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A B S T R A C T

The crushing behavior of a multilayer 1050 H14 aluminum corrugated core was investigated both experimen-

tally and numerically (LS-Dyna) using the perfect and imperfect models between 0.0048 and 90m s−1. The

dynamic compression and direct impact tests were performed in a compression type and a modified Split

Hopkinson Pressure Bar set-up, respectively. The investigated fully imperfect model of the corrugated core

sample represented the homogenous distribution of imperfection, while the two-layer imperfect model the lo-

calized imperfection. The corrugated core experimentally deformed by a quasi-static homogenous mode between

0.0048 and 22m s−1, a transition mode between 22 and 60m s−1 and a shock mode at 90m s−1. Numerical

results have shown that the stress-time profile and the layer crushing mode of the homogeneous and transition

mode were well predicted by the two-layer imperfect model, while the stress-time profile and the layer crushing

mode were well approximated by the fully imperfect model. The fully imperfect model resulted in complete

sequential layer crushing at 75 and 90m s−1, respectively. The imperfect layers in the shock mode only affected

the distal end stresses, while all models implemented resulted in similar impact end stresses. The distal end

initial crushing stress increased with increasing velocity until about 22m s−1; thereafter, it saturated at ~2MPa,

which was ascribed to the micro inertial effect. Both the stress-time and velocity-time history of the rigid-

perfectly-plastic-locking model and the critical velocity for the shock deformation were well predicted when a

dynamic plateau stress determined from the distal end stresses in the shock mode was used in the calculations.

1. Introduction

The experimental and numerical studies on the dynamic crushing

behavior of cellular metals [1], including aluminum honeycombs and

foams, have clarified three distinct deformation modes at increasing

velocities [2–10]. Between quasi-static and low velocity range, the

structure deforms by forming random, non-contiguous crush bands. The

crushing initiates at the weakest region in the interior of the sample

[11]. This deformation mode is referred to as the quasi-static homo-

genous crushing mode [3], because the stress at the impact end

(proximal end) is almost equal to the stress at the distal end (rear end)

[6]. A transition mode occurs at intermediate velocities. In this mode,

the crush bands form non-contiguously near the impact end and attain

the local strains less than the densification strain. A shock mode appears

above a critical velocity. The shock mode of deformation is character-

ized by the propagation of sequential, planar crush bands (one cell size

wide) starting from the impact end [7,11]. The shock mode imposes an

impact end stress far greater than the distal end stress and the differ-

ence between them increases as the impact velocity increases. The

inertial effects associated with the shock formation were reported to be

responsible for the stress enchantment above the critical velocity, while

the micro inertial effects were ascribed to the stress enchantment below

the critical velocity in cellular structures [11–13]. The micro inertial

effects on the stress enhancement was reported to be relatively weak

especially in the high velocity regime where the inertial effects asso-

ciated with the shock formation were dominant [6,11].

The previous experimental and numerical studies on the metallic

cellular structures have been mostly on the aluminum regular and ir-

regular honeycomb and Voronoi structures [2,5–8,14–16] and alu-

minum open and closed cell foams [17–23]. However, there have been

few studies on the corrugated structures [24–26]. The dispersion in the

strength of aluminum closed cell foams is also as high as 20% which

may cover the increase in strength at increasing strain rates/velocities

[27]. The numerical models of cellular structures are usually con-

structed in perfect geometry, while the real structures always contain

imperfections. Since the imperfections tend to reduce the cell wall

bending and buckling stresses, the perfect geometry models over-

estimate the actual strength of structure. Various numerical methods of
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forming imperfections have also been reported including distortion in

the mesh, node shaking, pre-buckling of cell walls, modelling the actual

size of cell wall [28], implementing random mechanical properties [29]

and deflection in truss strut [30].

The present study aims to investigate both experimentally and nu-

merically the effect of imperfections on the compression and impact

deformation of an aluminum corrugated sandwich core at various ve-

locities. The chosen imperfection geometry in present study resulted

from the machining and was larger in size than those existed in the as-

received sandwich core. The investigated corrugate core was made of

multilayer corrugated fin layers and previously shown to exhibit re-

peatable responses to mechanical forces [24,26,31]. This allows

Fig. 1. (a) The cross-section of multilayered sandwich core and a fin layer and (b) The technical drawing showing the dimensions.

Fig. 2. (a) Test sample, (b) Slightly bent-fin walls (white arrows) and increased thickness at contact regions (black arrows) of the as-received sandwich core and (c)

The bent-fin walls at the outer surface of sample after machining.
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accurate determination of the effect of strain rate on the mechanical

properties. Also, the layered structure makes it possible to construct a

3D model in order to monitor the strain and velocity histories of each

layer during crushing. In present study, the quasi-static compression

tests were performed at 4.8× 10−3 m s−1, the Split Hopkinson Pres-

sure Bar (SHPB) tests at 6 and 10m s−1 and the direct impact tests

between 9 and 90m s−1. Three-dimensional finite element models of

the tests were developed in LS-Dyna. The validity of the models was

discussed along with the experimental and numerical stress-time and

the numerical layer strain-time and velocity-time histories.

