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Abstract
We propose a novel end-to-end curriculum learning approach for sparsely labelled animal datasets leveraging large volumes
of unlabelled data to improve supervised species detectors. We exemplify the method in detail on the task of finding great
apes in camera trap footage taken in challenging real-world jungle environments. In contrast to previous semi-supervised
methods, our approach adjusts learning parameters dynamically over time and gradually improves detection quality by
steering training towards virtuous self-reinforcement. To achieve this,we propose integrating pseudo-labellingwith curriculum
learning policies and show how learning collapse can be avoided. We discuss theoretical arguments, ablations, and significant
performance improvements against various state-of-the-art systems when evaluating on the Extended PanAfrican Dataset
holding approx. 1.8M frames. We also demonstrate our method can outperform supervised baselines with significant margins
on sparse label versions of other animal datasets such as Bees and Snapshot Serengeti. We note that performance advantages
are strongest for smaller labelled ratios common in ecological applications. Finally, we show that our approach achieves
competitive benchmarks for generic object detection in MS-COCO and PASCAL-VOC indicating wider applicability of the
dynamic learning concepts introduced. We publish all relevant source code, network weights, and data access details for full
reproducibility.

Keywords Semi-supervised learning · Curriculum learning · Great ape conservation · Species detection · Wildlife detection ·
MS-COCO · PASCAL-VOC

1 Introduction

Motivation-Automated visual monitoring of animals filmed
in their natural habitats is gaining significant traction, boosted
recently by a plethora of deep learning methods and appli-
cations (Tabak et al., 2019; Norouzzadeh et al., 2021; Tuia
et al., 2022). However, developing and advancing relevant
computer vision tools remains challenging due to several
factors. Animals in their natural environments are often
hard to detect, obscured by dynamic backgrounds, vary-
ing illumination conditions, occlusions, camouflage effects,
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and more. Deploying network models trained on preva-
lent image and video databases, such as ImageNet (Deng
et al., 2009), MS-COCO (Lin et al., 2014), Kinetics (Car-
reira and Zisserman, 2017), are often insufficient on their
own, even after taking advantage of the potentials of transfer
learning. To further exacerbate the difficulty of deploy-
ing machine learning methods to their fullest extent in the
domain, there is still a distinct lack of large-scale, annotated
training datasets for particular species despite evolving gen-
eral frameworks (Beery et al., 2019). Whilst crowd sourcing
annotations can help, low labelling rates relative to archive
sizes remain the norm in the field. For great apes in particular,
several recent works have attempted to address some of the
above mentioned challenges (Yang et al., 2019; Schofield
et al., 2019; Sakib & Burghardt, 2021; Bain et al., 2021).
However, these works still either only pretrain on datasets
from other domains or rely on relatively small datasets
for supervised training due to the complexities associated
with obtaining annotations. Thus, while these methods have
advanced the cause somewhat regarding great ape detection
in jungle settings, they have also emphasised the urge for bet-
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Fig. 1 Conceptual overview. We utilise a student-teacher paradigm
for learning where the teacher produces pseudo-labels for the student
to learn from while being updated by an exponentially moving aver-
age (EMA) of the student model. We apply five dynamic policies to
this learning loop that we show can lead to effective (i.e. virtuous)
self-training cycles: unlabelled data sampling policy to control the

unlabelled sample input, confidence threshold policy to filter unreli-
able pseudo-labels, data augmentation policy to diversify the unlabelled
training data, unsupervised loss weighting policy to balance unsuper-
vised and supervised losses, and teacher momentum policy to adjust the
update speed of the teacher model

ter use of the vast archives of completely unlabelled camera
trap footage.
Paper Concept-In response, this paper introduces a novel
curriculum learning approach that intertwines traditional
supervised detector training with unlabelled data utilisa-
tion. The approach demonstrates by proof-of-concept that,
exemplified for great apes, large unlabelled camera trap
archives can indeed be exploited to enrich and empower
real-world animal detector construction without any further
labelling efforts. We leverage lessons learned from recent
self-supervised (Grill et al., 2020; Caron et al., 2021; Chen
andHe, 2021) and semi-supervised (Sohn et al., 2020b, a; Xu
et al., 2021) methods on feature representation learning and
image classification to propose an end-to-end student-teacher
based detection pipeline that integrates self-training (via
pseudo-labels) and dynamic training polices into one cyclical
curriculum learning design. Our model learns from unla-
belled data in the curriculum by generating high quality
pseudo-labels on the fly. In turn, these virtual annotations
of otherwise unlabelled samples are exploited by the stu-
dent whose update influences the teacher and a next round
of pseudo-label generation. This cyclical self-training idea
can be illustrated conceptually as a learning loop shown in
Fig. 1. We will demonstrate that carefully fine-tuned cur-
riculum learning policies in this loop can blend labelled and
unlabelled sample input in a way that leads to virtuous train-

ing cycles (as opposed to vicious training cycles) which
increasingly and consistently improve model performance.
Critically, we show that dynamic learning adjustments can
be controlled stably by policies and can improve perfor-
mance over static learning. Intuitively, the approach expands
model coverage of the vast space of animal appearance in
particular, slowly from the labelled sample base, guided
and channelled by the policies. We show that this approach
can significantly improve great ape detection benchmarks,
as well as other benchmarks including Bees and Snap-
shot Serengeti. We also demonstrate that the method is
applicable beyond the targeted animal domain and achieves
competitive or state-of-the-art results on the MS-COCO and
PASCAL-VOC object detection challenges without a need
for dataset-specific hyperparameter fine-tuning.
Contributions-Overall, the contributions of this paper can
be summarised as, (i) a novel end-to-end dynamic detec-
tion framework for semi-supervised curriculum learning
designed to improve species detectors built from sparsely
labelled datasets, (ii) a dynamic policy system with stable
hyper-parameters for temporal control over changing learn-
ingproperties in semi-superviseddetector trainingpromoting
self-reinforcing virtuous training loops, (iii) extensive exper-
iments and ablations on a large scale real-world great ape
camera trap dataset - we report improvements to the state-
of-the-art for the semi-supervised great ape detection task
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evaluated on the Extended PanAfrican Dataset, (iv) we
offer new semi-supervised detection benchmarks on sparse
labelling versions of two other animal datasets - Bees and
Snapshot Serengeti, contributing towards handling annota-
tion shortage in the animal domain, and finally (v) we also
provide competitive and state-of-the-art semi-supervised
object detection results for the MS-COCO and PASCAL-
VOC datasets, demonstrating broader applicability.

2 RelatedWork

In this section, we consider works related to the key topics
of interest with focus on the state-of-the-art.
Semi-supervised Learning (SSL)-SSL exploits the potential
of unlabelled data to facilitate model learning with limited
amounts of annotated data (Rebuffi et al., 2020). Training
computer visionmodels such as objection detection or action
recognition networks, relies on the availability of annotated
datasets which can be costly to generate. This has motivated
the development of semi-supervised methods (Jeong et al.,
2019; Berthelot et al., 2019; Zhai et al., 2019; Sohn et al.,
2020a, b; Zhang et al., 2021; Xu et al., 2021; Tang et al.,
2021).

