
1

Dynamic Deadlock Verification for General Barrier

Synchronisation

TIAGO COGUMBREIRO, Rice University, USA

RAYMOND HU, Imperial College London, UK

FRANCISCO MARTINS, LASIGE, Faculdade de Ciências, Universidade de Lisboa,

Portugal and University of the Azores, Portugal

NOBUKO YOSHIDA, Imperial College London, UK

We present Armus, a veri�cation tool for dynamically detecting or avoiding barrier deadlocks. The core design

of Armus is based on phasers, a generalisation of barriers that supports split-phase synchronisation, dynamic

membership, and optional-waits. This allows Armus to handle the key barrier synchronisation patterns found

inmodern languages and libraries.We implement Armus for X10 and Java, giving the �rst sound and complete

barrier deadlock veri�cation tools in these settings.

Armus introduces a novel event-based graph model of barrier concurrency constraints that distinguishes

task-event and event-task dependencies. Decoupling these two kinds of dependencies facilitates the veri�ca-

tion of distributed barriers with dynamic membership, a challenging feature of X10. Further, our base graph

representation can be dynamically switched between a task-to-task model, Wait-for Graph (WFG), and an

event-to-event model, State Graph (SG), to improve the scalability of the analysis.

Formally, we show that the veri�cation is sound and complete with respect to the occurrence of deadlock in

our core phaser language, and that switching graph representations preserves the soundness and complete-

ness properties. These results are machine checked with the Coq proof assistant. Practically, we evaluate the

runtime overhead of our implementations using three benchmark suites in local and distributed scenarios.

Regarding deadlock detection, distributed scenarios show negligible overheads and local scenarios show over-

heads below 1.15×. Deadlock avoidance is more demanding, and highlights the potential gains from dynamic

graph selection. In one benchmark scenario, the runtime overheads vary from 1.8× for dynamic selection,

2.6× for SG-static selection, and 5.9× for WFG-static selection.

CCSConcepts: • Software and its engineering→Deadlocks; Software veri�cation;Dynamic analysis;

Concurrent programming structures; Semantics;

Additional KeyWords and Phrases: Barrier synchronisation, phasers, deadlock detection, deadlock avoidance,

X10, Java

The work is partially supported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1, and EP/N028201/1;

and by EU FP7 612985 (UPSCALE). Tiago Cogumbreiro’s work on this article was supported in part by the National Science

Foundation under Collaborative Grant No. 1302570. Francisco Martins’ work on this article was partially supported by FCT

funding through LASIGE Research Unit, ref. UID/CEC/00408/2013.

Authors’ addresses: T. Cogumbreiro, University of Massachusetts Boston, Computer Science Department, 100 William T.

Morrissey Blvd. Boston, MA 02125-3393, USA; email: tiago.cogumbreiro@umb.edu; R. Hu and N. Yoshida, Imperial Col-

lege London, Department of Computing, London, Kensington, London SW7 2AZ, UK; emails: {raymond.hu, n.yoshida}@

imperial.ac.uk; F. Martins, University of the Azores, Faculty of Sciences and Technology, Rua da Mãe de Deus, 9500-321

Ponta Delgada, Portugal; email: fmartins@acm.org.

This work is licensed under a Creative Commons Attribution International 4.0 License.

Copyright 2018 held by Owner/Author

0164-0925/2018/12-ART1 $15.00

https://doi.org/10.1145/3229060

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3229060

1:2 T. Cogumbreiro et al.

ACM Reference format:

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018. Dynamic Deadlock Veri�-

cation for General Barrier Synchronisation. ACM Trans. Program. Lang. Syst. 41, 1, Article 1 (December 2018),

38 pages.

https://doi.org/10.1145/3229060

1 INTRODUCTION

Dynamic Veri�cation of Barrier Deadlocks. The rise of multicore processors and networked clusters
has pushed mainstream programming languages to incorporate various concurrency features, an
important class of which are barriers and their related mechanisms. The basic functionality of a
barrier is to designate a point in the execution of a group of tasks at which each task is blocked until
all have reached the barrier. Java 5–8 and .NET 4, for example, introduced several standard APIs
that provide barriers explicitly or are built on top of barriers: latches, cyclic barriers, fork/join,
futures, and streams. Recent languages for parallel programming have also been designed with
more advanced abstractions as �rst-class language features, such as clocks in X10 [10] and phasers
in Habanero-Java (HJ) [8], that are more expressive than basic barriers.
As with many other concurrency mechanisms, deadlocks—in which two or more tasks blocked

on distinct barriers are waiting (perhaps indirectly) for each other—are one of the primary errors
arising in barrier programs. Historically, the approach to counter barrier deadlocks has been to re-
strict the permitted barrier synchronisation patterns such that programs are barrier-deadlock free
by construction; e.g., OpenMP1 restricts barrier composition to syntactic nesting. Unfortunately,
to date there are no available tools for comprehensive veri�cation of barrier deadlocks in X10 or
HJ, nor for standard libraries such as the Java Phaser2 and the .NET Barrier [44] APIs.

