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Abstract—At present, deep learning classification researches of 

hyperspectral usually focus on optimizing the classification model. 

In essence, most of them did not take special measures for the 

characteristics of the small sample and imbalanced category 

distribution of hyperspectral itself. Aiming at the problems of 

small samples and imbalanced category distribution, we propose a 

dynamic data selection algorithm. For one thing, this algorithm 

can dynamically select the samples that need data augmentation 

most. For another, it can be nested in Stochastic gradient descent 

(SGD) and can be easily implemented. Furthermore, there will be 

differences between the original sample and the transformed 

sample because of data augmentation transformation, which 

obstructs trained models' performance. Aiming at the difference 

between the augmented sample and the original sample, we define 

the similarity score and introduce the Siamese training structure 

to obtain the similarity score by which we reduce the difference 

through the SGD algorithm. Experiments show that the method 

proposed in this paper improves the classification results of the 

backbone training model when using data augmentation for 

training. 

 

Index Terms—Hyperspectral (HSI) classification, data 

augmentation (DA), Siamese structure, convolutional neural 

network (CNN). 

I. INTRODUCTION 

YPERSPECTRAL images (HSIs) have hundreds of 

almost continuous spectral bands, providing a wealth of 

spectral information. Since the spectra reflected by 

different ground objects have different characteristics, and 

HSIs happen to have much spectral information, researchers 

can use their spectral characteristics to classify ground objects. 

HSI classification is widely used in agricultural statistics, 

mineral reconnaissance, military surveillance, and other 
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industries. 

In the literature [14]-[22], many algorithms have been 

proposed for HSI preprocessing and classification, using 

supervised, semi-supervised and unsupervised methods. In the 

literature [32], augmented linear mixing model (LMM) is 

proposed to address spectral variability in inverse problems of 

hyperspectral unmixing. In the literature [33], nonconvex 

modeling has proven to be a feasible solution that reduces the 

gap between challenging HS vision tasks and currently 

advanced intelligent data processing models. In the literature 

[34], a new hyperspectral dimensionality reduction method 

called iterative multitask regression (IMR) is proposed to 

consider the labeled and unlabeled data. 

In recent years, deep learning methods have been widely 

used in hyperspectral image classification. In the literature [1], 

a stacked autoencoder (SAE) is used to extract the spatial 

spectra features of HSI, and then the extracted features are input 

into a logistic regression to obtain the classification results. In 

the literature [2], a deep belief network (DBN) is used to extract 

the spectral features of a single pixel. In the literature [3], a 

convolutional neural network (CNN) is used to extract the 

spatial-spectral features of HSI. In the literature [4], the 

restricted Boltzmann machine (RBM) is used for HSI 

classification with a spatial-spectral combination. In the 

literature [5], the idea of recurrent neural network (RNN) is 

combined with CNN models to produce the R-CNN series 

models. 

CNN is widely used in HSI feature extraction tasks among 

these deep learning structures due to local perception, weight 

sharing, and other features. In literature [6], two-dimensional 

CNN is used as the basic module. Combined with multi-task 

learning strategies, two data sets are input for one model 

training, so that the network itself has more diverse feature 

recognition capabilities. Reference [7] introduces the attention 

mechanism, uses three-dimensional CNN to extract the 

spatial-spectral features of the data, and then performs feature 

fusion. Literature [8] uses multi-scale features brought by 

convolution kernels of different sizes and dilated convolutions 

to classify HSI. All these above show the commonality and 

importance of CNN in the feature extraction process. 

However, in many current HSI classification algorithms 

using deep learning, researches are often limited to the 

classifiers (deep learning models), ignoring the data 

distribution characteristics of HSI itself. First of all, HSI 
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classification is different from general color picture 

classification. Color pictures are often easier to obtain and label, 

while the pixel of HSI data cannot be intuitively determined 

and is not easy to obtain. At the same time, in practical 

applications, the process of manually labeling training samples 

is often cumbersome and costly. As a result, only a limited 

number of training samples can be obtained, so it is necessary 

to perform proper data augmentation (DA) during 

classification.  

Secondly, due to the randomness and unpredictability of the 

ground truth distribution, HSI data cannot guarantee the 

uniform distribution of the number in each category. For 

example, in the Indian pines (IP) data set, there are only 20 oats 

categories with the smallest samples, while there are 2455 soy 

mint mixed categories with the largest samples. In the Pavia 

University (PU) data set, the number of grass categories with 

the largest samples is more than 20 times the number of 

shadows with the smallest samples. This shows that the 

imbalanced distribution of HSI samples is a common 

phenomenon. For ordinary color image data sets, such as the 

CIFAR100 data set, the number of samples in each category is 

artificially set to be equal. The imbalance of HSI data will make 

the deep learning models fit each category differently, making 

it difficult for the models to identify categories with small 

numbers. Therefore, DA needs to be adjusted according to the 

actual situation of the target samples.  

Furthermore, since DA uses certain transformations on the 

original sample to generate additional samples, and deep 

learning models are often sensitive to small changes, DA will 

inevitably create a certain "distance" between the original 

sample and the augmented sample, which will interfere with the 

training result. The transformed samples can indeed provide 

information with diversity. However, the transformed samples 

usually deviate too much from the raw samples, which is 

redundant. Under this circumstance, the training result will be 

disturbed. This paper tries to achieve a dynamic balance 

between the acquisition of diverse information and the 

deviation of transformed samples from raw samples. This point 

is often overlooked in many HSI classification algorithms. 

In summary, the HSI classification algorithm's improvement 

should consider the classification model and take specific 

optimization measures based on the characteristics of the HSI 

itself. 

In response to the above problems, this paper proposes a 

Siamese Structure dynamic data augmentation (SSDDA) 

method for HSI deep learning classification. This method 

considers the characteristics of small samples and imbalanced 

categories of HSI data. The specific innovations are 

summarized as follows: 

1) Given the uneven distribution of HSI sample categories, 

this paper designs a dynamic sample selection algorithm, 

enabling the model to dynamically select the original samples 

that need to be augmented in each batch during training, and 

balances the model’s response to different categories, thereby 
improving the fitting degree of the model for some categories 

with a small number. The comprehensive classification results 

of the deep learning model are thus improved. 