One dominant SSL approach is consistency regularisation
where the model is regularised to generate consistent predic-
tions on datawith different augmentations (Jeong et al., 2019;
Berthelot et al., 2019; Zhai et al., 2019). Another approach
is based on generating pseudo-labels for unlabelled data
and updating the model by training on a mix of unlabelled
data with pseudo-labels and labelled data with manually-
annotated labels (Sohn et al., 2020a, b; Zhang et al., 2021;
Xu et al., 2021; Tang et al., 2021; Liu et al., 2021).What type
of pseudo-labelling to use is critical to the success of SSL in
particular scenarios. FixMatch (Sohn et al., 2020a) applied
a high confidence threshold for mining pseudo-labels and
then these sharpened and strongly-augmented pseudo-labels
were utilised for model training. STAC (Sohn et al., 2020b)
extended FixMatch from image classification to objection
detection by introducing self-training and augmentation-
driven consistency regularisation. More recently, Xu et al.
(2021) introduced the soft teacher mechanism to alleviate the
issue of unreliable pseudo-labels generated by the teacher in
SSL object detection. Liu et al. (2021) jointly train a student
and a teacher in a mutually-beneficial manner by applying a
class-balance loss to down-weight overly confident pseudo-
label impact. In the light of the success of these methods, our
approach follows the pseudo-labelling concept, but addresses
the model learning challenges differently.
Object detection-This area of computer vision has advanced
in leaps and bounds since the very start of the modern era
of deep learning. Some notable early works are: (i) single-
stage detection frameworks, such as (Redmon et al., 2016;

Liu et al., 2016; Lin et al., 2017b; Tian et al., 2019), which
perform object classification and bounding box regression
directly, without using pre-generated region proposals. They
are typically applied over a dense sampling of possible object
locations to estimate the class probabilities and bounding
box coordinates directly. (ii) In contrast, two-stage detection
frameworks, such as (Ren et al., 2015; He et al., 2017; Lin
et al., 2017a) utilise a region proposal network to generate
class-agnostic regions of interest (ROIs) and only then per-
form ROI bounding box regression and object classification.
More recently, DEtection with TRansformers (DETR) (Car-
ion et al., 2020) built the first end-to-end detection pipeline
by viewing object detection as a direct set-prediction prob-
lem. DETR eliminated the need for anchor-based target
assignment pre-processing and non-maximum suppression
(NMS) post-processing, prevalent in commonly used object
detectors. It combinedCNNs for feature extraction and trans-
formers for feature interpretation to directly translate object
queries to class and bounding boxes by leveraging cross
attention (Vaswani et al., 2017) on image features. However,
the vanilla DETR suffers from slow convergence and hence
longer training time than detectors based on YOLO, SSD
and Faster-RCNN. The Deformable DETR (Zhu et al., 2020)
proposed a deformable attention module that only attend to a
small set of prominent key elements to replace the attention
in DETR. This improvement led to faster convergence and a
better performance. We select this variant as our model for
the various detection components of our proposed curriculum
learning framework.
Curriculum Learning (CL)-The CL training approach (Ben-
gio et al., 2009;Wang et al., 2022b) has had significant impact
on the design of computer vision algorithms, such as (Karras
et al., 2018; Wang et al., 2018; Huang et al., 2020; Wang
et al., 2022a; Zhang et al., 2021). Wang et al. (2018), for
instance, use average precision of each sample to re-rank the
data from easy to hard and train the object detector in an easy-
to-hard fashion applied to the pre-ranked order of data.Wang
et al. (2022a) propose a pseudo-labelled auto-curriculum
learning framework that engages reinforcement learning to
learn a series of dynamic thresholds for the pseudo-labels
for semi-supervised key-point localisation. FixMatch (Sohn
et al., 2020a), on the other hand, applied a constant thresh-
old to select unlabelled samples for training, which fails to
address the learning difficulties at different time steps. Thus,
it can allow poor quality samples to get through. FlexMatch
(Zhang et al., 2021) improved on FixMatch by dynamically
adjusting the threshold at each time step to filter unlabelled
samples and pseudo-labels.

Both FixMatch and FlexMatch applied a pre-trained
pseudo-label generatorwhich does not get updated during the
semi-supervised learning stage, thus, failing to consider the
evolution of the pseudo-label generator as the learning pro-
gressing. To address this issue, we propose student-teacher

123



1166 International Journal of Computer Vision (2023) 131:1163–1181

Fig. 2 Detailed end-to-end self-training great ape detection pipeline.
We utilise the Deformable DETR (Zhu et al., 2020) framework with
a ResNet backbone as detector architecture. The student network
(light green) uses this architecture as well as the teacher network
(dark green). All labelled data along with dynamically sampled and
policy-controlled unlabelled data aremixed during training. The teacher
performs pseudo-label generation with purely unlabelled input on the

fly. The pseudo-labels are filtered with an adaptive threshold and then
augmented via a bounding box-aware transformation. The teacher net-
work is updated by student model via a dynamicmomentum coefficient.
The final loss is the sumof supervised and unsupervised detection losses
balanced by a policy-controlled dynamic weight.We carefully designed
the policies of the system to achieve an effective (a.k.a. virtuous) self-
reinforcing training cycle (Color figure online)

learning paradigms inspired by the recent advances in self-
supervised learningmethods (Grill et al., 2020; Chen andHe,
2021; Caron et al., 2021) that evolve the teacher component
dynamically guided by a set of curriculum learning policies
and controls. We will now describe our approach in detail.

3 ProposedMethod

We introduce an end-to-end curriculum learning pipeline for
effective semi-supervisedGreat Ape detection in camera trap
footage. Our framework follows a student-teacher training
scheme, as illustrated in detail in Fig. 2 and operates as fol-
lows: in each learning iteration, we train a studentmodel built
around a Deformable DETR detector (Zhu et al., 2020) by a
mix of labelled and unlabelled videos where the unlabelled
videos are sampled by our curriculum sampling policyπ . The
teacher performs pseudo-label generation with unlabelled
input. Pseudo-labels are then refined by a dynamic thresh-
old ςt and transformed by augmentation policyA. Together,
both the pseudo-labels and manually-annotated labels are
fed into the student network for learning. The student net-
work is then updated by the gradient from the overall loss
which is balanced by unsupervised loss weight αt . Finally,
the teacher network is updated by the exponential moving
average (EMA) of the student parameters via a dynamic
momentum coefficient mt . This completes one iteration of

the learning loop leading to an updated teacher and student
model. Our target will be to design the mentioned policies
and an appropriate loss in a fashion that virtuous, that is
effective, learning can be practically achieved.

3.1 Problem Definition

Let us consider that frames are sampled from the video at
a frequency of ω for both labelled and unlabelled videos.
The teacher is trained to generate the pseudo-labels for unla-
belled frames only, while the student is trained to fit the
pseudo-labels with the unlabelled input frames, as well as
the ground-truth labels with the labelled input frames. Thus,
the overall loss for the student is defined as the weighted sum
of supervised and unsupervised losses:

Lall = L + αL′, (1)

whereL andL′ denote the supervised loss of labelled samples
andunsupervised loss of unlabelled samples respectively, and
α represents the balancing weight.

Further consider we have a labelled sample set DX with
M labelled samples Xi and their corresponding class and
box labels (Ci , Bi ) and an unlabelled sample set DU with N
unlabelled samplesUj (regardless of the sampling approach)
used for training. Also, letS(θ) be the student model param-
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Fig. 3 Bipolar behavioural dynamics of learning via self-training loops.
Two representative cases illustrating the bipolar dynamics of training
success when using the proposed architecture: vicious collapse in (a)
and virtuous effective learning in (b). The scenarios differ only in policy
parameterisation. (For reproducibility of behaviour in Fig. 3, the exact
parameters used were: (a)π : constant policy, constant ς = 0.1 and con-

stantα = 0.1; (b)π : linear increase policy, linear increase ς 0.3 → 0.5,
constant α = 0.5. Both were trained for 1000 epochs with the first 250
epochs for warmup, lr decreases at 800th epoch). In both plots, the right
ordinate indicates the AP50 on the validation set whilst the left ordinate
represents the average number of samples with confident score ζ > 0.9
or ζ > 0.5

eterised by θ , and T(θ ′) be the teacher model parameterised
by θ ′. Eq. (1) can then be expanded to:

Lall(θ) = L + αL′

= 1

M

∑

Xi∈DX

Lθ (Xi ) + α
1

N
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L ′
θ

(
Uj

)
,
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(4)

where Lreg represents the bounding box regression loss and
Lce represents the classification loss.