Two key issues make barrier-deadlock veri�cation challenging in these recent languages and
systems. The �rst is that barriers may be created dynamically and communicated among tasks as
values, referred to as �rst-class barriers [67]. Due to the di�culty of statically analysing the usage
of �rst-class barriers precisely (e.g., due to aliases and non-determinism), the state-of-the-art in
barrier-deadlock veri�cation is based on dynamic techniques that monitor program execution at
runtime. (Existing tools for static veri�cation are limited to simpler systems where barriers permit
only global, i.e., system-wide, synchronisations; see Section 8.) The second is that, in contrast to
the conservative restrictions in earlier systems, the richer barrier features in recent languages
are motivated by expressiveness at the cost of making deadlock veri�cation, including dynamic
approaches, more complicated. One of the key features supported in Java, .NET, X10, and HJ, but
not handled by any existing barrier-deadlock veri�cation tool, is dynamic membership [53], which
allows the group of tasks participating in synchronisations on a barrier to change during execution.
The state-of-the-art in dynamic barrier-deadlock veri�cation is based on the well-established

concept of Wait-For Graph (WFG) and has been developed for MPI3 (e.g., the MUST error detec-
tion tool [32, 34]) and UPC4 [57]. A WFG [40] is a graph model of the control �ow dependencies
between tasks. Applied to barriers, the WFG nodes represent tasks, and a directed edge from a
task t to task t ′ signi�es that t is blocked on a barrier, waiting for t ′ to reach the barrier. WFG-
based approaches typically work by maintaining an abstract representation of the concurrency
constraints in a system, from which the WFG can be derived and deadlock detection performed as
a suitable graph analysis, such as checking for circular dependencies.

1http://openmp.org/.
2https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html.
3http://mpi-forum.org/.
4https://upc-lang.org/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://doi.org/10.1145/3229060
http://openmp.org/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html
http://mpi-forum.org/
https://upc-lang.org/

Dynamic Deadlock Verification for General Barrier Synchronisation 1:3

Existing WFG-based tools, such as MUST, o�er precise deadlock detection in systems featuring
multiple barriers, but su�er from limitations in the presence of more advanced barrier features.
One is that they are designed on the assumption of static barrier membership (as is the case for
MPI barriers). Naive extension to dynamic membership faces the challenges of maintaining the
membership status of barriers consistently (since barrier synchronisations and (de)registration
operations occur concurrently) and e�ciently (e.g., w.r.t. the overheads of any additional state
synchronisations used for consistency). These issues are exacerbated by distributed barriers, a key
design point of X10.
Another limitation is committing exclusively to the WFG model. The WFG originates from a

distributed databases setting [40] involving a �xed number of tasks and dynamic resource cre-
ation. TheWFGwas thus optimised for concurrency constraints between fewer tasks and more re-
sources, which is often not the case in more advanced barrier programs with dynamic task spawn-
ing and barrier creation, as possible in X10 and Java. Its counterpart, the State Graph (SG) [12]
favours scenarios with more tasks than barriers. In general, however, we may expect that the most
suitable model cannot be predicted a priori, and that the situation may change as execution pro-
ceeds. Committing to a speci�c graph model may thus hinder the scalability of dynamic deadlock
veri�cation.

Armus. This article presents Armus, a dynamic veri�cation framework for general barrier dead-
locks based on phasers. A phaser is a generalisation of the concept of barrier that allows tasks to
selectivelywait on barrier steps, thus permitting any task to progress to an arbitrary future step (i.e.,
phase) independently of its peers. (Section 2.3 will give more a detailed overview.) Phasers were
originally developed in Habanero-Java (HJ) [8, 62] as an extension of X10 clocks, one of the pri-
mary motivations being to support asynchronous producer/consumer patterns. Armus is the �rst
framework to support sound and complete deadlock veri�cation for phasers. The key elements of
Armus are as follows.

—We formalise the operations of a core concurrent language with phasers that subsumes the
barrier facilities of X10, HJ, and the standard Java/.NET Barrier APIs, including dynamic
membership. We characterise phaser deadlocks in our language in terms of dependencies
between tasks and synchronisation events on phasers.

—On the basis of the above, we introduce a new model for general barrier-deadlock veri-
�cation, the Task-Event Graph (TEG). We show that deadlock veri�cation by TEG cycle
detection is sound and complete with respect to our characterisation of phaser deadlock.

—We show that a WFG and an SG can be readily derived from a TEG, such that all three
models are equivalent w.r.t. the existence of cycles. This promotes a technique to improve
the scalability of the graph-based veri�cation, by automatically and dynamically switching
between models.

