however, the Ml sum has the most dominant part at r"--'O and r"--' K,. whereas 

the M2 sum has it only at rr-J 1(. 

We can make the same analysis in the other sums. Thus, in all of the 

sums of (3 ·11), we can find the most dominant parts whose divergence is of 

the order of r-- 2 or r~ -2. In the folIowing we replace the sunis by such most 

dominant parts. Then the numerators take either of the following three forms: 

M(r, q~ +-I() "--'O(lq'-rl/K)/Q(q~ /K), 

M(r' +- K, q~ +- K-) ,,-,0 (r~ /K) /Q (q~ /K). 

Thus transforming the sums into the _ integrals and then rewriting 111 

the reduced wave vectors, we find that 

E~+K (z) = --------------------~-- ------- - -----~---_______:_----, 
z +- 1C 3 [( ~~(qi __ k/K)_c!q +- r1f!~~~~~}!K2~!J~] 

- ) z+r:p(q; z) ) z:+-r:p~(q~; z) 

(5·5) 

terms of 

(5· 6) 

where the unprimed quantItIes indicate the contribution from the small wave 

number region and the primed ones denote that from the K wave number region. 

The damping functions are given by 

cP (q' z) = K3+ 2'l1~1~)~~~~lJ i_k! K) dr.~_ . 
, Z+-cpl(l)~(r',q;z) 

+- K3 [( ~n~~~':~9_i!!i Kt4.". +- (m2~~~(~ _qi_!!/ "-~ d<], 
) Z+-CP2(1)(r, q; z) ) Z+-r:p2(1)~(r~, q; z) 

cP~ (q~; z) =K3[( 1!!1(2)f':.,_q~_;_ ~/K2!ir +- (!,h~~:l __ lJ.~_;_~/t{) dr'] 
) Z+-CPl(2)(r, q~; z) )Z+-CPl(2)~(r~, q~; z) 

+1C31-2'l(m2_~~)~ir~, q~; k/K)dr' 

) z+- CP2(2)' (r', q~;z) 

(5·7) 

(5 ·8) 

The explicit expressions for the damping functions of (5·7) and (5·8) can be 

written down similarly, but they are omitted here. It is important, however, to 
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note that all of them consist of both the te3 term and the te3+2'1 term. The prop

erty of this continued fraction depends upon the value of r;. In the case of r; = ° 
it is clear that the dynamic s~aling law holds and the critical exponent of the 

characteristic frequency is given by 

8=3/2. (5·9) 

If r;>0, then we can neglect the fractions which have te3
+

2'1 in front. Consequently, 

in this case also the dynamic scaling law holds with the same critical exponent 

(5·9) . Thus, including the case of r;=I=O, we have 

(5·10) 

which agrees with the previous predictions. 

Next we study the relaxation function of the small wave number polariza

tion, EkO(Z) , k<K. In a similar manner, we can determine the wave number 

region which gives the dominant part III the sums of (3 ·11). The numerators 

of the most dominant contribution are of the either form of the three of (5·5). 

Thus we find that 

1 
(5 ·11) 

Z+te3+2'1~ m'(q'; k/te)dq' 

z+te3 ti [~ml'(r, q'; k~~)dr + ~ m/ (r'"q';, k/;?dr'] 
< /1- z+<OI'(r,q,z) z+<01' (r,q,z) 

The damping functions <01' and <0/ can be written down from (3 -14) and (3·15). 

For example, 

( ,.) _ 3+2'1(mn'(S', r, q'; k/te)ds' 
<01 r, q ,z - te . J ,(,. , 

Z+<Ol1 s,r,q;z) 
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(5 ·12) 

It is important to note that all of them consist of both the te3 term and the te3+2'1 

term. In the case of r; = 0, we thus obtain 

(5-13) 

In the case of r;=I=O, however, we can neglect those fractions below the third 

denominator which have te3+2'1 in front, and obtain 

"." 0 ( ) 1 Jjk Z = ------- , 
z + te2'1+3/2g (z/ te3

/
2

, k/ te) 
(5-14) 

where g (x, y) IS a function of two variables. In the limit of the small values 

of k and ~, neglecting the z dependence of g, we thus obtain 

(5 ·15) 

where 
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(5 ·16) 

This has the critical exponent 6=217+3/2 which differs from (5·10). Namely, 

the dynamic scaling law proposed by Halperin and Hohenberg does not hold. 