2) Aiming at the problem that the "distance" between the DA 

sample and the original sample will interfere with the model, 

this paper defines the similarity score to measure the degree of 

similarity between the DA sample and the original sample. At 

the same time, the Siamese structure is used to get the similarity 

score. Combined with Stochastic gradient descent (SGD), after 

training iterations, the difference between the DA sample and 

the original sample is reduced, and the interference of the DA 

sample on the model is weakened, making it easier for the 

model to fit the original sample. 

3) To be able to perform DA more flexibly, this paper uses 

convolution operation to perform DA on the original sample. 

With the Siamese structure, the parameters of the convolution 

kernel can be dynamically updated, thereby generating DA 

samples that are more similar to the original sample, which 

further reduces the interference caused by difference. 

The rest of this paper is summarized as follows. First, section 

Ⅱ describes the proposed method. Then, section Ⅲ analyzes the 
experimental results. Finally, the conclusion is drawn in 

Section Ⅳ. 
 

II. PROPOSED METHOD 

In this part, first, we define the similarity score to measure 

the difference between the augmented samples and the original 

samples. Then the concept of Siamese Structure is introduced. 

Based on the above, this paper proposes a dynamic data 

selection algorithm for data augmentation and a Siamese 

structure data augmentation method to reduce similarity scores. 

Part C, D, E, and SGD make up the whole process. The overall 

process is shown in Fig. 2. 

A. Similarity Score 

DA transforms the original data block to augment the 

number of samples, and the transformation inevitably leads to 

difference between the new samples and the original samples. 

The similarity score is used to measure the similarity between 

the original sample and corresponding augmented sample that 

belong to the same category. 

Denote the original sample data block as
M N C

x R
 

 , where M , 

N  and C  represent the height, width, and number of channels 

of the data block respectively. The new sample is recorded as

' M N C

x R
 

 . Let the number of sample categories be P . 

Assuming that the classification model is a CNN, and the last 

layer is the soft-max layer corresponding to the number of 

sample categories, the classification model can be defined as a 

function: 1( ) P
y f x R

=  , whose output is the soft-max result of 

the model. The final category can be obtained after an argmax 

layer. Let y  be the soft-max result of the original sample, '
y

be the soft-max result of the new sample. Concerning category 

cross entropy, the similarity score of x  and 'x  is defined as: 

                      ( ) '( )

0

1

log
P

i i

i

S y y
=

= −                                   (1) 
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The larger 
0S  is, the greater the difference between y and 

'
y  is. For the soft-max results of a set of m  original samples 

and their one-to-one corresponding new samples , ' P m
Y Y R

 , 

the average similarity score of the two sets of data is defined as: 

             ( ) '( )

1 1

1
log

m P
i i

average j j

j i

S Y Y
m = =

= −                              (2) 

 

B. Siamese Structure 

Siamese can be referred to as conjoined twins, which means 

that two humans live together, sharing the same body except for 

the head and lower body. Analogously, the Siamese network 

structure is realized by sharing weights between two neural 

networks. 

As shown in Fig. 1, the overall network structure has two 

inputs. Neural Network 1 and Neural Network 2 share weight 

parameters. Due to different inputs, the outputs of the two 

sub-networks are also different, and loss is used to indicate the 

difference between the two results. Therefore, the Siamese 

network structure can be used to measure the similarity 

between two different image samples. 

 
 

C. Dynamic Augmentation Data Selection Method 

When using SGD to train a model, the original data set is first 

divided into a training set and a testing set. Then, during an 

epoch of training, the program randomly selects a batch of data 

from the training set. However, due to the uneven distribution 

of the sample categories, the category distribution in this batch 

of training data is also uneven. Therefore, DA needs to be 

performed on the sample with the least number of occurrences. 

This paper designs an algorithm to dynamically select the 

samples that need DA most in a batch. 

Define the sample in a batch as batchX , its corresponding label 

is batchY . The number of planned DA samples is n , which 

satisfies 1 n m  . DAX  and DAY  are empty lists which store 

chosen samples and their labels respectively. newX  and newY  

represents the lists merged by the augmented samples and the 

original samples. cnt is used to count the number of each 

category, and its initial subscript ( index ) is set to be 0. The first 

dimension of cnt refers to each category and its corresponding 

count. The second dimension of cnt refers to the total number 

of categories. 

In summary, the dynamic augmentation data selection 

method gets the raw training batch as inputs. During the 

selection process, the samples in this batch which most need 

augmentation are selected and augmented. Finally, the outputs 

are the augmented samples and the merged new training batch. 

In the standard HSI small sample classification method, 

when DA is used, DA samples are often artificially added to the 

original training set before training. For example, in experiment 

4 of literature [9], the number of samples per category of the IP 

data set is pre-added to 150 or more. Such DA operation is not 

combined with the model for dynamic optimization, and the 

process is cumbersome. Algorithm 1 proposed in this paper can 

be nested in the batch processing process of the SGD algorithm 

and plug and play after being packaged as a python class, which 

is convenient to use. At the same time, the algorithm takes into 

account the characteristics of the imbalanced distribution of 

HSI data samples and preferentially selects samples with a 

small number for DA, which increases the comprehensive 

classification performance of the model. 

 
 

D. Siamese Structure Data Augmentation Method 

As shown in Fig. 2, after utilizing algorithm 1, the training 

process uses a Siamese structure with three branches sharing 

weights. The first branch takes samples selected by algorithm 1 

that need to be augmented. They are then inputting to the 

network of weight sharing. At the second branch, the 

augmented samples are generated after convolution 

transformation and input to the network model of weight 

sharing to produce the soft-max classification result. Through 

integrating branch one and branch two, the average similarity 

score is acquired using formula (2). At the same time, the raw 

batch samples and augmented samples are input into the 

Algorithm 1 Dynamic augmentation data selection method 

Input: 
m M N C

batch
X R

   , 
1m

batch
Y R

 , [1, ]n m , 

DAX  , DAY  , 2 P
cnt R

 , 0index = . 