We follow common practice in self-supervised learning
methods, such as (Caron et al., 2021; Grill et al., 2020), so
that the teacher is updated by the EMA of the student,

θ ′
t ← mθ ′

t−1 + (1 − m)θt . (5)

Our objective is to find a set of student parameters θ∗ that
minimises the expected overall loss Lall(θ), such that

θ∗ = argmin
θ

Lall(θ) . (6)

3.2 Self-reinforcing Training Loop

The evolution of the student and teacher network is concep-
tually a cyclic relationship. On the one hand, the performance
of the student detector depends on the quality of the pseudo-
labels, which in turn relies on the teacher, and on the other
hand, the teacher is updated according to student status. Thus,
there is an intricate interdependence between the student, the
teacher, and the pseudo-labels forming a self-training loop
which is controlled by the learning policies.

In practice, we observe a bipolarisation phenomenon for
the training of models with different settings where they
gradually become more confident of their predictions, but
show two drastically different performance trajectories. As
illustrated on sample training runs shown in Fig. 3, whilst
a gradual increase of confidence indicators E[Nζ>0.9] and
E[Nζ>0.5], which represent the average number of predicted
objects whose confident scores ζ are over 0.9 or 0.5 respec-
tively, can be observed; the validation performance can be
erratic, either collapsing or improving effectively. In the
example illustrated in Fig. 3a, a decrease of AP50 on the val-
idation set was observed after a few hundred training epochs.
Initially, one may assume the model is simply over-fitting at
this stage in learning.However, as shown in the second exam-
ple in Fig. 3b for a different parameterisation, a long-term
increase in AP50 can be observed, which suggests the model
can learn from the training set well into training cycles. We
hypothesise that the bipolar collapse or success of learning
with regard to generalisation is critically linked to the self-
reinforcement property of the training loop parameterisation
and policies.
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Fig. 4 Processes within self-reinforcing Loops. Illustration of four key
processes (arrows) involved in training loops. Note that a destabilised
Virtuous Cycle where low quality pseudo labels or highly inaccurate

student or teacher networks are produced turns into a Vicious Cycle and
vice versa. Thus, effective parameterisations and policies for the key
processes are required to to promote stable learning

We categorise bipolarisation as two different types of
learning cycles, effective Virtuous Cycles and collapsing
Vicious Cycles as illustrated in Fig. 4. In the virtuous cycle
state, the teacher model generates pseudo-labels of sufficient
quality as to contribute to the training of the student model,
allowing both models to improve continually. In contrast,
the vicious cycle sees the teacher generate insufficiently low
quality pseudo-labels that degrade the training of the student
model, thus both models degenerate continually.

Fig. 4 depicts four key processes in the learning loop
(shown as arrows), which are crucially influencing the tra-
jectory of learning: (i) Initialisation: initialising the student
model before the self-training phase; (ii) Teacher Update:
updating the teacher network according to student status; (iii)
Pseudo-label Generalisation: generating pseudo-labels by
teacher; (iv) Student Training: using pseudo-labels to update
student. Our goal is to find suitable controls that guide the
above processes and can maintain the development of a vir-
tuous self-training loop and, for robustness, also transition
from a vicious to a virtuous setting.

For initialisation, we confirmed experimentally that the
proposed system operates in a stable manner with fixed, stan-
dard backbone initialisations across all tested datasets. In
particular, we use the self-supervised ImageNet pre-trained
ResNet weights from SWAV (Caron et al., 2020) for our
detection backbone. In addition, to show that general training
stability can also be maintained in a supervised initiali-
sation scenario, we test supervised ImageNet pre-trained
ResNet (He et al., 2016) weights too. Note that any such
fixed initialisation is essential as random initialisation trig-
gers vicious training cycles, however, the fix is not sensitive

to target dataset properties as transfer between scenarios still
produces stable learning (see Sect 7).

For the other three processes above, we propose appro-
priate ‘policies’ that guide learning within the confounds
of effective ’virtuous’ learning cycles—these are described
next.

3.3 Student Training

Student network training is guided by two policies that allow
the student model to exploit the unlabelled sample data and
their pseudo-labels effectively.
Unlabelled Data Sampling Policy controls the number of
unlabelled samples to use in the self-training loop at different
time steps. It can be expressed with an additional Bayesian
prior on Eq.(2), i.e.

Lπ (θ) = Ê [Lθ ]

= 1

M

∑

Xi∈DX

Lθ (Xi ) + α
1

NE[π ]
∑

Uj∈DU

L ′
θ

(
Uj

)
π(Uj ),

(7)

where π(Uj ) is the probability for using the unsupervised
loss of Uj in the self-training stage. For simplicity, we sub-

stitute α
π(Uj )

NE[π ] with p(Uj ) in Eq. (7) to obtain:

Lπ (θ) = 1

M

M∑

i=1

Lθ (Xi ) +
N∑

j=1

L ′
θ

(
Uj

)
p(Uj )

= 1

M

M∑

i=1

Lθ (Xi ) +
N∑

j=1

(
L ′

θ

(
Uj

)
p(Uj ) − Ê[L ′

θ ]p(Uj )
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Fig. 5 Unlabelleddata samplingpolicies&UnsupervisedLossDynam-
ics. (a) models a linear increase of the unlabelled data ratio from 0 to 1
over epochs, (b) combineswarm-up and cool-down phases with linear

increase, (c) linear decrease of the unlabelled data ratio, (d) combines
linear decrease with warm-up and cool-down phases, (e) keeps a con-
stant ratio, and (f) shows the unsupervised loss L ′

θ observed in training

− Ê[p]L ′
θ

(
Uj

) + Ê[L ′
θ ]Ê[p]

)
+ N Ê[L ′

θ ]Ê[p]

= 1

M

M∑

i=1

Lθ (Xi ) + N Ê[L ′
θ ]Ê[p]

+
N∑

j=1

(L ′
θ

(
Uj

) − Ê[L ′
θ ])(p(Uj ) − Ê[p])

= 1

M

M∑

i=1

Lθ (Xi ) + N Ê[L ′
θ ]Ê[p] + N ˆCov[L ′

θ , p] .

(8)

Based on the definition of Lall(θ) in Eq. (2), Eq. (8) can
be simplified to:

Lπ (θ) = Lall(θ) + N ˆCov[L ′
θ , p] (9)

The goal is to search for the best unlabelled data sampling
policy π∗ that can yield the lowest possible loss for Eq. (9),
such that:

π∗ = argmin
π

Lπ (θ)

= argmin
π

Lall(θ) + N ˆCov[L ′
θ , p]

= argmin
π

ˆCov[L ′
θ , p]

(10)

Equation (10) suggests that if L ′
θ and p are negatively corre-

lated then we can arrive at an effective policy π∗. Given that
p is positively correlated with π , since α

NE[π ] is positive, an

effective unlabelled data sampling policy π∗ should be neg-
atively correlated to L ′

θ . The model gets updated for each
iteration, thus one may assume naïvely that L ′

θ (Uj+1) <

L ′
θ (Uj ), because L ′

θ (Uj+1) is generated after backpropaga-
tion of L ′

θ (Uj ). In practice, during training, we also observed
such a decrease of E[L ′

θ ] as shown in Fig. 5(f).
In summary, considering π∗ and L ′

θ are negatively corre-
lated, and L ′

θ is indeed decreasing over time,we can conclude
that π can consequently be obtained via cyclical curriculum
learning. Practically, this may be carried out via a gradual
increase of unlabelled sample input in the ways shown in
Fig. 5a or b, where the latter includes warm-up and cool-
down periods. Conceptually, these policies expand learning
slowly but steadily towards the unexplored data domain in
order to allow for a gradual expansion of high quality model
expertise and prevent erratic learning collapse. For compar-
ison and to emphasise the importance of this policy choice,
we later also experimentally examine other policies depicted
in Figs. 5c, d, and e.
Unsupervised Loss Weighting Policy is tasked with balanc-
ing the weighting between the supervised and unsupervised
losses. The performance of the student detector depends on
the quality of the pseudo-labels. Fig. 6a and b depict pseudo-
label distributions captured at an early stage and a late stage of
the training, respectively, plotted against the confidence score
ζ . Label confidence and IOU quality clearly increase over
training at these snapshot points. The associated @IOU50

