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Abstract

This work presents a data-driven online adaptive model reduction approach for

systems that undergo dynamic changes. Classical model reduction constructs a

reduced model of a large-scale system in an offline phase and then keeps the reduced

model unchanged during the evaluations in an online phase; however, if the system

changes online, the reduced model may fail to predict the behavior of the changed

system. Rebuilding the reduced model from scratch is often too expensive in

time-critical and real-time environments. We introduce a dynamic data-driven

adaptation approach that adapts the reduced model from incomplete sensor data

obtained from the system during the online computations. The updates to the reduced

models are derived directly from the incomplete data, without recourse to the full

model. Our adaptivity approach approximates the missing values in the incomplete

sensor data with gappy proper orthogonal decomposition. These approximate data are

then used to derive low-rank updates to the reduced basis and the reduced operators.

In our numerical examples, incomplete data with 30–40 % known values are sufficient

to recover the reduced model that would be obtained via rebuilding from scratch.

Keywords: Model reduction, Online adaptivity, Dynamic data-driven reduced models,

Incomplete sensor data, Gappy proper orthogonal decomposition, Dynamic

data-driven application systems

Background

Dynamic online (near real-time) capability estimation is a pivotal component of future

autonomous systems todynamically observe, orient, decide, andact in complex andchang-

ing environments. We consider the situation where the dynamics of the system are mod-

eled by a parametrized partial differential equation (PDE) and sensor data are generated

that provide information on the current state of the system. The system dynamics are

approximated by a large-scale parametrized computer model, the so-called full model,

resulting from the discretization of the underlying PDE. We rely on (projection-based)

model reduction [7,29,45] to derive a low-cost reduced model of the full model to meet

the real-time demands of online capability estimation. Reduced models are typically built

with one-time high-computational costs in an offline phase and then stay unchanged

while they are repeatedly evaluated in an online phase. However, in changing environ-
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ments, the properties and the behavior of the systemmight change even during the online

phase. Rebuilding the reducedmodel from scratch to take into account the changes in the

system is often too time consuming. We therefore rely on dynamic data-driven reduced

models, as introduced in [42]. Dynamic data-driven reduced models adapt directly from

sensor data to changes in the underlying system, without recourse to the full model; how-

ever, the dynamic data-driven approach as presented in [42] requires sensor samples that

measure the full large-scale state of the system.

Here, we present an extension to the dynamic data-driven approach that handles incom-

plete sensor samples. We consider the situation where we might have the ability to sense

the full large-scale state of the system, but where we can afford to process only a subset

of the sensor data. For example, new sensor technologies (e.g., “sensor skins”) provide

high-resolution sensor data of an entire component (e.g., an aircraft wing) but processing

these tremendous amounts of data online is computationally challenging. Note that this

is in contrast to settings where we have sparse sensors that are in fixed locations. Our

methodology processes a selection of the sensor data—an incomplete sensor sample—

that contains the essential information for updating the reduced model. Furthermore, we

can dynamically change this selection of the sensor data during the online phase, so that

at each step we process the subset of sensor data that are most informative to the event at

hand.

To model changes in the system, the parameters of the system are split into observable

and latent parameters, see Fig. 1. The observable parameters are inputs to the system and

therefore the values of these parameters are known. Latent parameters describe external

influences on the system (e.g., damage, fatigue, erosion). The values of the latent para-

meters are unknown, except for the nominal latent parameters that describe the nominal

state of the system (e.g., no-damage condition). Since the values of the latent parameters

are unknown, a reduced model can be built in the offline phase for the nominal latent

parameter only. If the latent parameters change online (e.g., the system gets damaged),

the reduced model fails to predict the behavior of the system. Rebuilding the reduced

system

⇓

⇓

latent

parameters

external influence

sensor data stream

observable

parameters

Fig. 1 The system depends on observable parameters, which are inputs to the system, and latent

parameters, which model the external influence on the system and cannot be controlled. Dynamic

data-driven reduced models adapt directly from sensor data to changes in the latent parameters (i.e., external

influence), without recourse to the full model (Figure from [42])



Peherstorfer and Willcox Adv. Model. and Simul. in Eng. Sci. (2016) 3:11 Page 3 of 22

model from scratch requires inferring the value of the changed latent parameters from

the sensor data with a model of the changed system, then assembling the full model oper-

ators corresponding to the inferred latent parameters, and deriving the reduced model.

Rebuilding from scratch therefore is often too expensive in the context of online capabil-

ity estimation, see, e.g., [1,33,37,42] for a discussion. The dynamic data-driven approach

introduced in [42] exploits the sensor data of the system to adapt the reduced model to

changes in the latent parameters online, without the computationally expensive inference

step and without assembling the full model operators for the inferred latent parameters,

see Fig. 2.

There are several online adaptation approaches for reduced models. We distinguish

between approaches that solely rely on pre-computed quantities for the adaptation and

approaches that adapt the reduced model from new data that are generated during the

online phase. Interpolation between reduced operators and reduced models [2,18,39,51],

localization approaches [3,9,11,19–21,36,40,46], and dictionary approaches [30,35] rely

on pre-computed quantities but do not incorporate information from new data into the

reduced model online. In [4], local reduced models are adapted from partial data online

to smooth the transition between the local models. In [12], an h-adaptive refinement

is presented that splits basis vectors based on an unsupervised learning algorithm and

residuals that become available online. The online adaptive approach [43] adapts the

approximation of nonlinear terms from sparse data of the full model. There is also a body

ofwork that rebuilds reducedmodels fromscratch, e.g., in optimization [27,32,50], inverse

problems [17,25], andmultiscalemethods [38].Wealsomention that reducedmodelshave

been used in the context of dynamical data-driven application systems (DDDAS), which

dynamically incorporate data into an executing application, and, in reverse, dynamically

steer the measurement process. In [26], proper generalized decomposition [16] is used in

aDDDAS to recover fromdevicemalfunctions by reconfiguring the simulation process. In

[28], online parameter identification from measurements is considered for DDDAS with

proper generalized decomposition. The work [1,33,34,37] considers model reduction for

structural health monitoring in DDDAS.