Output: 
n M N C

DA
X R

   , 
1n

DA
Y R

 , 
( )n m M N C

new
X R

+    , 

( ) 1n m

new
Y R

+  . 

1: According to the number of each category in batchX , update 

the value in cnt . 

2: Sort in ascending order according to the second value of 

each element in cnt . 

3: Find the first element in cnt in which the second value is 

not equal to 0. Update index . 

4: Traverse the elements in DAX and DAY . If the tag 

corresponding to an element pair is equal to [ ,0]cnt index , then 

add it to DAX  and DAY , do [ ,1] [ ,1] 1cnt index cnt index= − . 

5: Repeat steps 3 and 4 until the length of DAX and DAY  is 

equal to n . 

6: Perform convolution transformation on DAX . 

7: Merge DAX  and batchX , DAY  and batchY  to get newX , newY . The 

algorithm ends. 

 

 
Fig 1. Illustration of the Siamese Structure. It comprises two inputs and two 

sub-networks sharing weights. The outputs of the sub-networks constitute 

the loss function. 
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network to produce the general category cross-entropy loss 

function. Finally, the similarity score and the loss function are 

linearly added to perform gradient descent optimization. The 

final loss function is defined as: 

        ( ) ( )

1 1

1
( log )

m P
true i predict i

new average j j

j i

loss S Y Y
m


= =

= + −        (3) 

Among this, true

j
Y  refers to the one-hot array of true labels 

corresponding to newX . predict

j
Y refers to the predicted soft-max 

value of newX .   is a constant, which is set to be 0.1 in this paper. 

When predicting, as shown in Fig. 3, it is the same as the 

general situation. Only the backbone network structure that has 

been trained is used. 

This method considers the difference between the new 

sample and the original sample and tries to reduce this 

difference through gradient descent, which weakens the 

interference of DA samples for model training and strengthens 

its positive effect on the model. In this way, the classification 

results of the backbone model are improved. 

E. Convolutional Transformation for Data Augmentation 

HSI data is often augmented by transformation methods such 

as rotate, flip, and noise. However, this paper utilizes the 

convolutional transformation to generate augmented samples. 

The main advantage of convolutional transformation is that the 

convolutional kernel can be updated throughout the training 

process and thus can generate augmented samples with more 

minor differences relative to the deep classifier. In this way, the 

DA can be flexible. 

The convolutional transformation is depicted by formula 

(4)[28]: 
1 1 1

( )( )( )

( 1)

0 0 0

( )
i i iP Q R

xyz pqr x p y q z r

ij ij ijm i m

m p q r

v f b w v
− − −

+ + +
−

= = =

= +           (4) 

Where m represents the feature map in layer 1i −  connected to 

the current jth feature map. iP  and iQ  are the height and width 

of the space convolution kernel, respectively. iR is the depth of 

the convolution kernel in the spectral dimension. pqr

ijm
w  is the 

weight at coordinate ( , , )p q r  connected to the mth  feature map.

ijb  is the bias of the jth  feature map at the ith  layer. f  is the 

activation function. 

The input of convolution transformation is the samples 

selected from the training set, and the output is the augmented 

samples. 

 

 

 

 

 

Fig 3. Siamese Structure dynamic data augmentation method when predicting. The testing process is no different to common testing process. The raw batch 

goes through the trained model to get the classification result. 

 

Fig 2. Siamese Structure dynamic data augmentation method when training. Algorithm1 is first utilized to generate augmented samples and the merged new training 

batch. Then three sub-networks sharing weights are employed to produce the new loss function for SGD optimization. 
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III.  EXPERIMENTS AND DISCUSSION 

In this part, we first introduce four hyperspectral data sets 

used to study the method's performance in this paper. Then the 

experiment arrangement and hyper-parameter settings are 

carried out. Finally, experiments are conducted, and the results 

are discussed. 

 

A. Dataset Description 

The IP (Indian Pines) data set was first applied to the study of 

hyperspectral data classification. The spatial domain size is 

145×145, and the spatial resolution is about 20m. After 

processing, there are 200 bands as the research object of HSI 

classification. The IP data set has 21,025 pixels, but only 

10,249 pixels are pixels of specific features, and the remaining 

10,776 pixels are background pixels. In actual classification, 

only 10249 feature pixels are used as samples, and there are 16 

categories. 

The SA (Salinas) data set has a spatial domain size of 

512×217 and a spatial resolution of about 3.7m. After 

processing, there are 204 bands as the research object of HSI 

classification. The SA data set has 111104 pixels, of which only 

54129 pixels are pixels of specific features, and the remaining 

56975 pixels are background pixels, a total of 16 categories. 

The PU (Pavia University) data set has a spatial domain size 

of 610×340 and a spatial resolution of about 3.7m. After 

processing, there are 103 bands as the research object of HSI 

classification. The PU data set has a total of 207,400 pixels, of 

which only 42776 pixels are specific label pixels, and there are 

a total of 9 categories. 

The KSC (Kennedy Space Center) data set has a spatial 

domain size of 512×614 and a spatial resolution of about 18m. 

After processing, there are 176 bands as the research object of 

HSI classification. The KSC data set has 314,368 pixels, of 

which only 5,211 pixels are used as classification pixels, and 

there are 13 categories in total. 

The color map of the ground truth distribution of the four 

data sets is shown in Fig. 4-7, and the category data is shown in 

Table I-IV. 

 

B. Experiment Arrangement 

This paper uses the above four HSI data sets for experiments 

to verify the effectiveness of this method. The software 

environment of the system is python 3.7.1, tensorflow2.4.1.  All 

experiments were performed on Google AI's Colaboratory 

platform, using GPU acceleration. All data sets were processed 

with mean-variance normalization and PCA (Principal 

component analysis) dimensionality reduction before the 

experiment, down to 30 bands. The backpropagation algorithm 

uses the SGD method. The classification evaluation index 

adopts OA, AA, and Kappa. All experiments were repeated 5 

times and averaged.  