This is due to the nonsimilarity between the first type and the last two of (5·5) . 

Thus, in the case of 17=1=0, the memory effect does not appear irrespective of the 

relative magnitude of k and /C, which would mean that an oscillatory motion, 

such as diffuse oscillatory mode,s observed in RbMnF3, is difficult to appear 

about the total polarization. 

So far we have not specified the relative magnitude of k ~nd /C. The prop

erty of the relaxation function, however, critically depends upon their relative 

magnitude. In the limit of k-<f(, (5·5) leads to 

M (q, k + K) "-/0 (q/ tc), 

M(q'+K, k+I()r-JQ(q'/tc). 

(5 ·17) 

(5 ·18) 

In the other numerators we can put k = O. Thus In the limit of k-<tc, we obtain 

~ O( ) 1 ~k Z = ----------
z + [k 2 tc2

'l+1/ tc3
/

2
] D A (z/ tc3

/
2

) , 

(5 ·19) 

which leads to the diffusion of spins, similarly to (4 ·18), but with the diffusion 

constant 

(5·20) 

If 17<.1/4, then (5·20) shows the critical speeding-up predicted by Halperin 

and Hohenberg in the case of 17 = o. 
The relaxation of the staggered polarization is more complicated. In the 

limit of k-<tc, (5 ·18) leads to 

~o () 1· 
~ k+K Z = + 3/2f( / 3/2) 

Z tc Z tc 
(5·21) 

In this case, therefore, the memory effect is important and the relaxation should 

deviate from the simple decay. This result differs from the phenomenological 

theory which predicts the exponential decay in the vicinity of the critical point.13
) 

In the phenomenological theory, the short wave length terms were important, 

introducing a microscopic time distinctly smaller than the macroscopic relaxation 

time. However, if the dynamic scaling law should hold, then there exists only 

one time constant characterized by tc3
/

2 in the case of the staggered polarization, 

thus yielding the memory effect. Therefore, a neutron scattering experiment 

determining whether the energy distribution of scattered neutrons is Lorentzian 

or not around the half of the reciprocal lattice vector will be very useful to 

study the validity of the dynamic scaling law. Thus if one finds that the 
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energy distribution is Lorentzian in the region where k<K-, then the dynamic 

scaling law is to be disproved. 

§ 6. };'erromagnets below the critical point 

Below the critical point, the correlation functions of the odd numbers of 

spins do not vanish. Thus we should have the contribution from the frequency 

terms {iJ,c, {J):~" ... in the continued fraction (2·47). In the present section,we 

do not use the pair correlation approximation. 

Let us first consider (J)/r,a, (2·8). With the aid of the identity14) 

([3{, F], G) = ~kBT<[F, G]), (6·1) 

this can be written as5
) 

(6·2) 

where (j denotes the spontaneous polarization of spin for one spm <SoO)/N, and 

(k) a is defined by 

(6 ·3) 

Following the static scaling laws, we have 3
) 

(jr-vK-
f3

/", {3/v= (d-2+1J)/2, (6·4) 

d being the dimensionality of the system., and we assume 

(6· 5) 

·where I?., K-<R~l. Thus we find from (6·2) that (j)/r,Q always vanishes and (j)/r,± 

take the form 

(6· 6) 

The critical exponent J.. with d = 3 differs from (4·14) unless 1J = O. As will be 

shown later, this means that the dynamic scaling laws do not hold below the 

critical point if 1J=/=0. 