2. Materials and testing

The investigated cellular structure was made of 1050 H14 Al tra-

pezoidal zig-zag corrugated layers (15 fins) as seen in Fig. 1(a). The

height, width, length and thickness of a fin are sequentially 3.20, 1.6,

2.4 and 0.170mm (Fig. 1(b)). The processing details of fin layers and

sandwich core are given elsewhere [32]. The multilayer corrugated

sandwich plate shown in Fig. 1(a) is 500×500×50 mm in size and

assembled in 0/90 fin layer configuration (Fig. 1(a)). The face sheets,

1 mm-thick 1050 H14 Al sheet as shown in Fig. 1(a), prevent the layers

from the mechanical damaging during brazing and subsequent ma-

chining.

The test samples were extracted from a sandwich plate by means of

an electro-discharge machine. The picture of a cylindrical compression

test sample with a diameter of 19.40mm is shown in Fig. 2(a). The test

sample had a height of 48mm and a density of 326 kgm−3 without face

sheets. In the SHPB tests, the samples were tested without face sheets,

while in the direct impact tests the samples were tested with a face

sheet on the incident bar side (distal end) in order to make a full contact

of the sample with the end-face of the incident bar using a thin layer of

grease. The test sample shown in Fig. 2(a) contains typical fin wall

imperfections induced in brazing and cutting. The fin walls are slightly

bent (white arrows in Fig. 2(b)) in the as-received sandwich core.

During sample cutting, the fins at the outer surface of the sample de-

formed extensively (white arrows in Fig. 2(c)). These imperfections are

likely to change the crushing behavior and crushing stress. In order to

account the effect of fin wall imperfections as explained in the model-

ling section a bending type imperfection was introduced to the fin

layers. In addition, the fin walls are determined to be thicker at the fin

layer contact sites (black arrows in Fig. 2(b)), which is ascribed to the

accumulation of brazing filler material (7 wt%). The thicker contacts

are further anticipated to affect the densification strain as well as the

crushing stress and will be investigated separately.

Since the simulation time substantially increased at relatively low

quasi-static strain rates, the quasi-static compression tests were per-

formed at the nominal strain rate of 10−1 s−1 (4.8× 10−3 m s−1). A

video extensometer synchronized with the Shimadzu universal test

Fig. 3. (a) The schematic of SHPB test and (b) The picture of the used SHPB test set-up.
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machine was used to record the displacement. The deformation of the

samples was recorded using a video camera in order to monitor the

crush band initiation and progression. Two different dynamic tests were

conducted: the SHPB and direct impact test. In the SHPB test, the

sample was tested in a conventional compression SHPB apparatus. In

the direct impact test, the sample was inserted in front of the incident

bar and the striker bar directly impinged onto the sample.

The schematic and the picture of the used SHPB set-up are shown in

Fig. 3(a) and (b), respectively. In a typical test, the sample is sand-

wiched between the incident and transmitter bars. After the impact of

Fig. 4. (a) The schematic of direct impact test and (b) The picture of the used direct impact test set-up.

Fig. 5. (a) Perfect model, (b) Imperfect unit fin geometry, (c) Two-layer imperfect model and (d) Fully imperfect model.
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the striker bar to the incident bar, a rectangular elastic compressive

stress wave starts to propagate on the incident bar. The propagating

stress wave is partly reflected as a tensile wave into the incident bar and

partly transmitted to the transmitter bar as a compressive wave at the

sample/bar interfaces. The incident, reflected and transmitted wave

strains on the bars are measured at a same distance from the sample/

bar interfaces by means of a full-bridge strain gage, a strain gage am-

plifier and an oscilloscope (Fig. 3(a)). The strain (εs) and stress (σs) of

the sample are calculated using the one dimensional elastic stress wave

propagation in long bars as [33]

∫
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respectively. In Eqs. 1 and 2, c is the elastic wave velocity of the bar, Ls
is the length of the sample, t is the time, εR , εI and εT are sequentially

the reflected, incident and transmitted strains, Ab and As are

sequentially the cross-section area of the bar and the sample and E is the

elastic modulus of the bar. The first, second and third equations in Eq.2

are sequentially the one-, two- and three-wave solution of stress [34].

The strain rate is calculated using the following relation

= −
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L
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In the tests, the strain on the bars was calculated using the following

full-bridge strain gage circuit relation

∫=
+

ε
ε V dt

GKV µ

2 ( )

(1 ) (4)

where, ε V( ), G, K, V and µ are the strain voltage reading, the strain

gage amplifier gain, strain gage factor, excitation voltage of the strain

gage bridge and Poisson’s ratio of the bar material, respectively. The

SHPB apparatus consisted of a 19.40mm diameter Inconel 718 bar;

3110mm-long incident bar, 2050mm-long transmitter bar and 500 and

750mm-long striker bars (Fig. 3(b)). The velocity of the striker bar in

the tests was ~6m s−1 for 750mm- and ~10m s−1 for 500mm-long

striker bars. The values of G, K and V were 20, 2.09 and 10 V, re-

spectively. The sample deformation was captured by a Fastcam Photron

Fig. 6. (a) Front and 3D views of the numerical model of quasi-static compression test, (b) SHPB test model and (c) The direct impact test model.
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high speed camera at 20,000 fps.