Our extension to handle incomplete sensor samples in the dynamic data-driven reduced

model adaptation builds on gappy proper orthogonal decomposition (POD), which is a

sensor data stream

initial latent

parameters

assemble

full

model

project

reduced

model

read

adapt

dynamic

reduced model

read

adapt

dynamic

reduced model
. . .

Fig. 2 Dynamic data-driven reduced models adapt directly from sensor data, without recourse to the full

model (Figure adapted from [42])
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method to approximateunknownormissing values in vector-valueddata [22].GappyPOD

reconstructs the unknown values by representing the data vector as a linear combination

of POD basis vectors. Applications of gappy POD in model reduction include flow field

reconstruction [10,49], acceleration of efficient approximations of nonlinear terms [5,13,

24], and forecasting for time-dependent problems [14]. In our adaptation approach, we

first construct a gappy POD basis from incomplete sensor samples using an incremental

POD basis generation algorithm. The missing values of the incomplete sensor samples

are then approximated in the space spanned by the obtained gappy POD basis. These

approximate sensor samples are used in the dynamic data-driven adaptation to derive

updates to the reduced model.

This paper is organized as follows. “Preliminaries and adaptation from complete data”

section introduces the full model and the dynamic data-driven adaptation. “Incomplete

sensor samples” section defines incomplete sensor samples and describes the problem

setup in detail. “Dynamic data-driven adaptation from incomplete sensor samples” section

introduces the extension to the dynamic data-driven adaptation approach that handles

incomplete sensor samples. The numerical results in “Numerical results” section demon-

strate that in our examples 30–40 % of the values of the sensor samples are sufficient

to recover reduced models that accurately capture the changes in the latent parameters.

“Summary and future work” section gives concluding remarks.

Preliminaries and adaptation from complete data

This section briefly discusses model reduction for systems with observable and latent

parameters and summarizes the dynamic data-driven adaptation approach presented in

[42].

Systems with latent parameters

Consider a parametrized system of equations stemming from the discretization of a para-

metrized PDE

Aη(µ)yη(µ) = f (µ). (1)

The full model (1) depends on the observable parameter µ ∈ D, where D ⊂ R
d with

d ∈ N, and on the latent parameter η ∈ E , where E ⊂ R
d′

with d′ ∈ N. In general, the

value of the latent parameter is unknown, only the value of a nominal latent parameter

η0 ∈ E is known, see “Background” section. The linear operator Aη(µ) ∈ R
N×N is an

N × N matrix, where N ∈ N is the number of degrees of freedom of the full model

(1). The linear operator Aη(µ) depends on the observable and on the latent parameter.

The operator Aη(µ) has an affine parameter dependence with respect to the observable

parameter

Aη(µ) =

lA
∑

i=1

�
(i)
A (µ)A(i)

η ,

where lA ∈ N and �
(1)
A , . . . ,�

(lA)
A : D → R. The linear operators A(1)

η , . . . ,A(lA)
η ∈ R

N×N

are independent of the observable parameter. Note that an affine parameter dependence

with respect toµ can be approximatedwith sparse samplingmethods, e.g., [5,6,13,15,22].

Note further that no affine parameter dependence with respect to the latent parame-

ter is required. The state yη(µ) ∈ R
N is an N -dimensional vector. The right-hand side
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f (µ) ∈ R
N depends on the observable parameter but is independent of the latent para-

meter. The right-hand side has an affine parameter dependence with respect to µ

f (µ) =

lf
∑

i=1

�
(i)
f
(µ)f (i),

with lf ∈ N, �
(1)
f
, . . . ,�

(lf )

f
: D → R, and the µ-independent vectors f (1), . . . , f (lf ) ∈ R

N .

Classical model reduction for systems with latent parameters

Let Y η0 ∈ R
N×M be the snapshot matrix that contains as columns M ∈ N state vectors

yη0
(µ1), . . . , yη0

(µM) ∈ R
N of the full model (1) corresponding to the observable para-

meters µ1, . . . ,µM ∈ D and the nominal latent parameter η0 ∈ E . The POD basis matrix

V η0 ∈ R
N×n contains as columns the first n ∈ N left-singular vectors of the snapshot

matrix Y η0 that correspond to the largest singular values. The POD basis vectors, i.e., the

columns of the POD basis matrix V η0 , span the n-dimensional POD space Vη0 .

The reduced linear operator Ãη0 (µ) ∈ R
n×n is obtained via Galerkin projection of the

equations of the full model onto the POD space Vη0 . Consider therefore the projected

µ-independent operators

Ã
(i)
η0

= V T
η0
A(i)

η0
V η0 , i = 1, . . . , lA.

By exploiting the affineparameter dependence of the linear operatorAη0 (µ) on the observ-

able parameter µ ∈ D, the reduced linear operator Ãη0 (µ) is

Ãη0 (µ) =

lA
∑

i=1

�
(i)
A (µ)Ã

(i)
η0
.

Similarly, the reduced right-hand side is

f̃ η0
(µ) =

lf
∑

i=1

�
(i)
f
(µ)f̃

(i)
,

where f̃
(i)

= V T
η0
f (i) ∈ R

n for i = 1, . . . , lf . The reduced model for the latent parameter

η0 is

Ãη0 (µ)ỹη0
(µ) = f̃ η0

(µ), (2)

where ỹη0
(µ) ∈ R

n is the reduced state. The reduced right-hand side f̃ η0
(µ) ∈ R

n in the

reduced model (2) depends on the latent parameter η0 because of the projection onto the

POD space Vη0 , in contrast to the right-hand side vector f (µ) ∈ R
N in the full model (1).

Dynamic data-driven adaptation for reducedmodels

The reduced model (2) is derived from snapshots with the latent parameter η = η0 set to

the nominal latent parameter η0. This means that if the latent parameter changes online,

the reduced model (2) cannot predict the behavior of the system. In [41,42], a dynamic

data-driven adaptation approach is presented that successively adapts a reduced model

in M′ ∈ N adaptivity steps to changes in the latent parameter. Consider therefore the

h = 1, . . . ,M′ adaptivity steps, in which the reduced model is adapted from the nominal
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latent parameterη0 to the changed latent parameter, say,η1 ∈ E .1 In each adaptivity steph,

a sensor sample ŷη1
(µM+h) ∈ R

N is received. The sensor sample ŷη1
(µM+h) is an approx-

imation of the state yη1
(µM+h) for the changed latent parameter η1 and an observable

parameter µM+h ∈ D. The difference
∥

∥

∥
ŷη1

(

µM+h

)

− yη1

(

µM+h

)

∥

∥

∥
between the sensor

sample and the state in a norm ‖ · ‖ is noise, measurement error, and the discrepancy of

the full model and reality (model discrepancy [31]). At step h, the sensor samples matrix

Sh ∈ R
N×h contains the received sensor samples ŷη1

(µM+1), . . . , ŷη1
(µM+h) ∈ R

N as

columns

Sh =
[

ŷη1

(

µM+1

)

, . . . , ŷη1

(

µM+h

)

]

∈ R
N×h.