First, a parameter study is performed. This paper studies the 

impact of different batch sizes, DA ratios, and the combination 

of L2 regularization on the classification results. Then, the 

adaptability of the SSDDA method is studied on five standard 

CNN models using the most unevenly distributed set: IP and 

 
Fig8. Net to be trained. The net is composed of six 3-D convolution kernels with different dilation rates and one jump connection, a fully connect layer and a soft-max 

layer 

 

 

 
Fig 4. IP ground truth                               Fig5. SA ground truth        Fig6. PU ground truth              Fig7. KSC ground truth 
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PU. Next, SSDDA is compared with some state of art 

classification and augmentation methods. In the ablation study, 

to verify the performance of the Dynamic augmentation data 

selection method in improving the classification results, this 

paper uses three data sets of IP, PU, and KSC to take different 

training ratios for comparison experiments. To verify the 

effectiveness of the Siamese structure, we also use three data 

sets of IP, PU, and KSC to take different training ratios for 

comparison experiments. Finally, to study the effectiveness of 

convolution as a DA transformation, we use the SA data set and 

conduct a comparative experiment.  

The network to be trained in the parameter study and ablation 

study is a three-dimensional CNN network that uses dilated 

convolutions and a combination of multiple receptive fields. Its 

structure is shown in Fig. 8. 

 

C.  Hyperparameter Settings 

Unless otherwise specified, the learning rate of this 

experiment is set to be 43 10− . The data block size of the input 

model is set to be 9 9 30  .   in the loss function is set to be 

0.1. The batch size is set to be 16. The DA data ratio selected in 

the dynamic augmentation data selection method is set to be 1

4
. 

The experiment uses the L2 regularization method. The 

regularization parameter is set to be 32 10− . 
 

                                                                                                                                 

 

 

 

 
TABLE I 

NUMBER OF SAMPLES ON THE IP DATASET 

Class Name Number Total 

1 Alfalfa 46  

 

 

 

 

 

10249 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-moved 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-nottill 972 

11 Soybean-minttill 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 

 

TABLE III 

NUMBER OF SAMPLES ON THE SA DATASET 

Class Name Number Total 

1 Brocoli_green_weeds_1 2009  

 

 

 

 

 

54129 

2 Brocoli_green_weeds_22 3726 

3 Fallow 1976 

4 Fallow_rough_plow 1394 

5 Fallow_smooth 2678 

6 Stubble 3959 

7 Celery 3579 

8 Grapes_untrained 11217 

9 Soil_vinyard_develop 6203 

10 Corn_senesced_green_weeds 3278 

11 Lettuce_romaine_4wk 1068 

12 Lettuce_romaine_4wk 1927 

13 Lettuce_romaine_4wk 916 

14 Lettuce_romaine_4wk 1070 

15 Vinyard_untrained 7268 

16 Vinyard_vertical_trellis 1807 

 

TABLE II 

NUMBER OF SAMPLES ON THE PU DATASET 

Class Name Number Total 

1 Asphalt 6631  

 

 

 

42776 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare Soil 5029 

7 Bitumen 1330 

8 Self-Blocking Bricks 3682 

9 Shadows 947 
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D. Parameter Study 

1）Impact of Batch Size on Results 

To better understand and explore the SSDDA method, this 

part of the experiment studies the impact of different batch 

sizes on the SSDDA training results. The experiment uses the 

IP data set, the training set ratio is 15%, and the batch size is set 

to be 8, 16, 32, and 64, respectively. The result is shown in Fig. 

9. 

Observation results show that the batch size should not be 

too large or small when the training utilizes SSDDA. A small 

batch size will make the model fit slowly. Large batch size will 

cause a sizeable fitting step size, and the ideal result can hardly 

be achieved. It can be seen that the best batch size is 16 or 32. 

 

2）The Impact of Augmentation Data Ratio on the Results 

In order to explore the impact of the augmentation data ratio 

on the SSDDA results, this part of the experiment takes the 

augmentation data ratio respectively 1

16
, 1

8
, 1

4
, 1

2
, 1 on five 

different models for contrast experiments. Using IP and PU 

data set, the training proportion of IP is 10%. The training 

proportion of PU is 1%. The five different models are 3DCNN 

[10], Resnet [11], DCPN (Double Convolution and Pool Net) 

[12], MVN (Multi-View Net, noted in Fig. 8), DFFN (Deep 

Feature Fusion Net) [13]. The result is shown in Fig. 10 and Fig. 

11. The results show that the SSDDA method combined with 

L2 regularization is better than the pure SSDDA method on the 

three metrics. It can be seen that SSDDA and L2 regularization 

have good combining performance. 

It can be seen from the figures that OA changes with 

different DA ratios and models. In most cases, OA increases at 

first and then decreases as a whole. This is because as the 

proportion of DA samples increases, the number of samples 

selected by the dynamic selection algorithm is getting closer 

and closer to the number of the original batch, which weakens 

the algorithm's function to some extent so that the accuracy will 

decrease. 

To conclude, the best DA ratio depends on the specific class 

distribution and model. The best da ratios for IP and PU 

datasets on five different models are shown in Table V, 

considering OA and stability. 

 
 

3）The Effect of L2  Regularization on Training Results 

In order to study the influence of the combination of the 

SSDDA algorithm and other deep learning methods on the 

training results, this part of the experiment studies SSDDA with 

L2 regularization and pure use of the SSDDA method. The 

experiment uses IP data set, and the proportion of the training 

set is 10%. The results are shown in Table VI. 

The results show that the SSDDA method combined with L2 

regularization is better than the pure SSDDA method on the 

three metrics. It can be seen that SSDDA and L2 regularization 

have good combining performance. 