It is interesting to determine the k dependence of {J),/.. In the limit of J(,<k, 

we should have 

(6· 7) 

which yields 

(6· 8) 

This k dependence of the frequency spectrum differs from that of the usual spin 

. wave frequency. In this region, however, the damping effect would prevail the 

frequency. 

In the hydrodynamic regime where k<K-, we feel an uncertainty in deter

mining O± (k/K-). If we employ {he Bogolyubov-Tyablikov approximation in the 
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two-time Green's function method, then we obtain (6·7) with Yj = 0 irrespective 

of the relative magnitude of k and 1C.
15

) Therefore, it is not unreasonable to 

assume (6·7) even in the hydrodynamic regime, thus yielding (6·8). This 

'anomalous k dependence, however, cannot easily be understood. In order to 

have the normalk dependence 

(6· 9) 

We have to assume 

(6 ·10) 

Then we have 

(6 ·11) 

It would be important to settle this problem. 

The relations (6·2) and (6·6) can be extended to the higher order frequen

CIes. The evolution operator of the n-th order A variable has the form 

n-1 

Ln= (1- ~ Pi)L, (Lo=L) , (6·12) 
i=O 

where Pi IS the projection operator onto the i-th order A variable Ai, (AO=Sk a). 

Since 

n-1 

An = (1 - ~ Pi) An , 
i=O 

we thus obtain 

(iLnAm An'*) = (iLAn, A,,/*j, 

which means that the n-th order frequency takes the form 

(6 ·13) 

(6·14) 

The static scaling laws imply that the' multiple correlations of SpIll have the 

forn112
) 

(6·15) 

where [m/2J = JZ if m = 2n -lor 2n. The Ii is a function of (qdIC) with j 

Kronecker's delta corresponding to j conditions on the wave vectors, and has a 

definite value in the macroscopic limit (N->oo with p===N/V = constant). The 

denominator of (6 ·14), (Am An'*) , consists of the spin ,correlations of the (2n + 2)

th and lower orders, and the numerator < [Am An'*]) consists of the spin cor

relations of the (2n + 1) -th and lower orders. Thus in the limit of the small 

values of IC, qI, ... , qm k, we obtain 

(j)n=IC)eg(n)(qn/IC, ... , q1/IC,k/IC). (6·16) 

Equation (6·6) IS a particular case of (6 ·16), corresponding to n = O. 
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1306 H. Mori and H. Okamoto 

The numerators of (2·47) can be studied similarly. The n-th order numer

ator has the form 

MC
n
) (qm qn'; ... ; qb ql'; k) =gqngqn' (An, An'*) / (An- h A;t:l)' 

Since gq = N- 1tc2 J(q/ tc), therefore, we obtain 

MCn
) = (Ntcd) -2 tc2B eft' + Oqll,qn' (Ntcd)f/J, 

where 

f)= (2d+4-2A)/2= (d+2+'7)/2, 

and Jt' and f2' are definite functions of the reduced wave vectors. 

(6 ·17) 

(6 ·18) 

(6 ·19) 

As has been discussed before, the most dominant contribution in the contin

ued fraction (2·47) arises from the small wave number terms due to the kine

matical and critical slowing-down. Therefore we may use (6 ·16) and (6·18). 

Then the n-th denominator takes the form 

(6·20) 

This formulation is valid even for the paramagnetic region, where all the fre

quencies tc)"gCn
) vanish in the absence of magnetic field. Thus we can determine 

the validity of the dynamic scaling law proposed by Halperin and Hohenberg. 

If and only if '7 = 0, we have A = f), (6·20) thus leading to the form 

(6·21) 

with the critical index f) = (d + 2) /2, irrespective of the lower or upper critical 

region and of the transverse or longitudinal component. If '7=1=0, however, A=I=f) 

and the dynamic scaling law in the above sense does not hold. As far as the 

paramagnetic region without· magnetic field is concerned, however, the frequen

cies tc)"gCn
) vanish and the dynamic scaling law (6· 21) holds with the critical 

index f)= (d+2+'7)/2, agreeing with (4·14). 