—We implement Armus as Armus-X10 and JArmus. Armus-X10 is the �rst sound and com-
plete deadlock veri�cation tool for native X10 programs using clocks and �nish-barriers.
We show how the design of Armus lends well to distributed barriers, as implemented in
Armus-X10. JArmus is the corresponding tool for Java programs using the Phaser API (and
related barrier APIs) extended with one additional method for explicitly registering tasks
with phasers.

Armus proposes the TEG model, with its notion of barrier synchronisation events, �rstly as a
means to capture the richer concurrency dependencies of phaser systems, in comparison to stan-
dard barriers. Modelling explicit synchronisation events arises naturally from the fact that tasks
waiting on a given phaser may actually be waiting at arbitrarily di�erent phases. The insight of

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:4 T. Cogumbreiro et al.

Armus is to interpret the act of waiting on a particular phase as observing a timestamp, in a simi-
lar spirit to Lamport’s logical clocks [41], by which we infer dependencies between a task and not
only its current phase event (as with basic barriers), but also all future events.
Secondly, the TEG is an e�ective model for treating dynamic membership. Generating tradi-

tional wait-for dependencies directly between tasks requires synchronised bookkeeping between
the blocking status and barrier membership of every such pair of tasks. The commonplace tech-
nique for building aWFG is to range over every blocked task and then query the blocked operation
for its missing participants. Note, however, that for a barrier with dynamic membership, the com-
plete set of participants can only be known at the end of synchronisation. Armus avoids this issue
by decomposing the dependencies into separate relations between tasks and events—a dependency
from a blocked task to an event can be asserted independently of the membership of the relevant
phaser. This in turn facilitates the application of Armus to distributed barriers: instead of needing
to synchronise the status of two potentially remote tasks for each wait-for dependency, Armus al-
lows the global view of the system to be built from the local status of each blocked task (the event
being observed, and the phaser memberships of the task) and the monotonic causal ordering of
events.
Dynamically selecting between graph models for deadlock detection, based on the monitored

ratio of tasks to barriers, is a novel technique of Armus. The di�erence on the size of the graph
can be dramatic. For instance, in an X10 benchmark PS (see Section 7.3),5 the average edge count
for the WFG model is 789 and the SG is 7, while the average using dynamic model selection is
6 (Table 3); and the average execution times, for deadlock avoidance, are 113s for WFG, 50s for
SG, and 34s for dynamic model selection (Figure 9). In all cases of our benchmarks, the automatic
model selection performs at least as well (i.e., with negligible overheads) as manually selecting the
best �xed model.

Outline. This article revises and extends an earlier version of this work [13] with new material
and full proofs of results. Firstly, we include a new section with a comprehensive summary of
barrier features found in practice and their deadlock characteristics. Regarding our core phaser
language, �rst proposed in the earlier work, we add primitives for awaiting on a phaser at an arbi-
trary phase, and awaiting on a phaser by an unregistered task; these are needed to model the full
functionality of phasers in HJ. Based on the extended language, we make signi�cant updates to the
core de�nitions of phaser deadlocks and dependency relations both in terminology and technical
details. The de�nitions of TEG construction, andWFG/SG contraction, are also revised technically.
Regarding the properties of Armus, we develop new proofs of the soundness and completeness of
the veri�cation, and graph model equivalence, according to the updated de�nitions. We highlight
that all de�nitions and proofs in this article have been formalised and machine-checked in Coq,
which is new to this article. Compared to the earlier work, we o�er more detailed explanations and
extended discussion of the practical methodology and implementations. The performance evalu-
ation is also updated, including new benchmarks to evaluate deadlock veri�cation using the TEG
directly, in addition to theWFG/SG. Throughout the article, we have extended the discussions and
includedmany new examples with detailed explanations. Lastly, we have updated the related work
with recent publications.
The structure of this article is as follows.
Section 2 �rstly covers the background to this work. We give barrier programming examples in

X10, and summarise a range of barrier programming features found in practice and their deadlock
characteristics. Secondly, we explain the concept of phasers, and outline the phaser-based approach
of Armus to deadlock veri�cation for general barrier synchronisations.