TABLE V 

BEST DA RATIO FOR DIFFERENT MODELS    

Data Set MODELS Train Num DA Num DA Ratio 

Indian pines 3DCNN  

 

428 

428 1 

RESNET 428 1 

DCPN 53 1/8 

MVN 107 1/4 

DFFN 107 1/4 

Pavia University 3DCNN  

 

1025 

256 1/4 

RESNET 128 1/8 

DCPN 512 1/2 

MVN 512 1/2 

DFFN 256 1/4 

 

 

TABLE IV 

NUMBER OF SAMPLES ON THE KSC DATASET 

Class Name Number Total 

1 Scrub 761  

 

 

 

 

 

5211 

2 Willow-swamp 243 

3 CP-hammock 256 

4 Slash-pine 252 

5 Oak/Broadleaf 161 

6 Hardwood 229 

7 Swap 105 

8 Graminoid-marsh 431 

9 Spartina-marsh 520 

10 Cattil-marsh 404 

11 Salt-marsh 419 

12 Mud-flats 503 

13 Water 927 
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E. Performance on Different Models 

This section evaluates the adaptability of SSDDA to 

different CNN models. We utilize five different CNN models, 

which are 3DCNN [10], Resnet [11], DCPN (Double 

Convolution and Pool Net) [12], MVN (Multi-View Net, noted 

in Fig. 8), DFFN (Deep Feature Fusion Net) [13]. Since PU and 

IP are the most unevenly distributed among the four datasets 

above, PU and IP have experimented in this part. 

 IP dataset is used with a 10% training ratio. PU dataset is 

used with a 1% training ratio. Finally, the SSDDA results are 

compared with common practice. According to the third part of 

the parameter study, the most suitable DA ratio depends on 

specific data distribution and model. The ratio is set as the 

values in Table V. 

The results of IP are shown in Table VII. Examples of 

classification maps are in Fig. 12-16. On 3DCNN, SSDDA has 

gained 1.82% OA compared with common practice. On Resnet, 

SSDDA has gained 7.83% OA compared with common 

practice. On DCPN, SSDDA has gained 0.14% OA compared 

with common practice. On MVN, SSDDA has gained 0.25% 

compared with common practice. Finally, on DFFN, SSDDA 

has gained 0.25% compared with common practice. 

The results of PU are shown in Table VIII. Examples of 

classification maps are in Fig. 17-21. On 3DCNN, SSDDA has 

gained 2.41 % OA compared with common practice. On Resnet, 

SSDDA has gained 1.79% OA compared with common 

practice. On DCPN, SSDDA has gained 0.84% OA compared 

with common practice. On MVN, SSDDA has gained 1.47% 

compared with common practice. Finally, on DFFN, SSDDA 

has gained 1.09 % compared with common practice. 

Fig. 12-16 and Fig. 17-21 demonstrate a significant 

improvement made by SSDDA compared with common 

practice on IP and PU. 

To sum up, the SSDDA method has excellent adaptability to 

different CNN models on datasets unevenly distributed. 
 

 

 

 

 
 

 
Fig. 9. Result of different batch size on the IP dataset 

 

TABLE VI 

L2 REGULARIZATION STUDY ON THE IP DATASET 

Metrics L2+SSDDA (%) SSDDA (%) 

OA 95.32±0.80 95.16±0.43 

AA 95.50±0.16 94.83±1.20 

Kappa 94.67±0.91 94.48±0.49 

1 100.00±0.00 99.46±1.08 

2 95.25±1.08 95.66±0.76 

3 94.19±1.28 91.76±1.21 

4 96.41±1.49 96.12±0.92 

5 95.55±1.41 96.38±0.67 

6 99.02±0.63 99.02±0.49 

7 98.46±1.88 93.85±5.76 

8 100.00±0.00 99.86±0.28 

9 84.44±21.78 84.44±14.66 

10 95.52±1.71 95.80±0.85 

11 93.63±0.66 93.86±0.91 

12 92.47±3.01 94.42±2.63 

13 92.57±2.60 93.22±2.41 

14 96.42±0.92 95.89±0.60 

15 96.16±1.41 92.27±2.30 

16 97.91±1.71 95.35±5.40 
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Fig. 10. Result of different DA ratio on the IP dataset 

 

 
Fig. 11. Result of different DA ratio on the PU dataset 

TABLE VII 

THE PERFORMANCE OF SSDDA METHOD ON FIVE CNN MODELS ON IP DATASET 

 3DCNN Resnet DCPN MVN DFFN 

Condition Common SSDDA Common SSDDA Common SSDDA Common SSDDA Common SSDDA 

OA 86.45±2.66 88.27±3.57 84.48±3.40 92.31±0.87 93.18±1.26 93.32±0.50 95.39±0.37 95.64±0.39 94.91±0.73 95.16±0.50 

AA 80.12±5.96 83.67±4.21 78.73±3.18 89.54±0.99 87.01±2.89 88.05±1.23 96.02±0.61 96.11±0.39 90.12±1.28 92.13±1.38 

kappa 84.45±3.06 86.55±4.11 82.23±3.91 91.23±0.99 92.23±1.44 92.39±0.58 94.74±0.42 95.02±0.44 94.19±0.83 94.48±0.57 

1 80.00±15.33 87.00±4.85 65.50±16.23 97.00±4.85 68.37±9.14 72.56±7.56 99.49±1.03 98.97±1.26 81.90±7.76 83.33±3.98 

2 83.25±4.40 87.02±3.65 77.09±5.11 89.80±1.59 91.21±1.79 92.29±1.51 94.02±1.11 94.54±0.96 96.08±0.52 95.49±0.61 

3 81.73±2.50 84.34±3.49 80.43±6.77 92.86±2.36 89.32±2.65 87.91±2.76 91.14±2.82 91.58±0.86 92.42±3.80 93.99±0.22 

4 63.03±11.16 67.58±7.44 59.73±5.05 74.57±3.27 80.19±5.83 80.86±1.91 92.19±1.90 95.05±1.49 88.13±7.56 85.33±3.14 

5 88.04±1.97 89.00±1.30 85.92±4.16 95.67±1.36 92.55±0.62 90.95±2.99 96.43±1.17 95.82±1.35 89.17±1.71 88.76±3.78 

6 98.18±1.26 98.81±0.79 98.20±0.83 99.18±0.46 98.92±0.56 98.95±0.26 98.91±0.47 99.45±0.21 96.56±3.48 98.57±0.47 

7 70.43±22.58 67.83±8.95 81.74±9.68 96.52±3.25 63.85±15.50 79.23±8.63 99.13±1.74 100.00±0.00 90.00±4.25 96.67±4.86 