These results differ from the other theories,1l),12) which always lead to the 

frequency critical index A = (d + 2- '7) /2. These theories, which ultimately assume 

short time expansions, do not deal with the long time behavior and thus cann'ot 

distinguish the essential difference between the frequencies and dampings in the 

macroscopic limit. It should be remembered that it was essential to extract the 

contri bution from the long range correlations of spin fluctua tions (or the cor

relations of small wave-number spin fluctuations) as the most dominant part 

whose asymptotic behavior can be treated with the static scaling laws, and thi;s 

extraction became possible by dealing with the long time behavior in the mac

roscopic limit in order to take into account the life-time effects of the critical 

variables An in the vicinity of the critical point. Thus the difference between 

the frequency critical index A and the damping critical index f) turns out to be 

meaningful. 
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In a similar manner, we can treat the antiferromagnetic case, which, however, 

will be discussed in a separate paper together with a study of the antiferromagnetic 

resonance . line width. 

§ 7. Concluding. remarks 

The first fundamental problem of the dynamic critical phenomena is to extract 

the most dominant part due to the critical fluctuation of the critical variables 

involved. In the static critical phenomena this seems to have been done suc

cessfully. . In the relaxation and transport phenomena, the macroscopic motion 

dissipates its physical quantities to the microscopic thermal fluctuations. The 

dissipative processes depend on the microscopic structure of the system more 

sensitively than the static properties. Within the correct formalism of such ir

reversibility, we have to extract the anomalous part due to the critical fluctua

tions of macroscopic scale in the macroscopic limit. 

To do this we employed the continued fraction expansion, which can be 

regarded as giving a general statement of the fluctuation-dissipation theorem. 

The most important properties of the continued fraction expansion are two-fold. 

(1) Its coefficients, the numerators M and the frequencies UJ, are' entirely deter

mined by the static correlation functions. (2) The introduction of the irreversible 

character, namely, the analytic continuation of 3(z) into the left half plane in 

the complex z plane can be done in a straightforward manner.8
),16) This yielded 

a crucial difference from the moment method and its modifications. 

All the fractions of the generalized continued fraction (2·47) have the form 

(7 ·1) 

where M qq, and the real part of Tqq, (z) represent something like the amplitude 

and the life time of the fluctuations of the corresponding A variables. As was 

discussed in (4·8) and below (5·4), if k, ~ and Izl are very small, then both 

of M and T become anomalously large for the small values .of q and q'. Without 

the time factor Tqq, (z), however, the anomaly would be weak and the sum would 

not have any dominant part. Due to the existence of this time factor, the 

sum can be approximated by the small wave number terms .. For instance, let 

'us take the isotropic Heisenberg ferromagnet above the critical point, and con

sider the damping function 

(7·2) 

where 
00 

L(z, k) - ~ ~ (fkO(t) , fko*) exp (-it) dt, (7 ·3) 
o 

1 ~ ~ g OkgOk* (A ok AOk*) ( ) = - L...J L...J q q' q, q' T qq, z . 
N q q' 

(7 ·4) 
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the complex z plane can be done in a straightforward manner.8
),16) This yielded 

a crucial difference from the moment method and its modifications. 

All the fractions of the generalized continued fraction (2·47) have the form 

(7 ·1) 

where M qq, and the real part of Tqq, (z) represent something like the amplitude 

and the life time of the fluctuations of the corresponding A variables. As was 

discussed in (4·8) and below (5·4), if k, ~ and Izl are very small, then both 

of M and T become anomalously large for the small values .of q and q'. Without 

the time factor Tqq, (z), however, the anomaly would be weak and the sum would 

not have any dominant part. Due to the existence of this time factor, the 

sum can be approximated by the small wave number terms .. For instance, let 

'us take the isotropic Heisenberg ferromagnet above the critical point, and con

sider the damping function 

(7·2) 

where 
00 

L(z, k) - ~ ~ (fkO(t) , fko*) exp (-it) dt, (7 ·3) 
o 

1 ~ ~ g OkgOk* (A ok AOk*) ( ) = - L...J L...J q q' q, q' T qq, z . 
N q q' 