5http://www.cs.columbia.edu/∼martha/courses/4130/au13/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://www.cs.columbia.edu/~martha/courses/4130/au13/

Dynamic Deadlock Verification for General Barrier Synchronisation 1:5

Section 3 de�nes the core concurrent language with phasers used by Armus to capture all of the
surveyed barrier programming features.We de�ne the notions of global and local phaser deadlocks
for Armus systems in terms of dependencies between tasks and synchronisation events.
Section 4 presents the deadlock veri�cation methodology of Armus. We de�ne the derivation

of a TEGmodel from Armus system states, and the transformation of a TEG to the associatedWFG
or SG.
Section 5 shows the main results of Armus: that a TEG and the associated WFG and SG are

equivalent w.r.t. the presence of cycles, and that cycle detection in a TEG derived from a system
state is sound and complete w.r.t. the occurrence of deadlocks in the system.
Section 6 presents the implementation of Armus for X10 (Armus-X10) and Java (JArmus). We

discuss the application of Armus to distributed barriers, implemented in Armus-X10.
Section 7 performs an extensive performance evaluation of Armus in Java and X10, using the

NAS Parallel Benchmark, the Java Grande Forum Benchmark suite, and the HPC Challenge bench-
mark suite. Overall, the worst-case runtime factor for deadlock detection is 1.21×, and is often not
statistically signi�cant, e.g., in distributed benchmarks.
Section 8 discusses related work and Section 9 concludes.
The Armus project Web page6 includes the full Coq implementation of the de�nitions and

proofs, full source code for the Armus-X10 and JArmus implementations, and the benchmark
scripts and data.

2 BARRIER-BASED PARALLEL PROGRAMMING AND DEADLOCKS

2.1 Cyclic and Join Barriers in X10

We start with an introductory deadlocked parallel program that uses barriers, written in X10.
Listing 1 implements a simple parallel iterative averaging algorithm [19, 63] that takes a one-
dimensional array of I+1 numbers, for I>1, initialised to 0 except for the last element, which is set
to I. The algorithm converges on the sequence of natural numbers from 0 through I by repeatedly
updating, in parallel, each of the elements (except �rst and last) to an average of its neighbours.
This example features two kinds of barriers: cyclic barriers, for recurrent synchronisation between
a set of ongoing tasks, and join barriers, for synchronisation on the termination of a set of tasks.

A parallel task is spawned by the async statement (line 5) inside the outer for-loop for each
index 1 through I-1. A cyclic barrier, represented by the clock created and assigned to c (an im-
mutable val) on line 2, is used to coordinate these tasks. Each child task is registered (clocked) to
the clock; the parent task is implicitly registered on clock creation. The work performed by each
task in the inner for-loop is split into read and write steps, delimited by the advance operations
on c. A barrier synchronisation is performed by calling advance: the calling task is blocked until
every task registered to the clock has called advance. The �rst advance (line 9) thus ensures ev-
ery task i completes the read step of the current j-th iteration, reading the a(i-1) and a(i+1)

values, before any can proceed to the write step. The second advance similarly ensures every task
has �nished the current write step, writing the average of the read values to a(i), before any can
proceed to the (j+1)-th iteration.
The finish statement applies a join barrier that blocks the executing task (the parent task) at

the end of the �nish (line 14) until all nested tasks (the I-1 child tasks) have terminated.
Deadlock Due to Advanced Barrier Features. Certain barrier systems are restricted by design to

ensure deadlock freedom (see Section 2.2). By contrast, incorrect use of more advanced barrier
features supported in modern systems such as X10 may give rise to subtle deadlock situations. The

6https://bitbucket.org/cogumbreiro/armus/wiki/TOPLAS17.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://bitbucket.org/cogumbreiro/armus/wiki/TOPLAS17

1:6 T. Cogumbreiro et al.

Listing 1. Coordinating parallel tasks using cyclic and join barriers in X10.

above example demonstrates a deadlock related to group synchronisation, where di�erent, but not
necessarily disjoint, groups of tasks are registered to separate barriers, and dynamic membership

of tasks to barrier groups.
The deadlock arises from every child task being blocked on its �rst advance call (line 9) because

the parent task never performs the corresponding advance. Instead, the parent task is blocked on
the finish, waiting for the child tasks to terminate, establishing a cyclic dependency between the
parent and each child task.
For both the clock and �nish barriers, each child task is dynamically registered at some execution

point after the barrier is created: the clock and �nish barriers are created on lines 2 and 3, and the
child tasks are spawned and registered later, one by one, in each iteration of line 5 by the parent
task. Tasks may similarly be dynamically deregistered from a barrier. The natural �x for the above
deadlock is to have the parent task perform the deregistration operation on the clock, c.drop(),
between lines 13 and 14. Then the resulting synchronisation groups will be such that all tasks are
registered to the �nish barrier, but only the child tasks are registered to the clock.
Note: it would be incorrect for the parent task to drop its clock membership prior to spawning

all the child tasks (or similarly, if X10 did not implicitly register the parent task on clock creation).
This would avoid the deadlock, but also introduce a race condition between the collective iteration
of the child tasks due to the concurrency between the running tasks and any remaining spawns
by the parent.