At each adaptivity step h = 1, . . . ,M′, the dynamic data-driven adaptation first adapts

the POD basis and then the reduced operators. Consider the POD basis adaptation first.

At step h = 1, the first snapshot, i.e., the first column, in the snapshot matrix Y η0 is

replaced with the sensor sample ŷη1
(µM+1) ∈ R

N and the snapshot matrix at step h = 1

is obtained

Y 1 =
[

ŷη1

(

µM+1

)

, yη0
(µ2) , . . . , yη0

(µM)
]

∈ R
N×M .

Note that there is no particular ordering of the snapshots in the snapshots matrix. We

replace the first column of Y η0 because we are at step h = 1. By reordering the columns

of Y η0 , any other snapshot can be replaced at step h = 1. The matrix Y 1 is the result of

an additive rank-one update to the snapshot matrix Y η0 . Let ei ∈ {0, 1}N be the canonical

unit vector with 1 at component i and 0 at all other components for i = 1, . . . , N . Then,

the snapshot matrix Y 1 is

Y 1 = Y η0 + aeT1 ,

where a = ŷη1
(µM+1) − yη0

(µ1) ∈ R
N . Therefore, the POD basis matrix V 1 ∈ R

N×n

corresponding to the snapshot matrix Y 1 can be approximately derived from V η0 via the

adaptation algorithm [8]. The algorithm extracts the components α = a − V η0V
T
η0
a and

β = e1−V η0V
T
η0
e1 of a and e1, respectively, that are orthogonal toV η0 . The vectorsα and

β are used to derive a rotation matrix V ′ ∈ R
n×n of size n × n and an additive rank-one

update γδT with γ ∈ R
N and δ ∈ R

n. Computing the rotation matrix and the rank-one

update requires computing the singular value decomposition (SVD) of an (n+1)× (n+1)

matrix. The adapted POD basis matrix V 1 is then given by

V 1 = V η0V
′ + γδT .

Note that an SVD of a typically small (n+1)× (n+1) matrix is required by the adaptation

algorithm, instead of the SVD of anN ×Mmatrix if the POD basis matrix were computed

directly from Y 1 without reusing V η0 . We refer to [8] for details on the adaptation of the

POD basis matrix. The adaptation algorithm is summarized in [42, Algorithm 1] for the

case of the dynamic data-driven adaptation.

Consider now the adaptation of the operators at step h = 1. The goal is to approximate

the reduced operators

Ã
(i)
η1

= V T
1 A

(i)
η1
V 1, i = 1, . . . , lA,

1Note that the adaptation can be repeated to adapt from η1 to η2 ∈ E and so on.



Peherstorfer and Willcox Adv. Model. and Simul. in Eng. Sci. (2016) 3:11 Page 7 of 22

without assembling the full operators A(1)
η1
, . . . ,A(lA)

η1
∈ R

N×N corresponding to the

changed latent parameter η1. Therefore, at adaptivity step h = 1, the operators

Ā
(i)
1 = V T

1 A
(i)
η0
V 1, i = 1, . . . , lA, (3)

are constructed. The operator Ā
(i)
1 is the full operatorA(i)

η0
for latent parameter η0 projected

onto the adapted POD space V1 with the adapted POD basis matrix V 1, for i = 1, . . . , lA.

Note that (3) projects the full operators corresponding to the nominal latent parameter η0,

and not the operators corresponding to the changed latent parameter η1. Then, additive

updates δÃ
(1)
1 , . . . , δÃ

(lA)
1 ∈ R

n×n are derived from the sensor sample matrix S1 with the

optimization problem

min
δÃ

(1)
h ,...,δÃ

(lA)

h
∈Rn×n

h
∑

j=1

∥

∥

∥

∥

∥

∥

lA
∑

i=1

�
(i)
A (µM+j)

(

Ā
(i)
h + δÃ

(i)
h

)

V T
h ŷη1

(µM+j) − f̃ h(µM+j)

∥

∥

∥

∥

∥

∥

2

2

,

(4)

where f̃ h(µM+j) ∈ R
n is the reduced right-hand side with respect to the POD basis V h.

Note that the optimization problem (4) is formulated for general h ≥ 1, and not only for

h = 1. The solution of the optimization problem (4) are the updates δÃ
(1)
h , . . . , δÃ

(lA)
h that

best-fit the sensor samples in the sensor sample matrix Sh. The optimization problem (4)

is a least-squares problem that can be solved with, e.g., the QR decomposition. For h <

lAn, the least-squares problem is underdetermined, and only low-rank approximations of

δÃ
(1)
h , . . . , δÃ

(lA)
h are computed [42].

At step h = 1, the adapted operators are

Ã
(i)
1 = Ā

(i)
η0

+ δÃ
(i)
1 , i = 1, . . . , lA,

and the adapted reduced operator Ã1(µ) ∈ R
n×n can be assembled using the affine para-

meter dependence as

Ã1(µ) =

lA
∑

i=1

�
(i)
lA
(µ)Ã

(i)
1 .

In each adaptivity step h = 1, . . . ,M′, this POD basis and operator adaptation is

repeated. This means, at step h, the POD basis matrix is adapted from V h−1 to V h by

exploiting that the snapshot matrix Y h at step h is the result of a rank-one update to the

snapshot matrix Y h−1 from the previous step. The adapted reduced operator Ãh(µ) is

derived via the additive rank-one updates δÃ
(1)
h , . . . , δÃ

(lA)
h ∈ R

n×n, which are obtained

via optimization from the sensor samples matrix Sh =
[

ŷη1

(

µM+1

)

, . . . , ŷη1

(

µM+h

)

]

∈

R
N×h. For sufficiently many sensor samples, and if the sensor samples are noise-free, the

reduced operator Ãη1 (µ) with respect to the POD basis matrix V h equals the adapted

reduced operator Ãh(µ), see [42].