and @IOU75 precision curves in Fig. 6c illustrate that the
average quality of the pseudo-labels increases over time. We
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Fig. 6 Pseudo-label analysis.We use 70k pseudo-labels generated from
the teacher network to conduct this analysis. Note that unlabelled sam-
ples do not use ground truth in training, but we use it for this analysis. (a)
and (b) show the distributions of each pseudo-label’s ground truth IOU
against the confidence score ζ visualised at the early stage (100th epoch
snapshot) and later stage (800th epoch snapshot) of training, respec-
tively. (c) the pseudo-label mean precision at IOU50 and IOU75 without
applying a threshold over the training epochs. (d) pseudo-label quality

against the threshold ς represented by IOU50 and IOU75 precision aver-
aged across epochs, and IoU of real ground truth labels averaged on all
epochs. (e) mean recall at IOU50 and IOU75 for different ς values, (f)
heatmap indicating the normalised Fβ score for ςt at different epochs
- light to dark colours for low to high scores, orange shows the best Fβ

score at each epoch, and the dark green plot represents our confidence
threshold policy as the arctan function that approximates the best Fβ

scores (Color figure online)

note that recent works (Sohn et al., 2020b; Xu et al., 2021;
Tang et al., 2021) on this topic only applied a fixed weight-
ing to all pseudo-labels throughout the training. Yet, given
this observed gradual change in pseudo-label quality, there
is an opportunity to design an adaptive weighting policy that
applies smaller unsupervised loss weights for less reliable
pseudo-labels in the early training stages and larger weights
for more reliable pseudo-labels generated in the later training
stages.

To implement this, we use a curriculum learning approach
for the unsupervised loss weighting parameter α, which is
made subject to an adaptive weighting policy. Theoretically,
more optimal policies would keep track of the bounding-box
pseudo-label qualities. However, in practice, this is hard to
do on the fly due to the unavailability of the ground truth
and extensive computational needs. We thus opt for a simple
linear increase of α as a first approximation.

3.4 Pseudo-label Generation

We use two policies to generate reliable pseudo-labels from
the teacher’s output to promote a virtuous cycle for training.
Confidence Threshold Policy allows us to examine the reli-
ability of pseudo-labels at different threshold values of ς ,
ranging from 0.1 to 0.9, and averaged across epochs. Our

aim is to select an optimised value in order to discard unre-
liable pseudo-labels most effectively.

Three metrics are applied to assess the quality of the
pseudo-labels: IOU,Precision@IOU50 andPrecision@IOU75.
The plots in Fig. 6d for all measures show that they increase
as ς does. Trivially, the higher the value of ς , the higher
the probability of obtaining more reliable pseudo-labels. So
for highest quality one could select ς = 0.9. However, as a
consequence the recall rate is significantly suppressed, with
bothmean@IOU50 and@IOU75 recalls of course negatively
correlated to ς (see Fig. 6e). For example, when ς = 0.9,
mean precision reaches approx. 95%, while the mean recall
drops to approx. 15%.

To address this issue, our dynamic confidence threshold
policy increases the quality of pseudo-labels by controlling
false negatives explicitly and thereby balancing precision and
recall. We apply the Fβ score which is the weighted har-
monic mean of precision and recall, with β = 0.5 to allow
the Fβ score assign more weight to the precision than the
recall on the basis that the false positives have more negative
impact than the false negatives in our pipeline. Compared to
anchor-based detectors which assign missed bounding boxes
as negatives (non-object class), such as Ren et al. (2015); He
et al. (2017); Lin et al. (2017b), the DETR family of meth-
ods do not. Their bipartite matching stage only matches the
predictions with the ground truth, thus any missed bounding
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Fig. 7 Augmentation strategy. Visualisation of colour augmentation and geometric augmentation examples used in the experiments. Augmentations
are selected such that the results reflect the variance found across different camera and acquisition settings commonly seen in the dataset. (best
viewed under zoom)

boxes are ignored and there are no penalties for this in train-
ing. Further, bounding box-aware crops are applied in the
augmentation stage, thus false negative areas could be wiped
out in the image. For example, see the chimp on the right
side of the first image in the last column in Fig. 7, which if
undetected by the teacher, it will disappear after a geometric
transformation, as shown in the last image in the last column.

After fixing β, which may be changed for different appli-
cation scenarios, the goal of our confidence threshold policy
is to search for the threshold ς at time step t that can max-
imise Fβ , i.e.

ς∗
t = argmax

ςt

Fβ(Pt ,Rt |ςt ), (11)

where Pt and Rt represent the precision and recall rates at
time step t , determined by threshold ςt . The heatmap in Fig.
6(f) shows the normalised Fβ score for each time step (darker
colour means higher value), with the best Fβ at threshold ςt
shown in the orange plot. We use the approximate fit of the
arctan function (dark green plot) to represent our confidence
threshold policy.
Data Augmentation Policy ensures consistent augmentation
of unlabelled data under the pseudo-labels produced by the
teacher.

This is an indispensable element in semi-supervised and
self-supervised methods. Self-supervised methods, such as
DINO (Caron et al., 2021) and BYOL (Grill et al., 2020)
minimise different views of data generated by data augmen-
tation. Recently, semi-supervised methods such as FixMatch
(Sohn et al., 2020a) and STAC (Sohn et al., 2020b), use

augmentation-driven consistency regularisation for classifi-
cation and detection.

Following STAC, we explore different variants of trans-
formations on the Extended PanAfrican Dataset as our
augmentation policyA. We apply transformation operations
in sequence as follows: first, we randomly apply bounding-
box-aware crop and resize on the image, and then we apply a
randomly-selected geometric transformation, followed by a
random transformation on the colour statistics of the image
(see code for all details).

Finally, for strong augmentation As , we apply random
erase (Zhong et al., 2020) or cutout (DeVries and Taylor,
2017) at multiple random locations of the whole image. For
a weak augmentation Aw, we just decrease the intensity for
each transformation. Some examples are shown in Fig. 7 to
illustrate the augmentation process.

3.5 Teacher Update

Teacher Momentum Policy controls the update speed of the
teacher model and is encapsulated in the momentum coeffi-
cientm. In Fig. 6c, we can see the pseudo-label precision rate
increases steeply in the early training stages, but slowly in the
later training stages. Given that learning happens faster in the
early stage, it motivates us to design a dynamic momentum
policy which takes this fact onboard and stabilises teacher
updates. Eq. (5) suggests that a lower momentum coefficient
allows faster updates of the teacher model. To match the
learning speed of the model at different time steps, we use a
lower momentum coefficientm at the early stages and gradu-
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Algorithm 1 Semi-supervised Training of Great Ape Detector using all Policies
1: Require: DX , DU � labelled and unlabelled data
2: Require: Sθ ,Tθ ′ � student and teacher models
3: Require: 	 � curriculum learning strategy
4: Sθ ← initialisation Tθ ′ ← initialisation � initialise student and teacher models
5: do
6: πt , ςt , αt ,mt ,A ← 	(t) � instantiate five policies at each time step
7: Xi , [Ci , Bi ] ← mini-batch(DX ) � sample labelled mini-batch data
8: Uj ← mini-batch(DU ) � sample unlabelled mini-batch data
9: Uj ← πt (Uj ) � apply unlabelled data sampling policy
10: As ,Aw ← A � sample strong and weak augumentations
11: [C j , Bj ], ζ j ← Dθ ′ (Aw(Uj )) � generate pseudo-labels by teacher

12:



Uj , [



C j ,



Bj ] ← 1(Uj , [C j , Bj ] | ζ j > ςt ) � apply confidence threshold policy
13: L ← Loss

(
Dθ (Aw(Xi )),Aw([Ci , Bi ])

) � get supervised loss with ground truth

14: L′ ← Loss
(
Dθ (As(




Uj )),As([



C j ,



Bj ])
) � get unsupervised loss with pseudo-labels

15: Lall ← L + αtL′ � apply unsupervised loss weighting policy
16: �θ ← −∇Lall θ � backpropagate the overall loss
17: θ ← θ + �θ � undate student networks by gradient
18: θ ′ ← mtθ

′ + (1 − mt )θ � undate teacher with teacher momentum policy
19: t ← t + 1 � next time step and repeat
20: until Lall converge
21: end

ally increase it with time. In practice, we use a cosine increase
of m in our pipeline which has also been explored in DINO
(Caron et al., 2021). In experiments,wefind that this dynamic
momentum policy leads to consistently better performance
than a constant one (see Table 2).