2.2 An Overview of Barrier Synchronisation Features and Deadlock Errors

We give an overview of a range of key barrier synchronisation features, as supported by the lan-
guages and libraries in Table 1. We brie�y discuss the purpose of each feature, and the implications
for deadlock detection, with small examples. Table 2 summarises up front the support for dead-
lock veri�cation currently available to programmers in each setting. Prior to Armus, there were no
comprehensive barrier deadlock detection facilities or tools, dynamic or otherwise, that support
all of the listed features.
The languages/libraries in Tables 1 and 2 are as follows. UPC refers to the barrier functionality

of Berkeley Uni�ed Parallel C.7 MPI refers to the MPI_Barrier and MPI_IBarrier operations

7http://upc.lbl.gov/publications/upc-lang-spec-1.3.pdf (Section 6.6.1).

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://upc.lbl.gov/publications/upc-lang-spec-1.3.pdf

Dynamic Deadlock Verification for General Barrier Synchronisation 1:7

Table 1. Barrier Synchronisation Features Supported in Various Languages

UPC MPI Java .NET X10 HJ (Armus)

Group synchronisation × � � � � � �

Split-phase synchronisation � � � � � � �

Dynamic membership × × � � � � �

Async. producer-consumer × × × × × � �

Table 2. Available Support for (Dynamic) Deadlock Verification with Respect

to the Barrier Features in Table 1

UPC MPI (MUST) Java .NET X10 HJ Armus

Barrier deadlock

veri�cation?

� � (for group
sync. only)

− − − sound (but
incomplete)

�

(“�” means both sound and complete; “−” means no support.)

on an MPI communicator.8 X10 refers to clocks (whose functionality subsumes that of �nish-
barriers and SPMDBarrier). HJ (and Armus) refer to the functionality of phasers, explained later
in Section 2.3. Java refers to the standard Phaser API,2 which is a limited version of the general
concept of phasers (see Section 6.4), but nevertheless subsumes the capabilities of other standard
Java barrier libraries such as CyclicBarrier and CountDownLatch. .NET refers to the standard
Barrier API,9 which is the .NET counterpart of the Java Phaser.

Group Synchronisation. Barrier programming in UPC is restricted to conducting “global” syn-
chronisations, where every task in a system is implicitly a member of every barrier. A system that
only involves such global barriers is deadlock-free if and only if all tasks synchronise on the same
barriers in the same order: simply detecting that any two tasks are blocked on di�erent barriers is
su�cient to conclude a global deadlock, i.e., that every task in the whole system is (or will become)
stuck [57].

Group synchronisation, supported in every other case of Table 1, is the generalisation that per-
mits an arbitrary subset of system tasks to be registered to a barrier. This introduces the notion
of local deadlocks, where a subset of system tasks can never progress despite the progress of the
system as a whole. The �ner granularity of this feature is more expressive, but deadlock detection
in turn requires checking for a more general form of circular control �ow dependencies between
multiple tasks transitively.
The standard approach in practice is to model the concurrency constraints of a system as aWFG,

in which circular dependencies manifest as graph cycles. When applied to barriers, the nodes of a
WFG represent the tasks, and the edges represent the task-to-task wait-for relation induced by a
task being blocked on a barrier that a co-member task has not yet reached. For MPI, the MUST tool
includes sound and complete deadlock detection for barriers with group synchronisation (since
every MPI communicator is an implicit barrier group) by a WFG approach [32, 34].

Example 2.1. In Figure 1(a), three tasks each synchronise on a di�erent subset of two clocks
out of three (a, b, and c). Once all three tasks are spawned, each barrier is synchronising on a

8http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (Section 5.3).
9https://msdn.microsoft.com/en-us/library/system.threading.barrier.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://msdn.microsoft.com/en-us/library/system.threading.barrier

1:8 T. Cogumbreiro et al.

Fig. 1. Barrier deadlock Examples 2.1–2.3 in X10.

di�erent group of two tasks. The order in which each task advances its clocks establishes a circular
dependency between all three tasks involving all three clocks, i.e., t1 wait-for t2 via a, t2 wait-for
t3 via b, and t3 wait-for t1 via c.

The above example by itself is a global deadlock (the main X10 task, that spawns the three child
tasks, implicitly waits for the termination of all spawned tasks). This fragment could, however,
constitute a local deadlock as part of a larger system (e.g., by extending the parent task with some
continuation), which we formalise in Section 3.2. Dynamic veri�cation of global deadlock is trivial
for any system, by simply checking if all (user) tasks are blocked. Many systems implement only
global deadlock detection, such as HJ [36], giving a veri�cation that is sound (no false positives)
but incomplete (since any non-global deadlock is a false negative).