The schematic of direct impact test is shown in Fig. 4(a). The stress

and strain analyses in this test are based on the assumption of that there

is a stress equilibrium between incident bar/sample and striker bar/

sample interfaces when the cross-sectional areas of the incident and

striker bars are the same (Fig. 4(a)). Then, the strain of the sample is

[35]

∫
=

−
ε t

v t c ε dt

L
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τ
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s

0

(5)

where, ε *I is the induced strain on the incident bar and vo is the initial

velocity of the striker bar. Since the strain on the incident bar was

comparably small due to the low mechanical impedance of the corru-

gated sample, the nominal strain of the sample was calculated using the

flowing relation

=ε t
v t

L
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o
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The stress at the incident bar/sample contact is

=σ t
A Eε

A
( )
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i
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In the test, the sample was attached to the center of the end of the

incident bar using a thin layer of grease which was strong enough to

hold the sample until the impact of the striker bar (Fig. 4(b)). The strain

on the incident bar used to determine the incident bar/sample contact

stress was measured using two full-bridge strain-gage circuits: one is

300mm and other 1110mm away from the incident bar end (Fig. 4(a)).

The former gage is coded as the front strain gage and the latter as the

back strain gage (Fig. 4(a)). The striker bar velocity was measured just

before the impact using two laser diodes placed at the exit of the gas

gun barrel (Fig. 4(b)). The velocity of the striker bar having the same

diameter with the incident bar (19.40 mm) varied between 9 and

90m s−1. An Inconel striker bar of 250mm-long was used for the tests

at 9m s−1 and 22m s−1, the 1050 aluminum striker bars of 200mm-

long and 100mm-long for the tests at 40m s−1 and 60m s−1, respec-

tively and a wood striker bar of 200mm-long for the tests at 90m s−1.

3. Numerical models

The perfect fin sample model shown in Fig. 5(a) is composed of

34942 elements. In the imperfect models, a bent-type imperfection

3.2 mm in length and 1.6mm in radius determined from the micro-

graphs of a machined sample (Fig. 5(b)) was inserted into the fin layers.

In the two-layer imperfect sample model the 2nd and 10th layer (from

the top of the sample) were constructed using the bent-unit cells (black

arrows in Fig. 5(c)), while in the fully imperfect model all layers were

made of the bent-unit cells (Fig. 5(d)). The fully imperfect model is also

considered as a homogenously distributed imperfection model, while

two-layer imperfect model as the localized imperfection model. The

two-layer imperfect model and fully imperfect model consisted of

33,570 and 41,921 shell elements, respectively.

The trapezoidal corrugated fin layers were meshed using

Belytschko-Tsay shell elements (0.25×0.25mm) with five integration

points and 1050 Al face sheets were meshed using the constant stress

solid elements. Previously a mesh sensitivity analysis were performed

on a similar corrugated structure using three different element sizes:

0.25×0.25, 0.375×0.375 and 0.75×0.75mm [26]. It was found

that all mesh sizes resulted in similar stress-strain behavior with the test

at a quasi-static strain rate, while the densification strain varied slightly

with the mesh size. The used mesh size however resulted in similar

densification strain with the test. The increased number of integration

points in shell elements lead to prolonged CPU calculation times. On the

other side, the number of integration points should be higher than two

in order to increase the accuracy of the models, when the buckling is

Fig. 7. Quasi-static (a) Test stress-strain and mean stress-strain curves, (b)

Perfect model and test stress-strain curves and (c) Fully imperfect models and

test stress-strain curves.
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the dominant deformation mode [36]. In addition, the FE meshes of the

corrugated fin layers and face sheets had to coincide with each other in

order to be able to define contacts. These naturally limit the use of

arbitrary-defined mesh distribution and elements size.

The 1050 Al aluminum alloy was modeled using

MAT_SIMPLIFIED_JOHNSON_COOK (Material type 98) material model.

The equivalent stress σ( )e in the Johnson and Cook (JC) flow stress

model is given as [37]

= + + −σ A Bε Clnε T[ ] [1 *̇][1 ]e p
n

p H
m

(8)

where εp is the equivalent plastic strain, ε*̇p is the strain rate ratio given

as
ε

ε

̇

̇

p

o
, where εṗ is the equivalent plastic strain rate and εȯ is the reference

equivalent plastic strain rate, and TH is the normalized temperature

expressed as = −
−T

T T

T T
r

m r
; where T, Tr and Tm are the temperature, room

temperature and melting temperature, respectively. Material type 98

does not take into account the effect of temperature and aluminum

alloys have no or negligible strain rate dependent flow stress; therefore,

only the first bracket of Eq. (8) is taken into account. The material

model parameters of 1050 H14 Al were determined previously and

A=102MPa, B= 98MPa and n=0.18 [25].

Fig. 6(a) shows the front and 3D view of the numerical model of

quasi-static compression test set-up. The model consists of the top and

bottom compression test steel platen and sample. Each compression test

platen was modeled with 38,400 constant stress solid and MA-

T20_RIGID material model (E= 210 GPa and µ=0.3). The rotations

and translations of the compression platens were fully constrained,

except the axial motion of the top platen in the z-direction. The axial

velocity (z-direction) of the top platen was kept constant, the same as

the tests, and defined by PRESCRIBED_MOTION_RIGID card. The con-

tact between compression test platens and specimen was defined by

AUTOMATIC_SURFACE_TO SURFACE contact. Since the total CPU time

for the quasi-static test solutions are relatively long [38], the mass

scaling was applied in the quasi static simulations by defining a positive

time step value in CONTROL_TIMESTEP card. The mass was added or

removed from the elements. In order to determine the mass scaling

factor, the simulation was initially run without mass scaling and the

Fig. 8. Deformation pictures of corrugated sample at various strains (a) Test, (b) Perfect model and (c) Two-layer imperfect model.
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determined time step without mass scaling was multiplied by 10, 100