3.6 Combined Policy Application

All five policies are implemented in unison as a dynamic
curriculum learning strategy 	 for our wildlife detection
pipeline, comprising the unlabelled data sampling policy
πt = 	π(t), the unsupervised loss weighting policy αt =
	α(t), the confidence threshold policy ςt = 	ς(t), the data
augmentation policyA = 	A(t) and the teacher momentum
policy mt = 	m(t). Algorithm 1 illustrates this curriculum
learning strategy 	 = {πt , αt , ςt ,A,mt } in its complete
form.

4 Experiments

Datasets-We test our method on the Extended PanAfrican
Dataset from the PanAf programme (Max-Planck-Institute,
2022) which contains camera-trap footage captured in nat-
ural Great Ape habitats in central Africa. There are two
major species of Great Apes in the dataset, gorillas and
chimpanzees. The archive footage contains around 20K
videos adding up to around 600 hours. We use a sub-
set of 5219 videos, with 500 videos (totalling over 180K
frames) manually annotated with per frame great ape loca-
tion bounding boxes, species and further categories (Yang
et al., 2019; Sakib & Burghardt, 2021). This labelled data

is split into trainset, valset, testset at a ratio of
80%, 5%, 15% respectively. All labels andmetadata are fully
published (Yang et al., 2019) and source videos may be
obtained as detailed in the Acknowledgements.

Following standard evaluation protocols as used in (Sohn
et al., 2020b; Xu et al., 2021; Zhou et al., 2021; Liu et al.,
2021),we utilise theExtendedPanAfricanDataset for system
training and benchmarking under two general paradigms:

1. Partially LabelledData (PLD). In this setting, either 10%,
20%, or 50% of the annotated trainset data are sam-
pled as labelled training data, and the complete remainder
of all data is used as unlabelled data. For each quantity, we
create 3 different data folds and report the performance
on testset with mean average precision (mAP) as the
evaluation metric.

2. Fully Labelled Data (FLD). In this setting, the whole
annotated trainset is utilised as the labelled train-
ing data and only the remaining ∼5K unlabelled videos,
totalling∼1.8M frames, are used as additional unlabelled
data.

In addition,we investigate two other animal datasets under
sparse labelling settings - Bees1 and Snapshot Serengeti
(Swanson et al., 2015) - to explore systemeffectiveness under
sparse labelling regimes further across the domain of animal
visuals. We also present results on the MS-COCO (Lin et al.,
2014) and PASCAL-VOC (Everingham et al., 2010) datasets
to explore wider applicability of the introduced concepts to
mainstream object detection.

1 Available at https://lila.science/datasets/boxes-on-bees-and-pollen.
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Table 1 Results and detailed comparative evaluation on the extended panAfrican dataset

Method Labelled ratio Setting mAP mAP50 mAP75

Supervised baseline 10% PLD 32.17 ± 0.70 75.57 ± 1.24 21.40 ± 2.45

STAC (Sohn et al., 2020b) 10% PLD 38.04 ± 3.88 73.31 ± 7.01 35.34 ± 2.31

SoftTeacher∗ (Xu et al., 2021) 10% PLD 39.37 ± 7.97 63.03 ± 11.42 44.50 ± 9.72

Ubteacher∗ (Liu et al., 2021) 10% PLD 44.03 ± 0.26 76.69 ± 2.15 47.25 ± 1.21

Ours 10% PLD 45.96 ± 2.97 78.10 ± 6.14 47.67 ± 3.12

Supervised baseline 20% PLD 46.93 ± 1.30 86.47 ± 0.74 46.00 ± 2.42

STAC 20% PLD 51.35 ± 2.39 83.71 ± 2.24 56.58 ± 4.12

SoftTeacher∗ 20% PLD 50.87 ± 2.99 79.57 ± 6.29 58.67 ± 2.89

UbTeacher∗ 20% PLD 55.78 ± 0.45 88.07 ± 1.88 63.02 ± 0.67

Ours 20% PLD 59.01 ± 1.57 89.23 ± 0.98 66.95 ± 2.45

Supervised baseline 50% PLD 59.50 ± 1.40 92.37 ± 0.92 65.47 ± 2.04

STAC 50% PLD 59.93 ± 1.21 92.35 ± 0.65 67.40 ± 2.10

SoftTeacher∗ 50% PLD 60.47 ± 3.58 86.93 ± 4.23 69.63 ± 3.35

UbTeacher∗ 50% PLD 61.66 ± 1.73 91.79 ± 1.45 72.71 ± 1.42

Ours 50% PLD 63.39 ± 1.34 92.96 ± 0.68 70.00 ± 3.45

Supervised baseline 100% FLD 65.53 95.28 74.52

STAC 100% FLD 46.98 80.76 50.61

SoftTeacher∗ 100% FLD 70.70 94.90 81.90

UbTeacher∗ 100% FLD 66.45 94.13 79.35

Ours 100% FLD 67.64 95.87 76.81

Mean and standard deviation on test set portion evaluated over 3 data folds for 10%, 20% and 50% Labelled Ratio are reported. Supervised baseline
refers to the same model trained on the labelled data only. Other state-of-the-art methods are re-evaluated on the dataset based on their publicly
available codebase. We evaluate the methods with PLD and FLD settings which represent the Partially Labelled Data and Fully Labelled Data
paradigms. PLD evaluation in particular was performed at scale using the Labelled Ratio portion of 500 labelled videos (i.e. ∼180k annotated
frames) as labelled input and adding remaining videos plus ∼5000 additional unlabelled videos (i.e. ∼1.8M frames) of the same domain for
unlabelled input. Note that ∗ indicates the code’s data loader was changed for this dataset
The bold and underlined values represent the best and second-best results

ImplementationDetails-We use aDeformableDETR archi-
tecture with a ResNet-50 backbone as our default detection
model (see Fig. 2) for evaluating the effectiveness of our
method. The transformer decoder and encoder are randomly
initialised and the ImageNet pre-trained ResNet-50 weights
from SWAV (Caron et al., 2020) are used as initial param-
eters for our backbone. The student model is trained with
the AdamW optimizer (Loshchilov and Hutter, 2018) with
a weight decay of 0.0004 and a batch size of 64, distributed
over 4 GPUs. We follow Caron et al. (2021) using a lin-
ear scale rule of lr = 0.0005 × batchsi ze/64 and apply a
slightly lower learning rate of 0.1 × lr for the backbone.

We use randomly sampled frames for each video at each
epoch with frequencyω = 10, and the frames are rescaled so
that the smaller axis of the frame is in range [320, 480]. The
PLD model is trained for 1000 epochs with the first quarter
as the warm-up phase and the last quarter as the cool-down
phase (Fig. 5a), and lr decreases to 5e−5 at the 800th epoch.
The momentum m for updating the teacher follows a cosine
schedule from 0.998 to 0.9998. Since the amount of train-

ing data for the partially labelled data setting and the fully
labelled data setting is quite different, training parameters
vary slightly from that for FLD.2

Comparative Evaluation-We first evaluate our method for
the PLD and FLD settings against a supervised baseline
and state-of-the-art works STAC (Sohn et al., 2020b), Soft-
Teacher (Xu et al., 2021) and UbTeacher (Liu et al., 2021)
at various ratios of labelled data. Table 1 summarises the
results.