Split-Phase Synchronisation. Split-phase synchronisation [29, 38] allows a task to perform a bar-
rier synchronisation over two steps, instead of just a single atomic action. A task initiates its next
synchronisation via a non-blocking background operation, and can wait for the synchronisation
to conclude, i.e., when all tasks have initiated the synchronisation, as a separate operation at a
later point. In X10, the initiation operation on clocks is resume, and the wait operation is simply
advance (an advance basically includes an implicit resume if not already performed). Split-phase
allows a task to concurrently overlap barrier synchronisation with other work, which is useful for,
e.g., hiding network latency in distributed programs [9, 11, 74].

Example 2.2. In Figure 1(b), the parent and child tasks synchronise on clocks a and b. Although
the two tasks wait on their two clocks in opposite order, there is no deadlock if the condition

in the child task evaluates to true as it will initiate the synchronisation on b before waiting on a.
Otherwise, a deadlock will occur.

Although split-phase synchronisations are available in every case of Table 1, deadlock detection
for split-phase is only supported in UPC [57], facilitated by the restriction to global synchronisa-
tions described earlier. In the presence of group synchronisation, a veri�cation would have to
consider, in addition to blocking status of tasks and group memberships, the initiation status of
each task for every synchronisation operation it is involved in. MPI supports split-phase by the

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:9

immediate MPI_IBarrier operation, but the deadlock detection in MUST does not take the initi-
ation status of such synchronisations into account [30].

Dynamic Membership. A barrier restricted to staticmembership does not permit the registration
or deregistration of tasks once any member task has commenced execution; in the presence of
group synchronisation, static task groups are typically �xed on barrier creation (e.g., MPI commu-
nicators). Conversely, dynamicmembership allows tasks to be registered and deregistered over the
lifetime of a barrier. All of the X10 examples seen so far implicitly feature dynamic membership.

Example 2.3. In Figure 1(c), the child task is dynamically registered to pre-existing clocks a

and b, which the parent task is also registered to (in X10, a task may only register a child task to a
clock if it itself is registered). If the condition in the parent task evaluates to false, a deadlock arises
because the parent task blocks by advance on a, while the child task blocks on b, establishing a
circular dependency. Otherwise, the parent dynamically deregisters from b, allowing the child task
to successfully terminate, regardless of whether the deregistration occurs before or after the child
reaches the advance. On termination, the child implicitly deregisters from its barriers, which in
turn allows the parent task to pass its advance.

Static membership simpli�es dynamic analysis of barrier deadlocks because, for any taskwaiting
on some barrier, the set of candidate tasks which the former task may be waiting for (i.e., its
co-members) is a runtime invariant throughout the lifecycle of the barrier. This facilitates WFG-
based approaches because the only information required to establish a wait-for dependency from a
waiting task to any of its �xed co-member tasks is that the latter has not reached the same barrier.
By contrast, in dynamic membership the set of wait-for candidates can change per phase. A wait-
for dependency to some other task t �rst requires con�rming that the t is indeed a member of the
relevant barrier at the point in system execution for which the analysis is being conducted. The
di�culty of such checks is compounded when verifying distributed programs, as the query might
involve communication between sites to transmit the membership status.
We discuss how Armus supports distributed barriers in Section 6.3. Deadlock detection for

distributed barriers is supported by MUST for the static membership barriers of MPI (and non-
split-phase synchronisations) [31, 33]; and by UPC, which is restricted to global synchronisations.
X10 supports distributed barriers as a key language feature, but without any facility for deadlock
detection.

2.3 Generalised Barrier Synchronisation Using Phasers

Phasers [8, 62] are a generalisation of barriers. The main feature of phasers is that member tasks
may independently progress ahead to a future barrier step (i.e., phase) without synchronising (i.e.,
waiting for their co-members) on the intermediate steps. Phasers may also support certain usages
by non-member tasks.
In this work, we introduce a core language for phaser-coordinated concurrent systems that

distils the key functionality of phasers:

—A phaser records the phase, an integer n ≥ 0, reached by each member task.
—A non-blocking arrv operation on a phaser increments the phase of the calling task. Any
member task may thus independently advance up to an arbitrary phase.

—A separate, optional await operation on a phaser blocks the calling task at its current phase
until every member task has reached this phase.

—Explicit dynamic membership: tasks are registered and deregistered with a phaser by, and
only by, reg and dereg operations.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:10 T. Cogumbreiro et al.

We develop the deadlock veri�cation of Armus on this basis of this core phaser functionality,
which subsumes all of the barrier features summarised in Section 2.2 (Table 1). Armus is thus
applicable to all of the languages and libraries discussed there, and to any other barrier system
whose functionality can be encoded into these operations.

Producer-Consumer. A primary motivation for phasers is to support asynchronous producer-
consumer patterns [14, 64] that cannot be expressed using the barrier features discussed in Sec-
tion 2.2. Such synchronisation patterns occur in programs performing streaming (also known as
data�ow) communication among tasks [54, 60, 63]. A typical producer-consumer application using
phasers correlates each phase to the production of one item: a producer task arrives at the next
phase after producing an item, while consumer tasks arrive and await the phases in sequence. The
ability to advance its local phase without awaiting allows the producer to proceed ahead of the
consumers, and similarly allows di�erent consumers to progress at di�erent rates. By contrast, a
clocked production stream using, e.g., basic cyclic barriers, would require the producer and every
consumer to synchronise on every item.