and 1000. It was found numerically that the kinetic energy change was

substantially lower than the internal energy change when the mass

scaling factor was 1000. For quasi-static models, the contact between

fin layers was defined by ERODING_SINGLE_SURFACE contact algo-

rithm. The full numerical model of the SHPB test and the sample/bar

interfaces are shown in Fig. 6(b). The Inconel 718 striker, incident and

transmitter bars were meshed with 15mm elements. The incident and

transmitter bars consisted of 28,980 and 19,180 constant stress solid

elements, respectively. The impact velocities in the SHPB models were

6 and 10m s−1, the same as the tests. The full model of direct impact

test and the sample/bar interfaces are shown in Fig. 6(c). The Inconel

incident bar was modeled using 15mm elements, while the striker bar

was modeled using 5mm elements. The 250mm-long Inconel, 100mm-

long aluminum and 200mm-long aluminum and wood striker bars’

models consisted of 12,000, 4800 and 10,080 constant stress solid

elements, respectively. The impact velocities in the direct impact nu-

merical models were 9, 22, 40, 60, 75 and 90m s−1. The impact ve-

locity was defined to the mass by VELOCITY_GENERATION card in LS-

Dyna. The contact between the bar and specimen was defined by

AUTOMATIC_SURFACE_TO SURFACE contact. The contact between the

corrugated sample and face sheets was defined by AUTOMA-

TIC_SINGLE_SURFACE contact algorithm.

In the SHPB and direct impact tests, the Inconel 718 incident,

transmitter and striker bars were modeled using MAT01_ELASTIC ma-

terial model with E=207 GPa, µ=0.33 and ρ=7850 kgm−3. The

aluminum and wood striker bars were modeled using MAT01_ELASTIC

material model (E= 71.7 GPa, µ=0.33 and ρ=2810 kgm−3 for

aluminum and E=2.2 GPa, µ=0.33 and ρ=725 kgm−3 for wood

[12]). The static and dynamic friction coefficients were set sequentially

to 0.3 and 0.2 in all contact definitions. The numerical stresses on the

transmitter and incident bars were calculated at the same location with

the strain gages in the tests.

4. Results and discussions

4.1. Quasi-static tests

The quasi-static (0.0048m s−1) compression stress-strain curves of

4 tests are shown in Fig. 7(a) and composed of linear elastic, plateau

and densification regions as similar with those of other metallic cellular

structures. The quasi-static initial crushing stress varies between 1.2

and 1.30MPa with an average of 1.25MPa and the quasi-static mean

stress ( = ∫
σm

σdε

ε
) between 0.95 and 1.05MPa (at 0.4 strain) with an

average of 0.98MPa as shown in Fig. 7(a). The densification strain was

determined by the intercept method. A tangent line is drawn to the

densification part of stress-strain curve and the intercept of this line

with the mean crushing stress was taken as the densification strain. The

experimental densification strain by this method is 0.67 as seen in

Fig. 7(a). The stress-strain and mean stress-strain curve of the perfect

model and the stress-strain curve of the test are shown together in

Fig. 7(b). Although the perfect model results in nearly a similar mean

stress (0.93MPa) with the test, it shows a higher initial crushing stress,

2.26MPa. The insertions of two and full imperfect layers reduce the

initial crushing stress sequentially to 1.45 and 1.52MPa without sig-

nificantly affecting the densification strain (Fig. 7(c)). The imperfect

models show somewhat similar mean stresses (~0.88MPa at 0.4 strain)

with each other and relatively comparable with the test. Finally, all

quasi-static models result in similar densification strains, ~0.72,

slightly higher than that of the test (Fig. 7(b)).

The deformation pictures of the quasi-static test and models until

about 0, 0.2, 0.4, 0.6 and 0.8 strains are shown in Fig. 8(a-c). The

collapse in the test starts in the 9th layer, then proceeds with the

crushing of the 5th and 6th layer at 0.2 strain (Fig. 8(a)). The crushing

continues discretely at the top and bottom layers at 0.4 and 0.6 strain.

Fig. 9. (a) The test and two-layer imperfect model SHPB incident and trans-

mitted stresses as function of time and (b) The stress-strain curves of test and

perfect and imperfect models at 6 m s−1 and (c) The perfect model incident and

transmitted stresses and the stress ratio as function of time at 10m s−1.
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The discrete layer crushing causes the sample to bend after 0.2 strain.

The layer collapse in the perfect model initiates in the layers near the

ends of the sample (14th and 2nd layer) at 0.2 strain and continues

sequentially with the crushing of the mid-section layers at increasing

strains as shown with the arrows in Fig. 8(b)). Since the layer crushing

is sequential, no sample bending is detected in the perfect model. The

initial crushing in the two-layer imperfect model starts in the imperfect

10th layer followed by the crushing of the 8th, imperfect 2nd and 4th

layer as shown with the arrows in Fig. 8(c)). As with the test, the sample

in this model is bent after about 0.2 strain. Simulation was also im-

plement with the one layer imperfect model (10th layer), but no

bending of the sample was detected. The layer collapse and the de-

formation of the sample in the fully imperfect model (not shown here)

were also very similar to those of the perfect model: the layers near the

sample’s ends collapsed initially and no global bending of the sample

was observed.