8 99.02±1.11 98.74±0.70 95.91±3.47 99.53±0.25 99.95±0.09 99.73±0.27 99.86±0.28 99.72±0.37 98.79±1.04 98.70±1.16 

9 33.33±12.67 54.44±10.77 15.79±7.44 37.89±11.24 48.42±19.52 48.42±8.42 100.00±0.00 100.00±0.00 41.05±1.58 62.11±10.73 

10 79.77±3.59 79.82±4.05 76.77±5.75 86.45±1.49 89.30±2.73 92.01±2.01 94.12±0.62 94.80±0.53 91.15±0.96 90.26±1.45 

11 91.54±2.38 92.63±3.54 87.86±2.45 91.64±1.61 94.48±1.27 94.43±0.41 96.67±0.65 96.34±1.06 97.01±0.57 97.11±1.10 

12 53.08±8.76 62.69±12.87 76.13±6.03 86.98±3.23 87.12±3.19 87.27±2.35 91.49±2.59 91.98±1.45 89.08±4.20 90.00±2.40 

13 99.33±0.65 99.44±0.61 99.45±0.70 100.00±0.00 95.48±1.30 95.05±1.10 99.88±0.23 99.77±0.28 98.59±1.12 99.78±0.27 

14 96.70±1.84 95.12±3.03 93.10±3.75 98.42±1.02 99.40±0.30 98.87±0.74 96.63±0.63 97.01±0.80 97.67±1.02 97.95±0.67 

15 86.26±7.50 89.53±4.57 73.71±9.14 89.97±2.84 94.23±2.48 92.74±1.09 92.14±1.80 93.72±2.64 98.09±1.67 99.01±1.21 

16 78.18±17.42 84.77±11.95 92.41±4.08 96.20±3.30 99.32±0.91 97.50±1.96 94.19±5.93 89.07±6.44 96.28±3.71 96.98±3.79 
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Fig. 12. Classification map of 3DCNN using common practice(left) or 

SSDDA(right) on IP dataset 

 

 
Fig. 13. Classification map of Resnet using common practice(left) or 

SSDDA(right) on IP dataset 

 

 
Fig. 14. Classification map of DCPN using common practice(left) or 

SSDDA(right) on IP dataset 

 

Fig. 15. Classification map of MVN using common practice(left) or 

SSDDA(right) on IP dataset 

 

 
Fig. 16. Classification map of DFFN using common practice(left) or SSDDA(right) on IP dataset 

 

TABLE VIII 

THE PERFORMANCE OF SSDDA METHOD ON FIVE CNN MODELS ON PU DATASET 

 3DCNN Resnet DCPN MVN DFFN 

Condition Common SSDDA Common SSDDA Common SSDDA Common SSDDA Common SSDDA 

OA 82.44±2.34 84.85±2.44 86.45±2.90 88.53±1.42 94.33±0.57 95.17±0.54 92.67±0.60 94.14±0.60 92.13±0.99 93.22±0.68 

AA 66.85±2.75 71.27±3.90 76.43±5.29 78.56±3.21 91.21±0.69 92.62±0.63 88.80±1.05 91.01±1.21 86.54±1.33 88.85±1.75 

kappa 76.06±3.33 79.68±3.27 81.65±4.02 84.30±2.91 92.47±0.77 93.59±0.71 90.26±0.81 92.23±0.79 89.52±1.33 91.02±0.91 

1 82.53±2.86 85.99±2.53 94.36±2.87 93.89±2.44 93.57±0.59 95.29±1.25 91.05±1.42 92.99±2.66 90.68±3.78 91.71±1.42 

2 97.67±0.95 96.53±1.71 97.31±7.71 97.18±0.34 99.25±0.38 98.74±0.59 98.25±0.28 98.64±0.62 99.07±0.38 98.15±0.33 

3 49.07±6.48 54.41±8.98 59.70±8.09 68.65±6.09 83.46±2.16 81.54±2.43 79.56±2.88 80.59±1.06 81.90±7.19 86.64±4.08 

4 69.23±3.63 78.03±3.46 84.79±3.48 88.65±1.79 92.03±2.18 92.89±1.76 88.62±5.03 88.69±0.87 85.47±4.88 86.22±2.39 

5 97.67±1.15 97.76±2.25 96.63±5.04 99.22±0.85 98.97±1.31 98.25±1.38 99.65±0.32 99.56±0.46 99.76±0.38 99.92±0.08 

6 73.51±6.73 79.18±4.12 78.36±6.14 88.04±2.39 93.75±2.26 95.60±1.50 93.38±1.78 94.71±1.36 88.77±4.84 95.55±1.30 

7 53.67±7.30 65.15±16.02 55.46±1.76 70.09±8.15 90.72±2.28 92.18±1.87 90.80±3.61 96.01±1.89 83.30±5.29 87.61±4.20 

8 71.94±9.02 76.98±3.78 58.57±8.19 60.41±7.77 80.84±3.14 86.49±1.98 78.82±3.13 85.28±2.71 82.34±4.59 82.70±3.00 

9 63.84±5.65 73.59±5.19 62.73±19.34 47.32±20.90 88.30±9.53 92.64±1.45 79.10±6.09 82.58±9.43 67.52±7.14 71.18±9.38 
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Fig. 17. Classification map of 3DCNN using common practice(left) or 

SSDDA(right) on PU dataset 

 

 
Fig. 18. Classification map of Resnet using common 

practice(left) or SSDDA(right) on PU dataset 

 

 
Fig. 19. Classification map of DCPN using common practice(left) or 

SSDDA(right) on PU dataset 

 

 
Fig. 20. Classification map of MVN using common practice(left) 

or SSDDA(right) on PU dataset 

 

 
Fig. 21. Classification map of DFFN using common practice(left) or 

SSDDA(right) on PU dataset 

 
TABLE IX 

COMPARISON WITH STATE OF ART METHODS ON IP DATASET 
Methods SVM-GC SVM-LR SAE CNN-MRF CNN-AL-MRF CA-GAN DGCN RSSAN SSDDA 

OA(%) 62.34±3.34 69.34±3.56 67.35±2.30 75.31±1.25 89.79±1.82 89.22±0.78 88.92±1.45 89.84±0.23 90.06±0.76 

AA(%) 81.26±2.45 88.61±2.05 83.12±1.75 86.05±1.12 94.28±0.31 88.34±0.43 89.34±0.55 89.44±1.12 88.65±1.39 

Methods FLIP ROTATE NOISE OCCLUSION SSDDA 

OA(%) 83.16±0.95 86.40±1.51 92.14±2.75 93.68±1.84 94.14±0.60 

AA(%) 74.97±1.83 82.90±2.15 80.88±3.10 89.48±3.44 91.01±1.21 
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F. Comparison with State of Art Methods 

1）Comparison with Classification Methods 

In this part, the IP dataset has been experimented with. 