(7 ·4) 
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1308 H. Mori and H. Okamoto 

Since fko = Sk 0, the static correlation of the random force IS calculated to be 

Cfko,fko*)/N= - (ikBT/Il) < [SkO, S~kJ>, 

= (2Jo
k /3h2[3J) E (T), (7·5) 

where we have assumed the nearest neighbor interaction and defined its average 

energy of one spin 

(7 ·6) 

Equation (7·5) does not show any anomalous Increase. However, (7·4) does 

show the anomalous increase due to the anomalous Increase of fqq' (z); from 

(6 ·15) and (6·20), we have 

fqq' (0) r"-J,,-e, 

L (0, k) r"-Jk2,,-3(1-7J)/2. 

(7·7) 

(7 ·S) 

A striking example of such a life-time effect can be seen also In the theory of 

the NMR line width near the critical point.17),1~) 

Thus the most dominant part was able to be extracted In the continued 

fraction expansion (2·47) in the long time limit. To study the most dominant 

part, we assumed the static scaling laws for the static correlation functions with 

small wave numbers. . It was shown, however, that the dynamic scaling law· 

does not hold in the ordered state if r;=I=O. This was due to a difference between 

the frequencies and the damping functions. If r;=I=O, then the dynamic scaling 

law in a wide sense did not hold also in the antiferromagnets above the critical 

point. This was due to a non-similarity between the kinematical slowing-down 

of the small wave number polarization and the critical slowing-down of the 

staggered polarization. As was shown in § 6, these conclusions were further 

confirmed without using the pail· correlation approximation. 

Appendix A 

Derivation of the theorems quoted in § 2 

Let us consider the time evolution of a dynamic quantity A (t), starting 

from its equation of motion 

dA(t) /dt=LfA (t), , (A·l) 

where f is a linear operator. If A is a mechanical variable, then .L is the 

Liouville operator L. If A is the random force of first or second order, thert 

f is the linear operator defined by (2·31) or (2·35), respectively. The following 

formalism can be thus applied to any order of random force. Now, let us con

sider another dynamic quantity B and define the projection of a variable F onto 

the A axis through the variable B by 

PAF= (F, B*) . (A, B*) -1. A . (A·2) 
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This equation defines a linear projection operator fPA' which satisfies the relation 

(fP A) 2 = fP A, and the projection can be visualized geometrically by defining. the 

Hilbert space of dynamic variables whose inner product of two variables F and 

G is given by (F, G*). The damping theory developed in the previous paperS) 

can be also applied to the present case by taking the projection operator (A· 2). 

It would be instructive to quote here its mathematical structure. Let us separate 

A (t) into the projective and vertical component with respect to the A axis; 

where 

A(t) =EAB(t) ·A+A'(t), 

EAB (t) = (A (t), B*) . (A, B*) -r, 

A' (t) - (1- fP A) A (t). 

(A·3) 

(A·4) 

(A·5) 

From (A ·1) we obtain an explicit expression for AI (t) in the following manner. 

Operating (1- fPA ) on (A ·1) and using (A· 3), 

(A·6) 

where 

(A·7) 

This IS integra ted to yield 

t 

A'(t) =~ EAB(S) ·fA(t-s)ds, (A·8) 

o 

(A·9) 

Since fPA(l-fPA) =0, we have fPAfA(t) =0; namely, the random force fACt) IS 

orthogonal to the variable A. Differentiating (A, 4) and then inserting (A· 3) 

. and (A· 8), we obtain 

t 

~EAB (t) = EAB (t) . i(j)AB - ~ EAB (s) . qJA13 (t - s) ds , 
dt 0 

(A· 10) 

where 

i(j)AB= (i.LA, B*) . (A, B*)-r, (A· 11) 

qJAB (t) = - (i.L fA (t), B*) . (A, B*) -1. (A· 12) 