Incomplete sensor samples

The dynamic data-driven adaptation derives updates to a reduced model from sensor

samples. We consider here the situation where we receive incomplete sensor samples,

i.e., partial measurements of the state. This section mathematically defines incomplete

sensor samples, and the next section develops the extension to the dynamic data-driven

adaptation to handle incomplete sensor samples.



Peherstorfer and Willcox Adv. Model. and Simul. in Eng. Sci. (2016) 3:11 Page 8 of 22

Let ŷη1
(µM+h) ∈ R

N be the (complete) sensor sample that is received at adaptivity step

h. Let k ∈ N with k < N and let ph1 , . . . , p
h
k

∈ {1, . . . , N } be pairwise distinct indices of

the sensor sample ŷη1
(µM+h) ∈ R

N . The indices ph1 , . . . , p
h
k
give rise to a point selection

matrix

Ph =
[

eph1
, . . . , eph

k

]

∈ R
N×k .

Thepoint selectionmatrixPh selects the componentswith indicesph1 , . . . , p
h
k
. For example,

consider the vector x = [x1, . . . , xN ]
T ∈ R

N , then we have

⎡

⎢

⎢

⎣

xph1
...

xph
k

⎤

⎥

⎥

⎦

= PT
h x.

From the point selectionmatrixPh, we derive thematrixQh ∈ R
N×(N−k) that selects the

components of the (complete) sensor sample ŷη1
(µM+h) that aremissing in the incomplete

sensor sample ŷ
incp
η1

(µM+h). The matrices Ph and Qh lead to the decomposition

ŷη1
(µM+h) = PhP

T
h ŷη1

(µM+h) + QhQ
T
h ŷη1

(µM+h).

ThematrixPhP
T
h selects all components that correspond to the indices ph1 , . . . , p

h
k
and sets

the components at all other indices {1, . . . , N } \
{

ph1 , . . . , p
h
k

}

to zero. The matrix QhQ
T
h

has the opposite effect and selects all components with indices in {1, . . . , N }\
{

ph1 , . . . , p
h
k

}

and sets the components with indices
{

ph1 , . . . , p
h
k

}

to zero.

We define the incomplete sensor sample ŷ
incp
η1

(µM+h) of the (complete) sensor sample

ŷη1
(µM+h) corresponding to the point selection matrix Ph as

ŷ
incp
η1

(µM+h) = PhP
T
h ŷη1

(µM+h) ∈ R
N . (5)

The values at the components of the incomplete sensor sample ŷ
incp
η1

(µM+h) with indices

ph1 , . . . , p
h
k
are set to the corresponding components of the (complete) sensor sample

ŷη1
(µM+h). All other components are missing in the incomplete sensor sample and their

values in ŷ
incp
η1

(µM+h) are zero through the definition (5).

Dynamic data-driven adaptation from incomplete sensor samples

We propose an extension to the dynamic data-driven adaptation approach that handles

incomplete sensor samples. Consider the adaptation from the nominal latent parameter

η0 to the latent parameter η1 in theM′ adaptivity steps h = 1, . . . ,M′. At each adaptivity

step h = 1, . . . ,M′, we receive incomplete sensor samples ŷ
incp
η1

(µM+h) ∈ R
N and the

corresponding point selection matrices Ph. The point selection matrix depends on h and

might change at each adaptivity step, see the discussion on future sensor technologies in

“Background” section. The number of known components k is independent of h and stays

constant for all h = 1, . . . ,M′.

We split the adaptivity steps M′ = Mbasis + Mupdate into Mbasis ∈ N and Mupdate ∈ N

steps. In the first h = 1, . . . ,Mbasis steps, a gappy POD basis is derived from the incom-

plete sensor samples ŷ
incp
η1

(µM+1), . . . , ŷ
incp
η1

(µM+Mbasis ) ∈ R
N . At the subsequentMupdate

steps h = M + Mbasis + 1, . . . ,M′, the missing values of the incomplete sensor samples

ŷη1

(

µM+Mbasis+h

)

∈ R
N are approximatedusing gappyPODwith theobtainedgappyPOD
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basis. The approximations of the missing values and the components in the incomplete

sensor sample are combined to approximate the complete sensor sample. The dynamic

data-driven adaptation is then applied to these approximate sensor samples to update

the reduced model. “Deriving the gappy POD basis” section discusses the construction

of the gappy POD basis and “Dynamic data-driven adaptation from approximate sensor

samples” section presents the adaptation of the reducedmodel from the approximate sen-

sor samples. “Computational procedure” section summarizes the procedure and presents

Algorithm 1.

Deriving the gappy POD basis

In the first h = 1, . . . ,Mbasis adaptivity steps, we derive a gappy POD basis from the

incomplete sensor samples. Let r ∈ N be the dimension of the gappy POD basis with

gappy POD basis matrix Uh ∈ R
N×r . The initial gappy POD basis matrix U0 ∈ R

N×r

contains as columns the r-dimensional POD basis vectors corresponding to the snapshot

matrix Y η0 .

At step h = 1, we receive the incomplete sensor sample ŷ
incp
η1

(µM+1) and the corre-

sponding point selection matrix P1 ∈ R
N×k with Q1 ∈ R

N×(N−k). We use the initial

gappy POD basis matrixU0 to derive the approximate sensor sample ŷ
apprx
η1

(µM+1) ∈ R
N

using gappy POD [10,22,49]

ŷ
apprx
η1

(µM+1) = Q1Q
T
1 U0

(

PT
1 U0

)+

PT
1 ŷ

incp
η1

(

µM+1

)

+ ŷ
incp
η1

(

µM+1

)

. (6)

Thematrix (PT
1 U0)

+ ∈ R
r×k is theMoore–Penrose pseudoinverse of thematrix PT

1 U0 ∈

R
k×r . Since PT

1 ŷ
incp
η1

(µM+1) = PT
1 ŷη1

(µM+1), we have that (P
T
1 U0)

+PT
1 ŷ

incp
η1

(µM+1) is the

solution of the regression problem

argmin
c∈Rr

∥

∥

∥
PT
1

(

U0c − ŷη1

(

µM+1

)

)∥

∥

∥

2

2
. (7)

Note that the regression problem is overdetermined andhas a unique solution if thematrix

PT
1 U0 has full column rank, which we typically ensure by selecting k > r. Therefore, the

vector U0

(

PT
1 U0

)+
PT
1 ŷ

incp
η1

(µM+1) ∈ R
N is the best approximation with respect to (7)

of the complete sensor sample ŷη1
(µM+1) in the space spanned by the columns of the

POD basis matrix U0. The approximate sensor sample ŷ
apprx
η1

(µM+1) combines this best

approximation and the known values in the incomplete sensor sample. The values at the

components corresponding to the missing components of the incomplete sensor sample

are set to the best approximation, and the values at all other components are set to the

values obtained from the incomplete sensor sample.