SVM-GC [23], SVM-LR [24], SAE [25], CNN-MRF [26], 

CNN-AL-MRF [27], CA-GAN [29], DGCN [30], RSSAN [31] 

are compared with SSDDA. The result is in Table IX. The 

training ratio is set to be 5%. 

The table above demonstrates that SSDDA acquires a 

competitive result compared with state-of-the-art methods 

regarding samples with a small number and uneven distribution 

like IP dataset. 

2）Comparison with Data Augmentation Methods 

In this part, the IP dataset has been experimented with. Data 

augmentation methods Flip, Rotate, Noise, Occlusion are 

compared with SSDDA. The result is in Table IX. The training 

ratio is set to be 10%. 

The table above demonstrates that SSDDA acquires a better 

result than the four state-of-the-art data augmentation methods. 

 

G. Ablation Study 

1）Performance Verification of  Dynamic Augmentation 

Data Selection Method 

This part uses three data sets: IP, PU, and KSC. Experiments 

are performed under the conditions of not using the dynamic 

augmentation data selection method and using the dynamic 

augmentation data selection method. The training set ratio is set 

differently. The results are shown in Table X, Table XI, and 

Table XII. 

It can be seen from the classification results of the three data 

sets below that, in terms of accuracy, the result of using the 

dynamic augmentation data selection algorithm is better than 

the unused result. Furthermore, in terms of the stability of 

accuracy, except for a few cases, the result of the dynamic 

augmentation data selection algorithm is significantly more 

stable than the unused result. 

 

 
In summary, the dynamic expansion data augmentation 

algorithm can indeed effectively improve the comprehensive 

classification performance of the model. By dynamically 

selecting the data in the HSI samples that need to be augmented 

most, the model's fitting for each type of sample has a 

comprehensive improvement. 

 

2）Performance Verification of  Siamese Structure Data 

Augmentation Method 

This part uses three data sets: IP, PU, and KSC. Experiments 

were performed under the conditions of using the Siamese 

structure and not using the Siamese structure during training. 

Different proportions of the training set were taken. The results 

are shown in Table XIII, Table XIV, and Table XV. 

 

 

TABLE XI 

DATA SELECTION METHOD VERIFICATION ON THE PU DATASET 

Train ratio Metrics Selection (%) No Selection (%) 

 

1% 

OA 92.31±1.57 91.86±0.68 

AA 86.60±2.96 86.11±1.90 

Kappa 87.79±2.09 89.17±0.91 

 

2% 

OA 96.34±0.29 96.27±0.58 

AA 94.45±0.65 94.16±1.04 

Kappa 95.15±0.39 95.05±0.77 

 

4% 

OA 98.22±0.19 98.11±0.18 

AA 96.75±0.31 96.53±0.25 

Kappa 97.63±0.25 97.49±0.24 

 

7% 

OA 98.86±0.17 98.79±0.09 

AA 98.22±0.25 98.16±0.15 

Kappa 98.48±0.23 98.39±0.11 

TABLE XII 

DATA SELECTION METHOD VERIFICATION ON THE KSC DATASET 

Train ratio Metrics Selection (%) No Selection (%) 

 

5% 

OA 93.30±1.41 93.27±1.13 

AA 88.94±1.67 88.90±1.31 

Kappa 92.54±1.57 92.51±1.26 

 

10% 

OA 95.94±0.64 95.36±1.03 

AA 93.15±0.94 92.13±1.47 

Kappa 95.48±0.71 94.84±1.15 

 

15% 

OA 97.28±0.31 97.17±0.47 

AA 95.60±0.42 95.37±0.78 

Kappa 96.97±0.34 96.85±0.52 

 

20% 

OA 98.46±0.23 98.13±0.34 

AA 97.59±0.45 96.96±0.45 

Kappa 98.28±0.26 97.92±0.39 

 

25% 

OA 98.61±0.43 98.43±0.31 

AA 97.70±0.62 97.31±0.51 

Kappa 98.45±0.48 98.26±0.34 

TABLE X 

DATA SELECTION METHOD VERIFICATION ON THE IP DATASET 

Train ratio Metrics Selection (%) No Selection (%) 

 

5% 

OA 90.06±0.76 88.31±1.18 

AA 88.65±1.39 86.64±2.13 

Kappa 88.68±0.85 86.68±1.33 

 

10% 

OA 94.75±0.54 94.12±0.38 

AA 96.12±0.21 95.55±0.75 

Kappa 94.03±0.61 93.31±0.48 

 

20% 

OA 97.69±0.11 97.69±0.17 

AA 96.33±0.81 96.23±1.33 

Kappa 97.37±0.13 97.37±0.20 

 

TABLE XIII 

SIAMESE STRUCTURE VERIFICATION ON THE IP DATASET 

Train ratio Metrics Siamese (%) No Siamese (%) 

 

5% 

OA 88.41±1.46 87.82±1.55 

AA 85.90±3.00 83.71±3.79 

Kappa 86.80±1.67 86.12±1.77 

 

10% 

OA 95.18±0.52 93.58±0.48 

AA 90.94±2.24 89.96±2.02 

Kappa 94.50±0.59 92.68±0.55 

 

20% 

OA 98.00±0.15 96.80±1.64 

AA 97.07±2.42 96.36±1.61 

Kappa 97.73±0.17 96.36±1.87 

 

35% 

OA 99.08±0.19 98.94±0.14 

AA 98.63±0.37 98.15±0.62 

Kappa 98.95±0.22 98.79±0.16 
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According to the three tables above, it can be seen that the 

classification results using the Siamese structure is better than 

the classification results not using the Siamese structure. In 

addition, in most cases, the stability of the results produced by 

using the Siamese structure is significantly better than the 

results produced by not using the Siamese structure. However, 

when the KSC data training set accounted for 50%, an 

abnormal situation occurred. This is because the number of 

samples in each category has reached a satisfactory value, and 

the Siamese structure is targeted at small number of training set 

samples and unevenly distributed situation. 