4.2. SHPB tests

Fig. 9(a) shows the incident stress-time and transmitted stress-time

histories of the test and imperfect model at 6m s−1. The experimental

and numerical model incident and reflected stresses marked sequen-

tially as number 1 and 2 in Fig. 9(a) are very similar. The oscillations in

the transmitted stress of the test marked as number 3 in Fig. 9(a) are

due to the noise of the data acquisition system measuring relatively low

strains. However, the transmitted stress variations in the test are de-

tectable and comparable with the numerical stresses. Since the sample

is not completely separated from the bars during a test, the returning

compressive wave from the end of the incident bar reloads the sample

every ~1200 μs for a duration of 325 μs following an elastic relaxation

after each repeated loading (the difference between the starting times

of the first and second incident waves is 1200 μs in Fig. 9(a)). Each

dotted rectangle in Fig. 9(a) represents the time duration of the sample

loading. Within the time scale of Fig. 9(a), the sample is almost loaded

two-time. As the strain gages measure both incoming and going waves,

Fig. 10. Deformation pictures of SHPB tests and models (numbers shows the reloading) at (a) 6 and (b) 10m s−1.
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the separation of these waves on the sample was rather difficult;

therefore, only the first loading in the tests was used to determine the

stress-strain and stress-time profiles of the samples. Note that there is a

relatively small time shift between the test and model waves in

Fig. 9(a). The model stresses were determined from an element at a

distance from the bars/sample interfaces, nearly the same as the test,

but the sizes of the element and strain gages were quite different,

15mm and ~5mm, respectively. This naturally causes a time shift

between the test and model stress waves. Furthermore, the sample

geometry and surface flatness are perfect in the model, while they show

deviations from the ideality in the tests.

The numerical and representative test stress-strain curves at 6m s−1

are shown in Fig. 9(b). The numerical sample stress in the same figure

was determined at the transmitter bar/sample interface. The numerical

strain was calculated from the displacement difference between the

incident bar/sample and transmitter bar/sample contacts in order to

determine the stress-strain curve in the second and third loadings. The

maximum stresses are sequentially 1.49, 2.35, 1.52 and 1.52MPa at

6m s−1 for the test and perfect, two-layer imperfect and fully imperfect

model, respectively. These values were sequentially 1.65, 2.48, 165 and

1.65MPa at 10m s−1. The two-layer imperfect and fully imperfect

model are noted to show similar initial peak stresses with the test at 6

and 10m s−1. As seen in Fig. 9(b), the initial crushing stress values of

the SHPB test and models are higher than that of the quasi-static test.

Fig. 9(c) shows the incident and transmitter bar contact stresses of the

perfect model and the ratio of the incident bar stress to the transmitter

bar stress as function of time at 10m s−1. The difference between the

start-time of the incident and the transmitted stress (~40 μs) in Fig. 9(c)

simple shows the wave transit time of the sample. The initially high

ratio of the incident stress to the transmitted stress approaches one at

670 μs. A stress ratio of one indicates the stress equilibrium in the

sample [39]. The similar stress equilibrium was also found in the two-

layer imperfect and fully imperfect models. The average strain rates of

the tests and models were also similar and sequentially ~175 and

~200 s−1 at 6 and 10m s−1, respectively.

The deformation pictures of the tests and models, sequentially at the

end of the third- and second-loading at 6 and 10m s−1 are shown in

Fig. 10(a) and (b), respectively. The strain localization in the tests, at

both velocities, starts at the mid-section layers, sequentially in the 10th

and 12th layer, and progresses non-sequentially with the crushing of

the 7th and 10th layer as shown by the arrows in Fig. 10(a) and (b). In

the perfect and fully imperfect model, the strain localization at both

velocities starts in the layers near the incident and transmitter bars and

progresses non-sequentially (Fig. 10(a) and (b)). In the two-layer im-

perfect model, the layer collapse is seen to start in the 10th and 2nd

imperfect layer at both velocities.

4.3. Direct impact tests

Fig. 11(a) shows the front and back strain gage stress-time history of

the direct impact test at 9 m s−1. Since the front gage is 300mm and the

back strain gage 1810mm away from the incident bar/sample inter-

face, the front gage stress and the back gage stress were sequentially

shifted by 60.8 and 367 μs (c= 4930m s−1) on the time axis for

comparison. The reflected tensile wave from the distal end of the in-

cident bar reaches the back and front strain gage at 405.6 and 1140 μs,

respectively. This reflected tensile wave returns back largely as the

compressive wave to the front gage of the incident bar at 1261 μs due to

the relatively low mechanical impedance of the sample. These calcu-

lated times based on the Inconel bar wave velocity and distances be-

tween strain gages and the bar ends perfectly match to the experi-

mentally determined times as shown by arrows in Fig. 11(a). As is seen

in the same figure, the front and back strain gage read the same initial

peak stress of 1.67MPa at 9m s−1. Since the front strain gage reading is

affected by the returned tensile wave at a longer time, 1140 μs, the

sample stresses were determined using the front strain gage reading.

Fig. 11. (a) Front and back strain gage stress-time curves at 9m s−1 and (b)

Front strain gage stress-strain curves of three tests at 60m s−1 and (c) Stress-

strain curves at different velocities.
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The deformation pictures of the sample tested at 9m s−1 at 1000 and

2000 μs are shown in the inset of Fig. 11(a). As with the quasi-static and

SHPB test, the layer crushing at this velocity starts in the mid-section

layers and progresses non-sequentially, leading to the global bending of

the sample. Fig. 11(b) shows the front gage stress-time curves of three

direct impact tests performed at 60m s−1. The stresses in this figure are

seen repeatable with an average initial crushing stress of ~2MPa. The

front gage stress-strain curves of the direct impact tests at different

velocities are shown together with that of the quasi-static test in

Fig. 11(c). The initial crushing stress seen in the same figure increases

from 1.25MPa at quasi-static velocity to ~2MPa at 22m s−1; there-

after, the initial crushing stress remains almost constant until 90m s−1.