We then use the approximate sensor sample ŷ
apprx
η1

(µM+1) to adapt the gappy PODbasis

from U0 to U1. Consider therefore the snapshot matrix Y 0 and note that U0 is the k-

dimensional PODbasis derived fromY 0.We adapt the snapshotmatrixY 0 toY 1 ∈ R
N×M

via a rank-one update that replaces column 1 of Y 0 with the approximate sensor sample

ŷ
apprx
η1

(µM+1) ∈ R
N . Since Y 1 is the result of a rank-one update to Y 0, the k-dimensional

POD basis corresponding to Y 1 can be approximated in a computationally efficient man-

ner using the incremental POD algorithm [8]. Note that this is the same approach as used

in the dynamic data-driven adaptation, see “Dynamic data-driven adaptation for reduced

models” section. Thus, the adapted gappy POD basis matrix U1 can be derived cheaply

from the basis matrix U0.
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At step h = 2, the approximate sensor sample ŷ
apprx
η1

(µM+2) is constructed with the

gappy POD basis matrix U1, which is then used to adapt from U1 to U2. This process

is continued until step h = Mbasis, where the gappy POD basis matrix UMbasis is derived.

Note that the number of columns in the snapshot matrix is fixed and that columns are

replaced following the first-in-first-out principle if h > M.

Dynamic data-driven adaptation from approximate sensor samples

In theMupdate steps h = M+Mbasis+1, . . . ,M′, we adapt the reducedmodel from approx-

imate sensor samples using the dynamic data-driven adaptation. Consider therefore an

adaptivity step h > Mbasis, at which the incomplete sensor sample ŷ
incp
η1

(µM+h) ∈ R
N and

the corresponding point selectionmatrixPh ∈ R
k×N are received.We use the gappy POD

basisUMbasis to derive the approximate sensor sample ŷ
apprx
η1

(µM+h) of the complete sensor

sample with the gappy POD basis UMbasis . The approximate sensor sample ŷ
apprx
η1

(µM+h)

is then used to adapt the reduced model with the dynamic data-driven adaptation as

described in “Dynamic data-driven adaptation for reduced models” section.

Computational procedure

Algorithm 1 summarizes the dynamic data-driven adaptation that can handle incomplete

sensor samples. Inputs of Algorithm 1 are the POD basis matrix V h−1, the operators

Ã
(1)
h−1, . . . , Ã

(lA)
h−1, and the right-hand sides f̃

(1)
h−1, . . . , f̃

(lf )

h−1
derived at the previous adaptivity

step h−1. If h ≤ Mbasis, the algorithm adapts the gappy PODbasis fromUh−1 toUh using

the approach presented in“Deriving the gappy POD basis” section. First, the approximate

sensor sample is constructed with gappy POD. Then, the adapted basis matrix Uh is

computed with the incremental POD algorithm [8]. Only the gappy POD basis is adapted

and the reduced model is returned unchanged. If h > Mbasis, the approximate sensor

sample is derived with gappy POD and UMbasis . The approximate sensor sample is then

used with the dynamic data-driven adaptation to derive the adapted POD basis V h, the

adapted operators Ã
(1)
h , . . . , Ã

(lA)
h , and the adapted right-hand sides f̃

(1)
h , . . . , f̃

(lf )

h
.

Algorithm 1 Dynamic data-driven adaptation from incomplete sensor samples

1: procedure adaptIncomplete(Mbasis, Uh−1, Vh−1, Ã
(1)
h−1, . . . , Ã

(lA)
h−1, f̃

(1)
h−1, . . . , f̃

(lf )

h−1)

2: Receive incomplete sensor sample ŷ
incp
η1

(µM+h) ∈ RN and point selection matrix Ph ∈ Rk×N

3: Construct matrix Qh ∈ R(N−k)×N

4: if h ≤ Mbasis then

5: Compute approximate sensor sample using gappy POD basis matrix Uh−1

ŷapprx
η1

(µM+h) = QhQT
h Uh−1(P T

h Uh−1)+P T
h ŷincp

η1
(µM+h) + ŷincp

η1
(µM+h) .

6: Update snapshot matrix Yh−1 with ŷ
apprx
η1

(µM+h) to obtain Yh

7: Derive adapted gappy POD basis matrix Uh from Uh−1 using [8]

8: Set Ã
(i)
h

= Ã
(i)
h−1 for i = 1, . . . , lA

9: Set f̃
(i)
h

= f̃
(i)
h−1 for i = 1, . . . , lf

10: Set Vh = Vh−1

11: else

12: Compute approximate sensor sample using basis UMbasis

ŷapprx
η1

(µM+h) = QhQT
h UMbasis (P

T
h UMbasis )

+P T
h ŷincp

η1
(µM+h) + ŷincp

η1
(µM+h) .

13: Get Vh, Ã
(1)
h

, . . . , Ã
(lA)
h

, f̃
(1)
h

, . . . , f̃
(lf )

h
from dynamic adaptation with ŷ

apprx
η1

(µM+h)
14: end if

15: return Vh, Ã
(1)
h

, . . . , Ã
(lA)
h

, f̃
(1)
h

, . . . , f̃
(lf )

h
16: end procedure
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Numerical results

This section demonstrates the dynamic data-driven adaptation from incomplete sensor

samples on a model of a bending plate. The latent parameter describes damage of the

plate. The damage is a local decrease of the thickness of the plate. The model is based on

theMindlin plate theory [23,47] that takes into account transverse shear deformations but

neglects important nonlinear effects such as postbuckling behavior. Therefore, the model

that we use in this section is a simple description of a plate in bending. We use the plate

model only to provide a proof of concept of our adaptation approach. More advanced

plate models are used in real-world engineering applications. We refer to “Summary and

future work” section for a discussion on further applications of our adaptation approach.