Our proposed method shows significant performance
improvements under almost all test settings. For example, in
the mAP column, we outperform the supervised baseline by
13.79%, 12.08%, 3.89%, STAC by 7.92%, 7.66%, 3.46%,
SoftTeacher by 6.59%, 8.14%, 2.92% and UbTeacher by
1.93%, 3.23%, 1.73%when 10%, 20%, 50% of labelled data
are provided, respectively. We find that our method works

2 For FLD, we use total epochs=1100 with the first 500 as warmup,
the last 100 as cooldown and lr decreases at the 1000th epoch. The
unlabelled ratio is bounded at 10 in minibatch. Linear increase α is
0.3→1 and arctan increase is ς 0.3→0.6.
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Fig. 8 Relative improvement comparisons. Relative improvement of
mAP for our method over the supervised baseline, STAC, SoftTeacher,
and UbTeacher across various PLD settings. We find our method shows
particularly strong performance in lower annotation ratio regimes typ-
ical for many wildlife data settings

better than others particularly when the provided labelled
data is small as illustrated in Fig. 8. We note again that
such a setting is particularly common in wildlife applications
where camera trap archives are large and accurate annotation
ratios are very small. We can see that competitor methods
also show sizeable improvements over the supervised base-
line for smaller splits, indicating unsurprisingly that extra
unlabelled data has particularly high value when very little
labelling is available in the first place. However, note that the
performance gap between the proposed method and other
approaches is also particularly large in exactly this setting,
confirming the specific applicability of our enhanced dynam-
ics for curriculum learning in low labelling ratio settings.
Qualitative results across all methods are exemplified and
discussed in Fig. 9. This is complemented by visualisations
of some failure cases in Fig. 10.

5 Ablation Studies

In this section, we evaluate our key contributions by examin-
ing the importance of each policy. We use the fold1 split of
the 50% PLD setting as the base for the conducted ablations.
Unlabelled Data Sample Policy-The motivation of our unla-
belled data sample policy (Eq. 10) is to make sure that if
the unlabelled samples loss L ′

θ and unlabelled data sampling
policy π are negatively correlated, the minimum possible

loss can be achieved. Based on this hypothesis, we designed
five experiments for five different possible characteristics for
policy π : (i) linear increase of the number of unlabelled sam-
ples (Curriculum learning) used in training over the training
process (depicted in Fig. 5a), (ii) linear increase but with
warm-up and cool-down phases at the beginning and at the
end respectively (Fig. 5b), (iii) start with all unlabelled sam-
ples but linearly decrease the number of unlabelled samples
throughout training (Fig. 5c), (iv) The opposite of (ii) (Fig.
5d), (v) using all unlabelled samples constantly throughout
training (Fig. 5e).

The results inTable 2(a) show that a gradual increase of the
number of unlabelled samples during the self-training phase
can gain around 1.16%mAP comparedwith constantly using
all the unlabelled samples. The best performance however is
achieved by introducing a warm-up and a cool-down phase at
64.3%mAP.This ablation experiment demonstrates that both
the choice of ’phasing in’ unlabelled data underpinned by our
theoretical discussion in Sect. 3.3 have a positive measurable
effect on learning performance.
Unsupervised Loss Weight Policy-The results in Table 2(b)
demonstrate the effects of the unsupervised loss weight pol-
icy. We find that setting the unsupervised loss weight α is
a challenge since both a large loss weight and a small loss
weight can harm the performance.A9.30%mAPdrop occurs
when α = 2.0 compared to α = 0.5. We argue that con-
stantly applying a large α would harm the training at the
beginning because α would assign a large weight for the loss
produced by the unreliable pseudo-labels in the early stages
which would mislead the model, causing it to get caught up
in vicious training cycles. In contrast, applying our dynamic
weighting approach, the performance reaches 64.73%,which
is 0.75% better than a constant α = 0.5, 2.55% better than
α = 0.1 and about 10% better than α = 2. As discussed in
Sect. 3.3, while our linear increase performs best, it is a naïve
approach since the best global policy is difficult and compu-
tationally costly to find across the space of monotonously
growing functions. Further exploration of this policy is sub-
ject to future work.
Confidence Threshold Policy- Table 2(c) displays the effects
of different approaches for the confidence threshold policy.
Both low and high thresholds cause significant performance
degradation, at both low and high thresholds, e.g. ς = 0.05
andς = 0.9, respectively,with lower thresholds beingworse.
This suggests that false positive pseudo-labels (appearing at
low thresholds) have more negative impact than the false
negative pseudo-labels (that appear at higher thresholds). As
noted in Sect. 3.4, this motivated us to use a new weighted
metric Fβ to assess the best choice of threshold for this pol-
icy. Applying the arctan increasing ς approach, we see a
significant increase in performance.

For comparison, we conducted a linear increase approach
from 0.1 to 0.6, which takes similar strides, although arctan
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Fig. 9 Qualitative detection examples. We compare our method with
other state-of-the-art approaches tested and the supervised baseline
under the PLD setting with Labelled Ratios of 10%, 20%, 50%. Note

examples where our proposed method reliably detects partly occluded
apes and ignores tree structures which distract some of the other models
(best viewed under zoom)

Fig. 10 Examples of failure cases. Visualised are failure cases under
the 10% PLD setting. Ground-truth labels are annotated in red, and our
detection results are shown in green. Note that partial occlusions form

one hard-to-learn aspect given sparse label availability for training (best
viewed under zoom) (Color figure online)

increases more aggressively in the early stages and achieves
a slightly better outcome.
Augmentation Policy-A simple ablation is performed on the
proposed augmentationpolicy, i.e.Aw andAs augmentations
versus no augmentation. Results show a significant improve-
ment by 9.32% as seen in Table 2(d).
Teacher Momentum Policy-We compare a static momentum
coefficient approach with a dynamic momentum approach
form which is used to update the teacher network. As shown
in Table 2(e), both settings have a similar expected value but
the dynamic momentum policy improves the performance
significantly by 4.66%.

Initialisation-The initial status of the student model is crucial
since it can affect training direction from the start towards
an effective virtuous or catastrophic vicious cycle of learn-
ing. We see in Table 2(f) that a random initialisation of the
model can lead to such catastrophic failure in training, while
a SWAV-based self-supervised initialisation outperforms a
supervised one.

6 Experiments on theMS-COCODataset

Our method primarily addresses the problem of handling
sparsity of labelled data in animal biometrics whenever large
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Table 2 Ablation studies of all learning policies

(a) (b) (c)
Sample policy π mAP Loss weight policy α mAP Conf. threshold policy ς mAP

Linear increase 61.62 Constant 0.1 62.18 Constant 0.05 51.73

Linear increase†∗ 64.73 Constant 0.5 63.98 Constant 0.6 62.62

Linear decrease 53.47 Constant 1.0 63.21 Constant 0.9 58.61

Linear decrease† 59.99 Constant 2.0 54.68 Linear 0.3 → 0.5 62.38

Constant 60.46 Linear 0.1 → 1∗ 64.73 Linear 0.1 → 0.6 64.10

Linear 0.1 → 2 61.17 arctan 0.1 → 0.6∗ 64.73

(d) (e) (f)
Augmentation policy A mAP Momentum Policy m mAP Initialisation mAP

No augmentation 55.41 Constant 0.999 60.07 Random init. 0.17

Augmentation with Aw , A∗
s 64.73 Constant 0.998 59.19 SWAV Init.∗ 64.73

Constant 0.9998 57.60 supervised init. 61.55

cos 0.998 → 0.9998∗ 64.73

The effectiveness of the introduced policies are verified via ablation. All studies are conducted for the fold1 split at 50% Labelled Ratio in the
PLD setting. The symbol ∗ represents the default settings which we use in the system and the † symbol denotes the presence of warm-up and
cool-down phases. Only one policy is varied for each study to isolate the effect. ‘Constant’ represents ‘no curriculum’ learning where the related
variable or unlabelled sample pool stays constant
The bold and underlined values represent the best and second-best results

Table 3 Comparison with state-of-the-art methods on MS-COCO val2017 with PLD setting