The deformation pictures of the direct impact tested samples at 22,

60 and 90m s−1 are shown in Fig. 12(a-c), respectively. The numbers in

the same figures indicate the time-elapsed after the impact in μs. No

global bending of the sample is noted to be seen at 22, 60 and 90m s−1

tests. The layer crushing at 22m s−1 initiates at both the impact and

distal end, while the layer crushing dominantly occurs at the impact

end at 60 and 90m s−1 as shown by the arrows in Fig. 12(a-c). The

layer crushing at 60m s−1 is sequential until about 200 μs; then it

switches to non-sequential or diffusive mode (Fig. 12(b)). The layer

crushing at 90m s−1 is nearly sequential, showing a shock deformation

(Fig. 12(c)). Fig. 13(a-d) show numerical deformation pictures of the

samples at 22, 60, 75 and 90m s−1, respectively. Again, the numbers in

these figures show the time-elapsed after the impact. Numerically, the

layer crushing at 22m s−1 starts at both ends of the sample in the

perfect model and proceeds non-sequentially (Fig. 13(a)). The layer

crushing in the two-layer imperfect and fully imperfect model starts

near the impact end and/or at the midsection layers, but the layer

crushing proceeds non-sequentially again (Fig. 13(a)). The layer

crushing at 60 and 75m s−1 starts from the impact end in all models.

But, the crushing becomes non-sequential after 200 μs in the perfect

model and after 100 μs in the two-layer imperfect model. The layer

crushing in the fully imperfect model is sequential but relatively dif-

fusive as seen in Fig. 13(b) and (c). The layer crushing in the perfect and

two-layer imperfect models at 90m s−1 starts from the impact end, but

it progresses non-sequentially at the later stages of the deformation as

seen in Fig. 13(d). The layer crushing sequence of the fully imperfect

model shown in the same figure is very much similar with that of the

test: the layer crushing progresses from the impact end to the distal end

nearly in a sequential mode.

4.4. Layer strains and distal end and impact end stresses

The layer strain-time and nominal strain-time histories of the two-

layer imperfect model at 22m s−1 and 90m s−1 and the fully imperfect

model at 60 and 75m s−1 are shown in Fig. 14(a-d), respectively. The

layer strain-time history of the two-layer imperfect model at 22m s−1

clearly indicates a non-sequential crushing behavior (Fig. 14(a)). The

strains of the initially crushed layers are also noted to be lower than the

densification strain and reach the densification strains at the later

stages of the deformation (Fig. 14(a)). The layer strain-time history of

the fully imperfect model at 22m s−1 was also similar to that of the

two-layer imperfect model with a non-sequential crushing behavior.

The layer strain-time history of the two-layer imperfect model at

90m s−1 is sequential until about the crushing of the 5th layer (~

200 μs); thereafter, the layer crushing becomes non-sequential as seen

in Fig. 14(b). The layer strain-time history of the fully imperfect model

at 60m s−1 shows non sequential crushing after the crushing of the 9th

layer (shown by an arrow in Fig. 14(c)) after ~ 400 μs, while this non

sequential layer crushing is not easily detectible in the deformation

micrograph in Fig. 13(c). As opposite, thoroughly a sequential layer

Fig. 12. Deformation pictures of the direct impact tested samples at (a) 22, (b) 60 and (c) 90m s−1.
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crushing is seen at 75m s−1 (Fig. 14(d)) and also at 90m s−1 (not

shown here). This is also well accord with the experimentally observed

sequential layer crushing at 90m s−1 (Fig. 12(c)). By measuring the

peak strain values of the first three crushed layers in Fig. 14(c) and (d),

the numerical densification strains of 0.67 and 0.7 are determined for

60 and 75m s−1, respectively.

Fig. 15(a) and (b) show sequentially the incident bar (distal end)

and striker bar (impact end) contact stresses-strain curves of the two-

layer imperfect model at increasing velocities. At all velocities, the in-

cident bar contact stress-strain curves exhibit the stress oscillations, the

same as the quasi-static tests (Fig. 15(a)). Although, the direct impact

incident bar contact stresses are slightly higher than those of the quasi-

static especially in the initial region of the curves, they are almost equal

to each other at and above 22m s−1 until about 0.5 strain. The striker

bar contact stresses increase with increasing velocity initially, for ex-

ample until about 0.3 strain at 90m s−1; thereafter, the deformation

Fig. 13. Deformation pictures of the direct impact test models at (a) 22, (b) 60, (c) 75 and (d) 90m s−1.
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Fig. 13. (continued)
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switches nearly into the quasi-static mode as seen in Fig. 15(b). This is

reflected as a stress-drop after 0.3 strain in the stress-strain curve. As

opposite to the two-layer imperfect model, the fully imperfect model

incident bar contact stresses at 60 and 90m s−1 show no stress oscil-

lations and are almost saturated at about 2MPa as shown in Fig. 15(c).