We first build a reduced model for the nominal problem, i.e., the latent parameter is set

to the nominal latent parameter η0 ∈ D that corresponds to the no-damage condition.

We then decrease the thickness of the plate stepwise and adapt the reduced model. After

each change in the latent parameter, synthetic incomplete sensor samples are computed

with the full model, which are used to adapt the reduced model. The following sections

give details on the problem setup and report the numerical results.

Plate problem

We consider the static analysis of a plate in bending. The plate is clamped into a frame

and a load is applied. Our problem is an extension of the plate problems introduced in

[23,42,44]. The geometry of our plate problem is shown in Fig. 3a. The spatial domain� ∈

[0, 1]2 ⊂ R
2 is split into two subdomains� = �1 ∪�2. The problem has three observable

parameters µ = [μ1,μ2,μ3]
T ∈ D with D = [0.05, 0.1]2 × [1, 100]. The observable

parameters μ1 and μ2 control the nominal thickness of the plate in the subdomain �1

and �2, respectively. The third observable parameter μ3 defines the load on the plate.

The latent parameter η = [η1, η2]
T ∈ E controls the damage of the plate, i.e., the latent

parameter defines the local decrease of the thickness that corresponds to the damage. The

Ω1

Ω2

x1

x2

10
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0 50 100
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in
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lu
e

decay of singular values(b)
geometry(a)

Fig. 3 The spatial domain of the plate problem is split into two subdomains as shown in a. The plot b shows

the decay of the singular values of the snapshot matrix for nominal latent parameter η0 (no-damage

condition)
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domain of the latent parameter is E = [0, 0.2] × (0, 0.05]. The thickness of the plate at

position x ∈ � is given by the function t : � × D × E → R with

t(x;µ, η) = t0(x;µ)

(

1 − η1 exp

(

−
1

2η22
‖x − z‖22

))

,

and

t0(x;µ) =

⎧

⎨

⎩

μ1 if x1 > 0.5

μ2 if x1 ≤ 0.5
,

with position z = [0.7, 0.4]T ∈ �. The function t is nonlinear in x,µ and η. We set the

nominal latent parameter η0 to η0 = [0, 0.01]T ∈ E that corresponds to no local decrease

of the thickness and therefore to the no-damage condition.

The fullmodel of theplate problem is afinite elementmodel, see [23].The corresponding

system of equations is of the form (1), where lA = 4, lf = 1, �
(1)
f
(µ) = μ3,

�
(1)
A (µ) = μ3

1, �
(2)
A (µ) = μ3

2,

and

�
(3)
A (µ) = μ1, �

(4)
A (µ) = μ2

The systemof equations hasN = 4719 degrees of freedom. The thickness of the plate with

µ = [0.08, 0.07, 50]T ∈ D and with η = η0 is visualized in Fig. 4a and the deflection in
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Fig. 4 Local damage at z = [0.7, 0.4]T ∈ � (i.e., a local decrease of the thickness) leads to a larger deflection

of the plate
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Fig. 4c. The thickness and the deflection of the plate with a damage up to 20 %, i.e., a local

decrease of the thickness of the plate at z by 20 %, is shown in Fig. 4b and d, respectively.

We draw M = 1000 observable parameters µ1, . . . ,µM ∈ D uniformly in D and com-

pute the corresponding state vectors with the full model to assemble the snapshot matrix

Y η0 =
[

ŷη0
(µ1), . . . , ŷη0

(µM)
]

∈ R
N×M .

Note that the latent parameter η = η0 is set to the nominal latent parameter η0. Figure 3b

plots the decay of the singular values of the snapshot matrix Y η0 . We construct a reduced

model via Galerkin projection onto the space spanned by the first n = 8 PODbasis vectors

of Y η0 .

Setup of numerical experiments

Wenowdescribe the details of our numerical experiments.We have ten latent parameters

η0, η1, . . . , η9 ∈ E , where η0 is the nominal latent parameter corresponding to the no-

damage condition and

ηi =

[

2i

90
,
2i

360

]T

∈ E , i = 1, . . . , 9.

This means that from latent parameter ηi−1 to ηi the thickness at position z is decreased

by a factor of two, for i = 1, . . . , 9. After each change of the latent parameter, the sensor

window is flushed and M′ ∈ N incomplete sensor samples are received to adapt the

reduced model.

Number of sensor samples

We receive incomplete sensor samples, and therefore we use the extension to the dynamic

data-driven adaptation described in “Dynamic data-driven adaptation from incomplete

sensor samples” section. This means that the adaptivity steps h = 1, . . . ,M′ required

for adapting from latent parameter ηi−1 to ηi are split into Mbasis ∈ N steps to derive

the gappy POD basis and Mupdate ∈ N steps to update the reduced model. We chose

Mbasis andMupdate conservatively in the following, because we are primarily interested in

studying the effect of the number ofmissing components in the incomplete sensor samples

onto the adaptation, rather than the number of sensor samples; see [42] for studies on the

effect of the number of samples on the dynamic data-driven adaptation in the case with

complete sensor samples.We setMbasis = 5000 and therefore derive the gappy POD basis

fromMbasis = 5000 incomplete sensor samples. We buffer 50 incomplete sensor samples

and use them in the incremental basis generation procedure described in “Deriving the

gappy POD basis” section.