The ,Laplace transform of (A ·10) thus leads to 

EAB(Z) = 1 , 
Z - i(j)AB + qJAB(Z) 

(A·13) 

which agrees with (2 ·19) . The foregoing treatment can be also applied to the 

Dynamic Critical Phenomena in Magnetic Systems. -I 1309 

This equation defines a linear projection operator fPA' which satisfies the relation 

(fP A) 2 = fP A, and the projection can be visualized geometrically by defining. the 

Hilbert space of dynamic variables whose inner product of two variables F and 

G is given by (F, G*). The damping theory developed in the previous paperS) 

can be also applied to the present case by taking the projection operator (A· 2). 

It would be instructive to quote here its mathematical structure. Let us separate 

A (t) into the projective and vertical component with respect to the A axis; 

where 

A(t) =EAB(t) ·A+A'(t), 

EAB (t) = (A (t), B*) . (A, B*) -r, 

A' (t) - (1- fP A) A (t). 

(A·3) 

(A·4) 

(A·5) 

From (A ·1) we obtain an explicit expression for AI (t) in the following manner. 

Operating (1- fPA ) on (A ·1) and using (A· 3), 

(A·6) 

where 

(A·7) 

This IS integra ted to yield 

t 

A'(t) =~ EAB(S) ·fA(t-s)ds, (A·8) 

o 

(A·9) 

Since fPA(l-fPA) =0, we have fPAfA(t) =0; namely, the random force fACt) IS 

orthogonal to the variable A. Differentiating (A, 4) and then inserting (A· 3) 

. and (A· 8), we obtain 

t 

~EAB (t) = EAB (t) . i(j)AB - ~ EAB (s) . qJA13 (t - s) ds , 
dt 0 

(A· 10) 

where 

i(j)AB= (i.LA, B*) . (A, B*)-r, (A· 11) 

qJAB (t) = - (i.L fA (t), B*) . (A, B*) -1. (A· 12) 

The ,Laplace transform of (A ·10) thus leads to 

EAB(Z) = 1 , 
Z - i(j)AB + qJAB(Z) 

(A·13) 

which agrees with (2 ·19) . The foregoing treatment can be also applied to the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

0
/6

/1
2
8
7
/1

8
7
1
7
3
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1310 H. Mori and H. Okamoto 

many-variable case, where A and B are n-dimensional colunin matrices of in

dependent variables. Then (A· 2) denotes the projection into the n-dimensional 

subspace, and EAB (t), WAB, and cP AB (t) are the square n:atrices, and the center 

dots denote' the matrix multiplication. 

Theorem 2: Let us introduce a projection operator fPB In the same way as 

fPA ; 

fPBG= (G, A*)· (B, A*)-l·B, 

which satisfies (fPB) 2 = fPB. Then we have 

(A·14) 

(A·15) 

This equation means that fPA and fPB are hermitian conjugate to each other. 

We also introduce the hermitian conjugate propagator .£' of .£ by 

(LF, G*) = (F, [.£'GJ *) . (A·16) 

Then the damping function (A ·12) can be written as 

(i'£fA (t), B*) = - (fA (t), [i.£' BJ*), 

= - (fA (t), [(1- fPB) i.£' BJ *), (A·17) 

where use has been m~de of the identity fA (t) = (1- fP A)jA (t), which comes out 

of the relation (1- 5P A) 2 = (1- fP A)' Substitution of (A ·17) into (A ·12) yields 

(A· IS) 

where 

(A·19) 

Equation (A·IS) agrees with (2·26). Since fPAfA(t) =fPBfB(t) =0, (2·27) is 

readily obtained from the following theorem. 

Theorem 3: Introducing the evolution operators .£1 and .£/ by (2.29), and 

assuming that f!;AF=fPBG=O, we have 

(.£IF, G*) = ('£F, G*) = (F, [.£'GJ *) 

= (F, [(1- fPB ) :L'GJ *) = (F, [.£/GJ *), 

where (A ·15) and (A ·16) have been used.' This is identical to (2·30). 
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