This further confirms a sequential layer crushing at 90m s−1 and is in

accord with the experimentally determined nearly a constant distal end

stress (~2MPa) at 90m s−1 in Fig. 11(c). The striker bar contact

stresses of 60, 75 and 90m s−1 are also higher than the stresses of

quasi-static velocity at all strain values as seen in Fig. 15(d). For

comparison purposes, the impact end stresses of the two-layer imperfect

and fully imperfect model are determined. The stresses corresponding

to 0.05 strain are taken as the impact end stress, except the stress of the

imperfect model at 90m s−1. At this velocity, the stress is determined at

0.1 strain since there is a big stress-drop at 0.05 strain, not representing

the global stress behavior of the model. The determined impact end

stresses are shown by the dotted lines in Fig. 15(b) and (d).

4.5. Effect of velocity on deformation modes

The investigated corrugated structure deforms by forming discrete

crush bands at 0.0048m s−1. The crush band initiates at the weakest fin

layer and progresses non-sequentially to the uncrushed layers/parts.

Above deformation mode is also seen in the SHPB tests (6 and 10m s−1)

and in the direct impact tests (9 m s−1). Since the numerically calcu-

lated impact end and distal end stresses are nearly equal (Fig. 9(b)), this

deformation mode is therefore referred as to “quasi-static homogenous

mode” [9]. The similar homogenous deformation mode was previously

identified in regular and irregular honeycomb structures as X-shape

shear bands [3], Voronoi honeycombs [6] and corrugated structures

[26]. As the layer crushing localizes in the mid-sections of the cylind-

rical test sample in the homogenous deformation mode, the sample

bending occurs during a test (Figs. 8(a), 10(a) and 11(a)). In order to

determine the effect of the diameter of the sample on the bending de-

formation, the samples in 40mm-diameter and 48mm-height were

quasi-statically compression tested and the same global bending of the

sample was also observed. A similar sample bending is found in the

two-layer imperfect model (Fig. 8(c)), while no specimen bending is

seen in the perfect and fully imperfect model (Fig. 8(b)). The increase of

the initial stress between 0.0048 and 22m s−1 are ascribed to the micro

inertial effects. The energy absorbing structures are classified as Type I

and Type II [40]. Type I structures show a flat-topped load-displace-

ment curve, while Type II structures exhibit an initial peak-load fol-

lowed by a sharp decline. The increased deformation forces at in-

creasing deformation rates in the compression of aluminum honeycomb

structures through out of plane [41], metallic columnar structures [42],

aluminum foams [43] and balsa wood in the axial direction [12,44]

were reported due to the micro inertial effects. The corrugated core

Fig. 14. Layer strain-time and nominal strain-time curves of the two-layer imperfect model at (a) 22 and (b) 90m s−1 and the imperfect model at (c) 60 and (d)

75m s−1.
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Fig. 15. (a) Incident bar contact and (b) Striker bar contact stresses-strain curves of the two-layer imperfect model and (c) Incident bar contact and (d) striker bar

contact stresses-strain curves of the fully imperfect model at 22–90m s−1 (the dotted lines show the impact end stress).

Table 1

The incident bar/sample (distal end) and striker bar/sample (impact end) stresses of the tests and perfect, two-layer imperfect and fully imperfect layer models.

Velocity (m s−1) Test Perfect Two-layer imperfect Fully imperfect

Incident bar/

sample stress

(MPa)

Striker bar/

sample stress

(MPa)

Incident bar/

sample stress

(MPa)

Striker bar/

sample stress

(MPa)

Incident bar/

sample stress

(MPa)

Striker bar/

sample stress

(MPa)

Incident bar/

sample stress

(MPa)

Striker bar/

sample stress

(MPa)

4.8× 10−3 1.25 1.25 2.26 2.26 1.45 1.45 1.52 1.52

6 1.49 1.49 2.35 2.35 1.52 1.52 1.58 1.58

10 1.65 1.65 2.48 2.48 1.65 1.65 1.65 1.65

22 1.92 1.97 2.3 2 2.2

40 1.98 2.06 3 2.08 2.55

60 2.1 3.0 3.65 2.17 3.55 2.1 3.8

75 – 3.1 4.40 2.14 4.30 2.1 4.6

90 2.13 3.12 5.5 2.2 5.4 2.14 5.65
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tested in present study also shows micro inertia-sensitive Type II be-

havior. The propagation of the plastic wave at high strain rates sup-

presses the more compliant bending modes and hence increases the

initial crushing stress [45]. Since the layer crushing is noted to be more

concentrated at the impact end than the distal end between 22 and

60m s−1 (Fig. 12(a) and (b)); the deformation between these velocities

is considered as the “transition mode”. The layer strains in this mode

are wide/diffusive rather than narrow/localized. The crush band strains

are also below the densification strain [9]. A shock mode appears when

the velocity is at 90m s−1. In this mode, the layers crushes sequentially,

starting from the impact end and progressing to the distal end. The

layer strains in this mode reach the densification strain.

The incident bar/sample (distal end) and striker bar/sample (impact

end) stresses of the tests and perfect, two-layer imperfect and fully

imperfect models are tabulated in Table 1 at increasing impact velo-

cities. The incident bar/sample contact stresses are well predicted by

the two-layer and fully imperfect model at all velocities, while the

deformation modes of the tests are well accord with the two-layer

imperfect model from quasi-static to 60m s−1. However, the mode of

the test at the highest velocity (90m s−1), the shock mode, is well

predicted by the fully imperfect model.