Method Venue 1% PLD 5% PLD 10% PLD

STAC (Sohn et al., 2020b) Arxiv’20 13.97±0.35 24.38±0.12 28.64±0.21

Instant-teaching (Zhou et al., 2021) CVPR’21 18.05±0.15 26.75±0.05 30.40±0.05

Humble-teacher (Tang et al., 2021) CVPR’21 16.96±0.38 27.70±0.15 31.61±0.28

Unbiased-teacher (Liu et al., 2021) ICLR’21 20.75±0.12 28.27±0.11 31.50±0.10

Soft-teacher (Xu et al., 2021) ICCV’21 20.46±0.39 30.74±0.08 34.04±0.14

DETReg (Bar et al., 2022) CVPR’22 14.58±0.30 24.80±0.20 29.12±0.20

MUM (Kim et al., 2022) CVPR’22 21.88±0.12 28.52±0.09 31.87±0.30

Our supervised baseline – 11.31±0.30 21.33±0.20 26.34±0.10

Ours – 17.36±0.22 29.84±0.21 35.08±0.34

The mAP50:95 standard COCO evaluation metrics on the COCO validation set are reported by models trained on 1, 5, 10% Labelled Ratio under
PLD settings. The results are the average of 5 experiments with different random seeds. Our supervised baseline refers to our model without the
unlabelled branch, leaving a Deformable DETR setup with ResNet-50 backbone identically initialised to our full method for fair comparison.
Note that our full method demonstrates competitive or superior performance in comparison, indicating that concepts introduced here for wildlife
detection are still applicable to general object detection
The bold and underlined values represent the best and second-best results

unlabelled data is available. Yet, it is nevertheless both con-
ceptually and practically applicable to mainstream object
detection. The concept of slowly expanding detection capa-
bilities of a model in a policy-controlled way to learn highly
complex and variable object appearance is indeed not lim-
ited to animal detection. In order to experimentally support
any claim of wider applicability, we next evaluated our
proposed method on the popular MS-COCO dataset under
a low data regime (PLD) and with extra unlabelled data
(FLD). For a fair comparison, we followed the evaluation
approach used by STAC (Sohn et al., 2020b) using their

splits between labelled and unlabelled data for PLD set-
tings. We trained our model with Labelled Ratios of 1%,
5%, and 10% evaluated on the standard COCO val2017
with the mAP50:95 metrics. For the FLD option, we trained
our model using the fully labelled COCO train2017, plus
additional unlabelled COCO unlabeled2017 following
the same procedure described in (Sohn et al., 2020b; Yang
et al., 2021; Liu et al., 2021; Tang et al., 2021; Zhou et al.,
2021; Xu et al., 2021; Kim et al., 2022). As shown in Tables 3
and 4, we achieve leading state-of-the-art results for a 10%
PLD Labelled Ratio and the FLD setting. At other ratios, our
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Table 4 Comparison with state-of-the-art methods on MS-COCO
val2017 with FLD Setting

Method Venue mAP

STAC (Sohn et al., 2020b) Arxiv’20 39.21

ISMT (Yang et al., 2021) CVPR’21 39.64

Unbiased-teacher (Liu et al., 2021) ICLR’21 41.30

Humble-teacher (Tang et al., 2021) CVPR’21 42.37

Instant-teaching (Zhou et al., 2021) CVPR’21 40.20

Soft-teacher (Xu et al., 2021) ICCV’21 44.50

MUM (Kim et al., 2022) CVPR’22 42.11

Ours – 45.30

The mAP50:95 standard COCO evaluation metrics on the COCO valida-
tion set are reported by models trained on all the labelled train2017
set plus additional unlabelled unlabeled2017. Our method domi-
nates SOTA methods
The bold and underlined values represent the best and second-best
results

benchmarks remain competitive: for 5% PLD our method
trails only 0.90% below the best result by SoftTeacher, and
for 1% PLD it scores 4.52% below the SOTA MUM model.
This demonstrates that the introduced concepts of dynamic
control in curriculum learning are certainly applicable to
a wider domain of general object detection. We find that
our curriculum learning method is less sensitive to hyper-
parameters. In practice, the hyper-parameter configurations
for COCO dataset3 are inherited from the hyper-parameters
that are fine-tuned on the PanAfrica dataset. They can indeed
outperform the state-of-the-art under certain configuration
after searching. Further research will be required to stipulate
in how far truly dataset-optimal hyper-parameterisation of
dynamic training regimes such as the one presented is com-
putationally feasible. For practical purposes, it is important
to note that hyper-parameter transfer does not lead to learn-
ing collapse or vastly degraded performance aswill be shown
again in our experiments outlined in the next section.

7 Experiments on the PASCAL VOC Dataset

In order to understand applicability to mainstream object
detection further, we utilise another popular object detec-
tion benchmark to evaluate our model. We follow the
standard FLD evaluation process on the PASCAL VOC
dataset ( Everingham et al. (2010)), as in (Sohn et al.,
2020b; Liu et al., 2021; Zhou et al., 2021), with the
performance of our model reported on VOC07-test,
trained using VOC07-trainval as the labelled train-

3 To handle the large size of MS-COCO, the training epochs are
adjusted to range from 50 to 100 depending on the labelled ratio so
that the total training iteration is fixed to 180k, while keeping the other
hyper-parameters of the policy the same.

ing set, and VOC12-trainval or VOC12-trainval +
COCO20cls4.

As shown in Table 5, we explore two different policy-
parameter settings in the experiments, (i) without policy-
parameter searching5 (with † notation in the Table), and
(ii) with pseudo-label analysis and policy-parameter search-
ing. For VOC12, Row 13 shows the leading 57.02% mAP
and the second best 81.89 % mAP50, and for VOC12 +
COCO20cls, Row13 offers the second best 58.28%mAPand
competitive 81.82%mAP50 among state-of-the-art methods.
It also achieves a 14.89% and 16.15% gain in mAP over the
supervised baselines, respectively, by simply adopting the
configuration from the MS-COCO experiments. This further
supports the argument that policy and parameter transfer does
not lead to learning collapse or vast performance degradation.

When we systematically analyse the pseudo-labels and
performpolicy-hyper-parameter finetuning6, the performance
of our method can be boosted, achieving state-of-the-art
57.65% mAP for VOC12 and 82.34% mAP50 for VOC12
+ COCO20cls (row 14 in Table 5).

Our experimental results on PASCAL VOC suggest i) the
proposedmethod can have applications beyond animal detec-
tion, ii) it does not needheuristic tuning for hyper-parameters,
since merely adopting the COCO ones to PASCAL VOC
can lead to virtuous training cycles and achieve competitive
results.

8 Experiments on the Bees Dataset

The Bees dataset7 contains approximately 5K images of bees
captured in hives. The bees and pollen that appear in each
image are annotated with Bounding boxes and most of the
data includes crowded sceneswhere bees are densely located.

In this experiment, we consider only PLD settings as we
do not have extra bee data. We randomly spilt 80% of the
whole data as a training set and use the rest as a testing
set. For the training set, we construct three different PLD
labelled ratios sampled with five different random seeds,
where the labels are randomly masked so that the propor-
tion of labelled data is 5%, 10%, and 20%, respectively. We
evaluate the supervised baseline (using the same baseline
approach as for MS-COCO) and our proposed model over
five data folds for 5%, 10%, and 20% labelled ratios and

4 This set is tailored from MS-COCO dataset, which keeps the same
20 categories as PASCAL VOC as the unlabelled training set.
5 We heuristically adopt the policy-parameter fine-tuned for MS-
COCO.
6 For reproducibility of this experiment, the exact parameters used
were: π Linear Increase with warm-up and cool-down phases; linear
increase α 0.1 → 1; arctan increase ς 0.2 → 0.5.
7 Available at https://lila.science/datasets/boxes-on-bees-and-pollen.
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Table 5 Comparison on PASCAL VOC dataset