Listing 2. An asynchronous linear producer-consumer pipeline in a pseudo X10 extended with Armus phaser

operations (Example 2.4).

Example 2.4. This example is extracted from the LU (Lower-Upper symmetric Gauss-Seidel)
benchmark of the NAS Parallel Benchmark (NPB) suite [24] (see Section 7), originally written in
Java using condition variables.10 Listing 2 adapts the example to phasers, which we write in an
X10-based pseudo code (for readability) extended with the Armus arrv and await operations.
The child tasks spawned by the async are organised to form a linear pipeline of tasks consuming

from one neighbour and producing to the other. Each task is associated with a phaser, stored in
an array ph, that counts the number of items it has produced locally. Each task, except the �rst
(0-th), awaits the next phase of the preceding task’s phaser (to consume the next available item).

10The limited java.util.concurrent.Phaser implementation of phasers supports split-phase synchronisations, but not

the fully unrestricted phase advancing required for asynchronous producer-consumer.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:11

Each task, except the last, then asynchronously advances its local phaser (after producing the next
item) without waiting. (The details of item production and consumption and any additional work
performed by the step method are omitted for brevity.)
Incorrect manipulation of task indexes (a typical programming error) in the conditional expres-

sions before and after step can easily give rise to deadlock; e.g., if any task (except the last) does
not advance its phaser, or if the �rst task cyclically waits on the last task’s phaser.

The functionality of phasers modelled in Armus subsumes the previously discussed barrier fea-
tures as follows. Dynamic membership is supported by the explicit per-task registration and dereg-
istration operations, which in turn supports group synchronisation by allowing an arbitrary subset
of tasks to be registered to any given phaser. Split-phase synchronisation is subsumed as the special
case of phaser usage where, for each member task, an arrv on phaser p is always followed by an
await on p before any subsequent arrv on p; i.e., the discrepancy between the phases of the most
and least advanced member tasks of a phaser is bounded to a maximum of one.

2.4 Dynamic Deadlock Verification for Phasers

We conclude this section by outlining the phaser-based approach of Armus to barrier-deadlock
veri�cation. The challenge of deadlock veri�cation for phasers is that tasks may participate in
synchronisations on a phaser only at selected phases. Section 2.2 outlined WFG-based deadlock
detection for basic barriers (i.e., barriers that require all member tasks must synchronise on every
step). Considered simply, such approaches are unsuitable for phasers because they are based on
capturing inter-task control �ow dependencies at the granularity of barriers as synchronisation
resources.

In the above deadlock-free phaser code, all three tasks, t1, t2, and t3, are registered to both phasers,
a and b, and execution has reached the state indicated in each task: t1 and t2 are blocked, but not t3.
Naive application of a basicWFG-based approach (i.e., building task-to-task wait-for dependencies
by treating phasers as standard cyclic barriers) to this systemwould result in a false positive: a cycle
arises because t1 is blocked on awhich t2 is amember of, and t2 is blocked on bwhich t1 is amember
of. The problem is that the construction of this false cycle involving two tasks and two phasers is
insensitive to the fact that there are actually three phases in play.

On the other hand, bad asynchronous phase advancing patterns can easily give rise to deadlocks,
as illustrated in Figure 2(a). Both t4 and t5 will await on a, then await on b. However, t5 blocks on
its �rst phase of b after arriving at its �rst phase on a, but without arriving at its second or third
phases on a—which t4 requires in order to progress to arrive at its �rst phase on b.

Armus: Task-Event Graphs. Our approach is based on modelling the concurrency constraints of
phaser systems at the granularity of phases. The intuition is that the operations performed by tasks
on any given phaser induces an ordered series of phase synchronisation events on that phaser. (We
may refer to phase synchronisation events as phase events, or simply events.) More speci�cally,
a task may be related to a phase event because it is waiting on the event, i.e., to participate in

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:12 T. Cogumbreiro et al.

Fig. 2. A phaser deadlock.

the synchronisation on this phase; or because the event is being impeded by the task, i.e., the
synchronisation event cannot occur because the task has not reached this phase.
Armus introduces a TEG model that can be considered as adapting traditional Task-Resource

Graph models [61] to phaser systems by treating each phase event as a distinct temporal syn-
chronisation resource. The resulting model is a bipartite graph of task and event nodes with the
following key characteristics:

—A TEG models separate task wait-on event, and event impede-by task relations.
—The impede-by relation incorporates a notion of phase-transitivity induced by event order-
ing: an event is inherently impeded by a task, if the task is associated with another event at
any earlier phase on the same phaser.