4.6. Effect of imperfection and face sheet

The effect of imperfect layers on the contact stresses is shown in

Fig. 16(a) at 90m s−1. Although, the imperfect layers do not sig-

nificantly affect the impact end stresses of the two-layer and fully im-

perfect models, they result in noticeable reductions in the distal end

initial crushing stresses of the imperfect models as compared with the

distal end stress of the perfect model. The similar imperfection in-

sensitive impact end stresses were reported previously [26,46]. In order

to see the effect of front-face sheet layer on the contact stresses, the

two-layer imperfect model was also implemented without face sheet at

60m s−1. The resultant incident bar contact and striker bar contact

stresses-strain curves are shown in Fig. 16(b) together with the stress-

strain curves of the same model with face sheet. As seen in the same

figure, the front-face sheet has almost no effect on the contact stress

profiles except it increases the distal end stress near the densification. It

Fig. 16. Incident bar contact and striker bar contact stresses-strain curves of the

two-layer imperfect model and perfect model at 90m s−1 and (b) Two-layer

imperfect model with and without face sheet at 60m s−1.

Fig. 17. (a) The variation of distal and impact end stresses with the velocity and

(b) The fully imperfect model distal end and impact end stresses and velocity-

time curves with the r-p-p-l model stress-time and velocity-time curves.
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is also noted in Fig. 16(b) that the face sheet induces stress oscillations

(ringing) in the initial region of the incident bar contact stress.

4.7. Comparison with r-p-p-l model

The variations of the experimental and numerical distal end initial

crushing stresses and numerical impact end stresses (Fig. 15(b) and (d))

with the velocity are shown in Fig. 17(a). As is seen in the same figure,

the distal end initial crushing stress increases from 1.25MPa at quasi-

static velocity to nearly 2MPa at about 20m s−1, thereafter it saturates

at ~2MPa. The rigid-perfectly-plastic-locking (r-p-p-l) model of the

direct impact peak stress (σ*), stress (σ) and velocity (v) relations are

given sequentially as [4]
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In above equations, σp is the plateau stress, vo is the initial velocity,

ρo is the initial density, Ao is the area, u is the displacement, εd is the

densification strain and M is the weight of the striker. The calculated r-

p-p-l model stress-time (Eq. (10)) and velocity-time (Eq. (11)) history at

90m s−1, using the quasi-static plateau stress of 0.96MPa and the dy-

namic plateau stress of 2MPa (modified) are shown in Fig. 17(b) to-

gether with the fully imperfect model stress-time and velocity-time

history. Using the quasi-static plateau stress, the r-p-p-l model predicts

lower crushing stresses than the fully imperfect model as depicted in

Fig. 17(b). On the other side, the r-p-p-l model stresses are very similar

to those of the fully imperfect model stresses when the plateau stress is

taken as the dynamic plateau stress. Furthermore, the r-p-p-l model

based on the dynamic plateau stress also gives very similar velocity-

time profile (Fig. 17(b)) with the fully imperfect model and the impact

end stress values (Fig. 17(a)) with the fully imperfect and two-layer

imperfect model.

By considering all the internal energy was due to the loss of the

kinetic energy, the following equation was proposed for the critical

velocity (vcr) for the shock formation [4]

=v
σ ε

ρ

2
cr

p d

o (12)

Taking =σp 0.96MPa, =ρo 326 kgm−3 and =εd 0.72 give a critical

velocity of ~65m s−1. When =σp 2MPa, the critical velocity increases to

94m s−1. The later calculated critical velocity is well accord with the

experimentally and numerically determined critical velocities for the

shock formation. A sequential layer crushing is found in the test and

fully imperfect model at 90 m s−1.

5. Conclusions

The crushing behavior of a layered 1050 H14 aluminum corrugated

core was determined both experimentally and numerically at the ve-

locities between 0.0048 and 90m s−1. In order to simulate the velocity-

dependent crushing behavior, three different models were im-

plemented: the perfect, the two-layer imperfect and the fully imperfect

model. The fully imperfect model represented the homogenous dis-

tribution of the imperfections, while the two-layer imperfect model the

localized imperfections. The deformation was a homogenous mode

between 0.0048 and 22m s−1. The crush bands formed randomly at the

weakest fin layer and progressed non-sequentially to uncrushed parts. A

transition mode was found between 22 and 60m s−1. In this mode, the

crush bands were concentrated at the impact end and the strain in the

crush bands was wider and did not reach the densification strain. A

shock mode was determined at 90m s−1 in which the layer crushing

initiated at the impact end and progressed sequentially. The two-layer

imperfect model well predicted both the stress-time profile and the

layer crushing mode of the homogeneous and transition modes, while

the stress-time profile and the layer crushing mode of the shock mode

by the fully imperfect model. The fully imperfect model resulted in

complete-sequential layer crushing at 75 and 90m s−1. The layer

crushing in the transition and shock mode started from the impact end

regardless the perfect or imperfect models were implemented. The

imperfect layers in the shock mode only affected the distal end stresses,

while all models implemented resulted in similar impact end stresses.

The experimental and model distal end initial crushing stresses in-

creased with increasing velocity from quasi-static to about 22m s−1.

The increase of the initial crushing stress was ascribed to the micro

inertial effect. The r-p-p-l model based on the dynamic plateau stress

well predicted the stress-time and velocity-time profile in the shock

mode. Finally, the critical velocity for the shock deformation,

~94m s−1, was well accord with the experimentally and numerically

determined critical velocities for the shock deformation.
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