Fig. 22 shows the average similarity score change with SGD 

iterations. With the increase of train epoch, the average 

similarity score is reduced, which demonstrates that Siamese 

structure data augmentation method narrows the difference 

between raw samples and new samples. 

In summary, the Siamese structure considers the difference 

between the new sample and the original sample and manages 

to reduce this difference through stochastic gradient descent, 

weakening the interference of DA samples with model training, 

and indeed strengthening its positive effect on the model. 

 

3）Performance Study of  Convolution Transformation  for 

Data Augmentation 

This paper uses convolution to transform the data for 

augmentation. In order to analyze the influence of convolution 

on the classification results, this experiment compares it with 

the data augmentation transformation that directly adds noise. 

The added noise is Gaussian noise with a variance value of 0.8 

and a mean value of 0. The data set experimented is the SA data 

set. The results are shown in Table XVI. 

 
According to the above table, it can be seen that the 

convolution transformation has played a relatively better role 

for the SA data set. This is because convolution transformation 

can cooperate with the backbone model to perform SGD 

iterative optimization, and it is easier to reduce the difference 

between DA data and original data. 

Based on the above experiments, it can be concluded that the 

SSDDA method proposed in this paper considers the small 

sample and imbalanced category distribution characteristics of 

HSI. Using dynamic augmentation data selection algorithm, the 

classification performance of the backbone model is 

comprehensively improved. At the same time, the Siamese 

structure introduced in this paper fully considers the difference 

between the DA sample and the original sample, and reduces 

the difference, weakening the interference caused by the 

difference. Therefore, classification ability of the backbone 

model is improved.  

TABLE XVI 

CONVOLUTION STUDY ON THE SA DATASET 

Train ratio Metrics Conv (%) No Conv (%) 

 

1% 

OA 95.70±0.42 95.38±0.75 

AA 96.41±0.30 95.39±2.46 

Kappa 95.21±0.46 94.85±0.83 

 

2% 

OA 97.64±0.47 97.58±0.14 

AA 98.61±0.25 98.62±0.17 

Kappa 97.37±0.52 97.30±0.16 

 

4% 

OA 98.83±0.20 98.40±1.07 

AA 99.24±0.09 99.18±0.27 

Kappa 98.69±0.23 98.22±1.18 

 

7% 

OA 99.38±0.16 99.26±0.14 

AA 99.56±0.09 99.49±0.09 

Kappa 99.31±0.18 99.18±0.15 

 

10% 

OA 99.56±0.05 99.58±0.08 

AA 99.66±0.05 99.68±0.04 

Kappa 99.51±0.06 98.53±0.09 

 

Fig. 22. Average similarity score decreases with SGD 

 

TABLE XV 

SIAMESE STRUCTURE VERIFICATION ON THE KSC DATASET 

Train ratio Metrics Siamese (%) No Siamese (%) 

 

5% 

OA 92.41±0.74 92.32±0.70 

AA 87.75±0.86 87.45±0.86 

Kappa 91.56±0.83 91.46±0.78 

 

10% 

OA 96.45±0.59 95.77±0.90 

AA 93.82±1.18 92.91±1.23 

Kappa 96.04±0.66 95.29±1.00 

 

15% 

OA 97.06±0.48 97.02±1.01 

AA 94.62±0.53 94.37±1.34 

Kappa 96.74±0.54 96.69±1.12 

 

20% 

OA 98.10±0.21 97.79±0.45 

AA 96.98±0.33 96.10±0.62 

Kappa 97.89±0.23 97.53±0.51 

 

50% 

OA 98.38±0.55 98.43±0.35 

AA 97.11±1.04 97.33±0.61 

Kappa 98.20±0.61 98.25±0.38 

 

TABLE XIV 

SIAMESE STRUCTURE VERIFICATION ON THE PU DATASET 

Train ratio Metrics Siamese (%) No Siamese (%) 

 

1% 

OA 93.59±1.35 91.44±0.73 

AA 90.61±1.47 87.84±0.71 

Kappa 91.48±1.80 88.60±0.96 

 

2% 

OA 96.17±0.59 95.24±0.96 

AA 93.84±0.97 92.36±1.26 

Kappa 94.92±0.78 93.68±1.28 

 

4% 

OA 98.11±0.31 97.82±0.45 

AA 96.80±0.43 96.40±0.58 

Kappa 97.50±0.41 97.10±0.60 

 

7% 

OA 98.89±0.06 97.83±1.40 

AA 98.06±0.09 96.35±2.37 

Kappa 98.52±0.07 97.13±1.85 
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IV. CONCLUSION 

 This paper proposes a dynamic data augmentation method 

based on a Siamese structure for HSI deep learning 

classification. This method takes into account the small sample 

and imbalanced distribution characteristics of HSI. As a result, 

the dynamic augmentation data selection method compensates 

for the model's under-fitting for categories with a small number. 

At the same time, this paper narrows the difference between the 

DA sample and the original sample to achieve a dynamic 

balance between the acquisition of diverse information and the 

deviation of transformed samples from raw samples by 

introducing the Siamese structure. Experiments on typical HSI 

data sets show that SSDDA significantly improves the 

classification results of the backbone model with DA. 

Furthermore, the SSDDA method and L2 regularization have 

an excellent performance of combination. Finally, the SSDDA 

method is proved to have great adaptability to different CNN 

models on datasets unevenly distributed and get competitive 

results compared with many states of art classification methods 

and data augmentation methods. 

The performance improvement of the convolutional data 

augmentation transformation in the SSDDA method on data 

sets such as IP is not apparent, and subsequent research will 

consider optimizing the convolutional data augmentation 

transformation. 
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