The theory of the dynamic data-driven adaptation with complete sensor samples gives

guidance on the selection ofMupdate. In case of complete sensor samples, settingMupdate =

lA × n is sufficient to recover the reduced model that would be obtained via rebuilding

from scratch [42]. Note that lA = 4 is the number of µ-independent operators and n = 8

the dimension of the POD basis space. We set Mupdate = 5 × lA × n = 160 since we

adapt from incomplete sensor samples and therefore expect that the approximation of

the missing values introduces additional error into the adaptation. In total, we receive

M′ = Mbasis + Mupdate = 5160 incomplete sensor samples to adapt from ηi−1 to ηi for

i = 1, . . . , 9.
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Sensor sample generation

The number of missing componentsN −k in the incomplete sensor samples is controlled

by the number of known components k . To discuss the effect of k on the adaptation, we

introduce separate numbers of known components kbasis ∈ N and kupdate ∈ N for the

gappy POD basis construction and the update, respectively. Furthermore, we introduce

the sensor rates

ρbasis =
kbasis

N
× 100, ρupdate =

kupdate

N
× 100,

which are the percent of the number of known components of the total number of com-

ponents N in the incomplete sensor samples. Thus, for example, ρbasis = 100 % means

that all components are known and therefore that we have a complete sensor sample.

We synthetically generate incomplete sensor samples with the full model at each step

h = 1, . . . ,M′. We therefore first draw uniformly an observable parameter µM+h in

D and compute the state vector yη(µM+h) with the full model for the current latent

parameter µ. We then draw k ∈ N unique indices uniformly in {1, . . . , N } and construct

the point selection matrix Ph ∈ R
N×k . The incomplete sensor sample is ŷ

incp
η (µM+h) =

PhP
T
h yη(µM+h).

Error computation

We compare three reduced models:

• A static reduced model that is built as described in “Classical model reduction for

systems with latent parameters” section. The static reduced model is not adapted to

changes in the latent parameter.

• A rebuilt reduced model that is derived as in “Classical model reduction for sys-

tems with latent parameters” section but from Mupdate complete sensor samples

corresponding to the current changed latent parameter. This requires repeating the

computation of the POD basis and the operator projections, which is prohibitively

expensive to conduct online.

• An online adaptive reduced model that is adapted to changes in the latent parameter

from incomplete sensor samples with the dynamic data-driven adaptation described

in Algorithm 1.

To assess the quality of the reduced models quantitatively, we draw ten observable para-

meters µ′
1, . . . ,µ

′
10 ∈ D uniformly in D and compute the relative L2 error with respect to

the full model

er =
1

10

10
∑

i=1

∥

∥

∥
ȳη(µ

′
i) − yη(µ

′
i)
∥

∥

∥

2
∥

∥

∥
yη(µ

′
i)
∥

∥

∥

2

, (8)

where η is the current latent parameter and ȳη(µ
′
1), . . . , ȳη(µ

′
10) ∈ R

n are the state vectors

obtained with either the static, the rebuilt, or the adapted reduced model.

Gappy POD basis from complete sensor samples

We first consider the situation where ρbasis = 100 % is fixed and the sensor rate ρupdate

varies. This means that we have available complete sensor samples (without missing

components) for deriving the gappy POD basis in the first Mbasis steps but incomplete

sensor samples for updating the reduced model in the finalMupdate adaptivity steps.
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Figures 5 and 6 demonstrate the effect of the sensor rate ρupdate on the dynamic data-

drivenadaptation. First consider the static reducedmodel.As the latentparameter changes

from η0 (no damage) to η9 (20 % decrease of thickness), the error of the static reduced

model increases by three orders of magnitude. The steps in the error curve reflect the

changes in the latent parameter. The error of the rebuilt reduced model stays near 10−4.

Consider now the adaptive reduced model. The dimension of the gappy POD basis is

set to r = 30. Figure 5 shows that a sensor rate ρupdate = 0.6 % leads to an adapted

reduced model with large errors. A sensor rate of ρupdate = 0.6 %means that kupdate = 29

components of the incomplete sensor sample are known, and therefore kupdate < r. This

violates the condition of gappy POD that requires a full-column rank PT
h UMbasis , see

“Deriving the gappy POD basis” section. For a slightly larger sensor rate ρupdate = 0.8 %,

and kupdate > r, our dynamic data-driven adaptation from incomplete sensor samples

recovers the rebuilt reduced model. Figure 6 indicates that increasing the sensor rate

ρupdate reduces the error of the adapted reduced model in the first few adaptivity steps

after a change in the latent parameter, cf. Fig. 5.

Note that the adapted reduced model achieves a slightly lower error than the rebuilt

reduced model in Figs. 5 and 6. The dynamic data-driven adaptation constructs the

adapted operators with an optimization problem from the sensor samples projected onto

the POD space. This projection and the optimization cause the difference in the error

of the adapted and the rebuilt reduced model, if the dimension of the reduced model is

low. The difference decreases if the dimension of the reduced model is increased, see [42,

Theorem 1].
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Fig. 5 The steps in the error curve corresponding to the static reduced model reflect the changes in the

latent parameter. Changing the latent parameter from η0 (no damage) to η9 (20 % decrease of thickness)

increases the error of the static reduced model by three orders of magnitude. The adaptive reduced model

uses the incomplete sensor samples to adapt to changes in the latent parameters. The gappy POD basis is

derived from complete sensor samples (i.e., ρbasis = 100 %), the sensor rate ρupdate for deriving the updates

to the reduced model is set to ρupdate = 0.6 % (a) and to ρupdate = 0.8 % (b). The dimension of the

reconstruction basis is set to r = 30. For ρupdate = 0.6 %, the number of known components in the

incomplete sensor samples is kupdate = 29 < r and therefore the regression problem underlying gappy POD

becomes underdetermined, see “Deriving the gappy POD basis” section. This leads to large errors. Increasing

the sensor rate to ρupdate = 0.8 % leads to an overdetermined regression problem and therefore to lower

errors of the adapted reduced model
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Fig. 6 The gappy POD basis is derived from complete sensor samples (i.e., ρbasis = 100 %) but the sensor

rate for the incomplete sensor samples received during theMupdate update steps is set to ρupdate = 1 % (a)

and ρupdate = 5 % (b). The dimension of the gappy POD basis is set to r = 30

Figure 7 reports the error behavior of an adapted reduced model that uses a gappy POD

basis of dimension r = 40. For ρupdate = 0.6 % and ρupdate = 0.8 %, we again obtain the

situation kupdate < r and therefore obtain an underdetermined least-squares problem that

introduces large errors in the adaptation. However, if the sensor rate ρupdate is increased,

the approximation quality of the adapted reduced model increases too. The results in

Fig. 6 for r = 30 are similar to the result obtained in Fig. 7 for r = 40. This shows that a

gappy POD basis with r = 30 dimensions is sufficient in this example.