No. Method Venue VOC12 VOC12+COCO20cls
mAP50 mAP mAP50 mAP

1. Supervised – 72.63 42.13 72.63 42.13

2. STAC (Sohn et al., 2020b) Arxiv’20 77.45 (+4.82) 44.64 (+2.51) 79.08 (+6.45) 46.01 (+3.88)

3. ISMT (Yang et al., 2021) CVPR’21 77.23 (+4.60) 46.23 (+4.10) 77.75 (+5.12) 49.59 (+7.46)

4. Instant-teaching (Zhou et al., 2021) CVPR’21 79.20 (+6.57) 50.00 (+7.87) 79.00 (+6.37) 50.80 (+8.67)

5. Humble-teacher (Tang et al., 2021) CVPR’21 80.94 (+8.31) 53.04 (+10.91) 81.29 (+8.66) 54.41 (+12.28)

6. Unbiased-teacher (Liu et al., 2021) CVPR’21 77.37 (+4.74) 48.69 (+6.56) 78.82 (+8.19) 50.34 (+8.21)

7. Unbiased-teacher-v2 (Liu et al., 2022) CVPR’22 81.29 (+8.66) 56.87 (+14.74) 82.04 (+9.41) 58.08 (+15.95)

8. MUM (Kim et al., 2022) CVPR’22 78.94 (+6.31) 50.22 (+8.09) 80.45 (+7.82) 52.31 (+10.18)

9. Labelmatch (Chen et al., 2022a) CVPR’22 85.48 (+12.85) 55.11 (+12.98) – –

10. DSL (Chen et al., 2022b) CVPR’22 80.70 (+8.07) 56.80 (+14.67) 82.10 (+9.47) 59.80 (+17.67)

11. ACRST (Zhang et al., 2022) AAAI’22 81.11 (+8.48) 54.30 (+12.17) – –

12. Dense-teacher (Zhou et al., 2022) ECCV’22 79.89 (+7.26) 55.87 (+13.74) 81.23 (+8.60) 57.52 (+15.39)

13. Ours† 81.89 (+9.26) 57.02 (+14.89) 81.82 (+9.19) 58.28 (+16.15)

14. Ours 82.09 (+9.46) 57.65 (+15.52) 82.34 (+9.71) 58.85 (+16.72)

In experiment, VOC2007-trainval is used as the labelled set and VOC2012-trainval used as the unlabelled set for all the models. The
results are reported based on the evaluation on VOC2007-test. † represents the hyperparameters that are directly inherited from COCO without
further finetuning efforts.
The bold and underlined values represent the best and second-best results

Table 6 Experimental results on bees dataset

Method Labelled ratio mAP mAP50 mAP75

Supervised baseline 5% 26.15±1.47 65.24±2.55 14.96±1.83

Ours 5% 32.81±1.40 (+6.66) 73.19±2.93 (+7.95) 22.12±0.89 (+7.16)

Supervised baseline 10% 35.40±1.15 75.82±1.31 27.16±1.91

Ours 10% 40.47±0.25 (+5.07) 79.15±0.60 (+3.33) 35.83±1.05 (+8.67)

Supervised baseline 20% 42.24±1.33 82.34±1.65 37.99±2.12

Ours 20% 45.17±1.02 (+2.93) 83.79±0.89 (+1.45) 44.09±0.85 (+6.10)

Mean and standard deviation on test set portion evaluated over 5 data folds for 5%, 10%, 20% labelled ratio are reported. Supervised baseline refers
to the same model trained on the labelled data only. Note that we adopt the policy hyper-parameters optimised for the PanAfrica dataset on these
experiments.

Table 7 Experimental results on snapshot serengeti dataset

Labelled fold Supervised baseline Ours
mAP mAP50 mAP75 mAP mAP50 mAP75

5% 0 52.13 74.94 56.45 55.40 78.48 59.20

1 53.31 75.75 57.34 56.11 78.16 60.18

2 52.05 74.98 56.12 55.38 78.17 59.61

avg. 52.50 75.22 56.64 55.63 78.27 59.66

10% 0 56.24 78.00 60.83 59.56 80.92 63.86

1 55.96 78.46 60.95 59.14 80.75 63.47

2 55.89 78.87 60.81 58.95 80.61 63.60

avg. 56.03 78.44 60.86 59.22 80.76 64.33

20% 0 58.98 81.19 64.26 60.97 82.53 66.04

1 59.21 80.96 64.17 61.39 82.78 66.32

2 59.74 81.51 64.81 62.12 82.90 67.26

avg. 59.31 81.22 64.41 61.49 82.74 66.54

Three folds and their average results on test set evaluated are reported for 5%, 10%, 20% labelled ratio. Supervised baseline refers to our model
without any aspect of the unlabelled branch. Note that we adopt the policy hyper-parameters optimised for the PanAfrica dataset on these experiments
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report the mean and standard deviation of mAP. In Table 6,
we demonstrate a substantial performance boost by apply-
ing our policy-guided semi-supervised learning, especially
under lower data regimes, with 6.66% gain over the baseline
in the 5% PLD setting.

9 Experiments on the Snapshot Serengeti
Dataset

We finally conducted experiments on sparsely labelled ver-
sions of the Snapshot Serengeti dataset8 (Swanson et al.
(2015)) in which overall around 78K images (out of 7.1M)
are labelled with instance-level bounding boxes that allow us
to test our proposed method. We conducted our experiments
under PLD settings where the model was trained with 5%
and 10% of the labelled data out of 78K labelled images.

As shown in Table 7, substantial boosts of mAP, mAP50,
mAP75 can be observed under limited label regimes when
comparing the supervised baseline (composed as before for
the MS-COCO and Bees datasets) to our full system. More-
over, ourmethod can reach similar or better performance than
the supervised baseline while using only half of the labelled
data.

To provide some further context to the wider literature
on this dataset, we note that using only 20% of the labels
our method’s performance at mAP50 of 82.7 comes close to
published results for fully supervised training with 100% of
the Snapshot Serengeti labels using Mask-RCNN (Ibraheam
et al., 2021) at mAP50 of 85.7 and significantly outperforms
full label training with Faster-RCNN Ibraheam et al. (2021)
at mAP50 of 73.2 or Context-RCNN (Beery et al., 2020) at
mAP50 of 55.9.

Finally, we note that the multi-dataset learning approach
of the MegaDetectorV5a* (Beery et al., 2019) leading to
mAP50 of 90.65 on this dataset prevents fair apple-to-apple
comparison with our method. However, the multi-dataset
training regime is clearly highly effective in utilising label
information across animal species boundaries. Future work
into benchmarking our presented work in such multi-dataset
training settings seems a promising avenue to improve results
for species-specific and species-agnostic detectors further.

10 Conclusion

In this paper, we introduced an end-to-end dynamic cur-
riculum learning framework for semi-supervised detection in
sparely labelled datasets unlocking information in the unla-
belled data portions. We demonstrated that bipolarity in the
behaviour of cyclical student-teacher training regimes can

8 Available at https://lila.science/datasets/snapshot-serengeti.

lead to either effective virtuous or collapsing vicious train-
ing loops. We discussed the importance of expanding model
coverage of new data slowly and in a controlled way to keep
expanding detector and label quality without collapse. To
achieve this, we proposed five policies to guide the dynamics
of training and promote steady, simultaneous improvements
to the student detector, the teacher detector, and the qual-
ity of the pseudo-labels. We showed that the described
approach is effective in significantly advancing the state-of-
the-art in great ape detection performance when evaluated
under various settings on the large Extended PanAfrican
Dataset. Our method is also shown to be beneficial to sparse
labelling versions of other datasets without specialising
hyper-parameterisations or policies. We have demonstrated
this for the Bees and Snapshot Serengeti datasets in the
animal domain. Finally, we showed that evaluation on gen-
eral object detection tasks inMS-COCO and PASCAL-VOC
achieves competitive or superior performance over existing
state-of-the-art methods.

We conclude that the work holds the promise for dynamic
curriculum learning controlled by training policies to be
applied effectively to sparsely labelled wildlife data and
thereby help unlock the full wealth of information so far
widely sealed in steadily growing unlabelled camera trap
archives.
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