Gappy POD basis from incomplete sensor samples

We now consider the situation where ρbasis < 100 % and ρupdate < 100 %, i.e., the gappy

POD basis is derived from incomplete sensor samples and the updates to the reduced

models are obtained from incomplete sensor samples as well. Figure 8 shows the effect of

the sensor rate ρbasis on the adaptation. Figures 8a and b demonstrate that a sensor rate

ρbasis = 10 % is too low to recover the rebuilt reduced model with the adapted reduced

model in this example. Even setting the sensor rate for the update to ρupdate = 90 %

(i.e., generating the gappy POD basis from incomplete samples with ρbasis = 10 % and

updating the reduced model from approximate sensor samples with ρupdate = 90 %)

cannot compensate the inadequate sensor rate ρbasis = 10 %. Increasing the sensor rate

for the gappy POD basis construction to ρbasis = 30 % leads to an adapted reduced model

that recovers the rebuilt reducedmodel.However, withρbasis = 30% there still are outliers

that lead to a reduced model with a large error. Figure 9 shows that increasing the sensor

rate to ρbasis = 70 % reduces those outliers significantly. Again, increasing the dimension

of the gappy POD basis from r = 30 to r = 40 only slightly reduces the error of the

adapted reduced model, compare Fig. 9a, c, e with Fig. 9b, d, f.

Figure 10 reports the runtime of the dynamic data-driven adaptation for ρbasis =

30 %, ρupdate = 50 % and ρbasis = 30 %, ρupdate = 90 %. The latent parameter changes
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(a) (b)

(c) (d)

Fig. 7 Increasing the dimension of the reconstruction basis to r = 40 only slightly decreases the error of the

adapted reduced model, compared to a reconstruction basis with r = 30 (see Figs. 5, 6). Note that

ρupdate > 0.8 % is required to obtain an overdetermined regression problem in gappy POD in this example

from η0 to η9 in nine steps. For each of the nine latent parameters η1, . . . , η9, the gappy

POD basis is derived and the reduced model is adapted inMupdate steps to the incomplete

sensor samples. Thus, in total, nine gappy POD bases are derived and 9 × Mupdate adap-

tivity steps are performed for adapting from η0 to η9. Figure 10 reports the total runtime

split into the runtime of the gappy POD basis construction and the adaptation. The run-

time of the dynamic data-driven adaptation is compared to the runtime of rebuilding the

reduced model from scratch in each of the 9 × Mupdate adaptivity steps. The runtime of

rebuilding the reduced model is split into the runtime of inferring the latent parameter

from the sensor samples and the runtime of the offline phase where the reduced operators

are constructed, see “Background” section. The dynamic data-driven approach achieves

a speedup of about two orders of magnitude compared to rebuilding the reduced model

from scratch. Increasing ρupdate from ρupdate = 50 % to ρupdate = 90 % only slightly

changes the runtime of the dynamic data-driven adaptation. The runtime measurements

were performed on an i5-3570 CPU.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 The plots in a–d show that a sensor rate ρbasis < 30 % for the construction of the gappy POD basis is

insufficient and that the rebuilt reduced model cannot be recovered with the adaptation from incomplete

sensor samples in this example. Even increasing the sensor rate ρupdate to ρupdate = 90 % cannot

compensate the poor approximation quality of the obtained gappy POD basis. Increasing the sensor rate to

ρbasis = 30 % leads to a gappy POD basis that approximates the complete sensor samples sufficiently well so

that the dynamic data-driven adaptation recovers the rebuilt reduced model, see e and f. The dimension of

the gappy POD basis is set to r = 30
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(a) (b)

(d)(c)

(e) (f)

Fig. 9 This figure shows that a sensor rate of ρbasis = 70 % is sufficient to derive a gappy POD basis that

avoids large errors in the first few adaptivity steps after a change in the latent parameter, cf. Fig. 8 for

ρbasis = 30 %. The figure also confirms that increasing the dimension of the gappy POD basis from r = 30

(a, c, e) to r = 40 (b, d, f) has an insignificant effect on the adaptation
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(a) (b)

Fig. 10 This figure compares the runtime of the dynamic data-driven adaptation to rebuilding the reduced

model from scratch. Adapting the reduced model using our approach is about two orders of magnitude

faster than rebuilding the reduced model from scratch

Summary and future work

We proposed an extension to the dynamic data-driven adaptation that handles incom-

plete sensor samples, i.e., partial measurements of the large-scale state. In our approach,

a gappy POD basis is derived from incomplete sensor samples. The missing values of the

incomplete sensor samples are approximated with gappy POD in the space spanned by

the gappy POD basis. The reduced model is then adapted using the gappy POD approx-

imations of the complete sensor samples with the dynamic data-driven adaptation. The

numerical results confirm that about 30–40 % of the total number of components of the

sensor samples are sufficient to recover the reduced model that would be obtained via

rebuilding from scratch.

Future sensing technologies (e.g., “sensor skins”) of next-generation engineering sys-

tems will provide high-resolution measurements. Processing these large data sets will

be computationally challenging. In big data analytics, sublinear algorithms are currently

developed that look at only a subset of the given data set to meet runtime requirements

[48]. Our approach follows a similar paradigm.We selectively process sensor data that are

most informative for deriving the update to the reduced model and ignore large parts of

the received data that are irrelevant in the current situation. Our approach is applicable

even if the selection of the high-resolution sensor data is dynamically changing online,

e.g., due to new damage events.

We considered here real-time structural assessment and decision-making but sensor

data are available in many other applications. For example, in control, the goal is to design

a controller that stabilizes a dynamical system. However, if the dynamical system passes

throughmultiple regimeswithdifferent systemcharacteristics, a single controllermight be

insufficient to stabilize the system. If sensor data, e.g., sparse measurements of the state of

the dynamical system, are available, the controller can be adapted to the sensor data to take

into account the changes in the underlying dynamical system. We also mention system

identification as a potential application of our adaptation approach. Instead of starting

with reduced operators derived in an offline phase, one could start with initial operators
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that have all components set to zero, and then adapt these operators to the available data.

Such a system identification approach would derive a reduced model directly from data.

In general, our approach is applicable to DDDAS for which massive amounts of sensor

data are available.
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