As a preliminary example, Figure 2(b) depicts the TEG for the deadlock situation of Figure 2(a).
The notation, e.g., a3, means phase 3 on phaser a. The solid edges (t4,a

3) and (t5,b
1) are given

by the wait-on relation, and (a3, t5) and the dashed edges (b1, t4) by the impeded-by relation. We
can explain the (a3, t5) edge by the following: (i) there is a task waiting on a3 (in this case t4), and
(ii) task t5 is waiting on b1 while having only reached a phase that precedes a3 (in this case t5
reached a1).

In Sections 3–5, we formalise the Armus phaser language and dynamic deadlock veri�cation
methodology, and show that the veri�cation is sound and complete. Section 6 discusses our im-
plementations of Armus for X10 and Java.

3 A CORE PHASER-BASED LANGUAGE FOR GENERAL BARRIER

SYNCHRONISATIONS

This section introduces the syntax and semantics of a core concurrent language with phasers,
which we refer to as Brenner. The language is designed to express abstractions of concurrent,
imperative barrier programs, su�cient to formalise our deadlock veri�cation and show the veri�-
cation properties. The main purposes of the formalism are to de�ne the information required of a
phaser system to characterise a deadlock, namely, the state of the data structure underlying each
phaser and the set of blocked tasks, and to model how the phaser operations act on this informa-
tion. Since the runtime veri�cation approach of Armus works by sampling the state of phasers and
blocked tasks during program execution, the correctness of the deadlock analysis is independent
of control �ow mechanisms. Language constructs that do not directly a�ect barrier synchronisa-
tion are omitted, such as local data operations, or simpli�ed, e.g., looping constructs are abstracted
as a non-deterministic loop statement.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:13

3.1 Brenner: A Core Phaser-Based Language

Phasers. We �rst formalise the core functionality of phasers. Let P denote a phaser that maps task
names t , t ′, . . . ∈ T to local phases, ranging over the natural numbers,n ∈ N . Predicate await(P ,n),
used by tasks to observe a phase event, holds i� every member of the phaser has a local phase of
at least n:

await(P ,n)
def
= ∀t ∈ dom(P) : P (t) ≥ n.

For a map X , we write dom(X) for the domain of X , and img(X) for the image of X . When
X ∩ Y = ∅ for some map Y , we write X ⊎ Y for the disjoint union of X and Y .

Three atomic operationsϕ mutate a phaser, as de�ned by “Phasers” in Figure 3. reg(t ,n) registers
a task named t to phaser P with initial phase n, provided that the task is not already a member.
dereg(t) removes the calling task t from the membership of P . arrv(t) increments the local phase
of t in P .
Let a phaser mapM be a map from phasers names p,p ′, . . . ∈ P to phasers, used to record all the

phasers in a system. There are two operators o on phaser maps: p := P names the new phaser P
with a global name p, and p.ϕ updates the phaser named p according to ϕ.

Syntax. Brenner abstracts a user-level program as a sequence s of instructions c , generated by
the grammar:

s ::= c; s | end
c ::= t = newTid() | fork(t) s | loop s | skip

| p = newPhaser() | reg(t ,p) | dereg(p) | arrv(p) | await(p) | await(p,n).

Operational Semantics. The reduction of Brenner terms is de�ned by “Instructions” and “States”
in Figure 3. A task mapT maps task names ti to instruction sequences si , representing the current
state of the running tasks. A system state, or simply state, is a pair S ::=(M,T).

Listing 3. The Brenner representation of the X10 example in Listing 1.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:14 T. Cogumbreiro et al.

Fig. 3. Operational semantics of Brenner.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:15

We explain the syntax and operational semantics through Listing 3, which gives the Brenner
representation of the X10 example fromListing 1. Spawning a new task comprises two instructions:
create a fresh task name bound as t by newTid (e.g., line 5), and fork a task with this name to
perform instruction sequence s by fork(t) s (e.g., lines 7–16). The former adds a dummy (non-
executable) task as a placeholder in the task map, to reserve the name t until the latter occurs.
Regarding task membership, newPhaser creates a phaser and registers the current task at phase

zero. Rule [reg], with reg(p, t), lets some task t ′ register a new task t with phaserp. Task t ′must be
registered with p, and t inherits the phase of t ′;11 rule [add] enforces that t is not already a member
of p. Additionally, condition P (t ′) ≤ n guarantees that there is some task, trivially the caller t ′, that
is registered on phase n, so as to ensure that phaser synchronisation is deterministic—observing a
phase must be a stable property; otherwise, there would be no way to knowwhen synchronisation
happened, as new participants could be introduced in past phases. Operation dereg(p) deregisters
the current task from phaser p. In the example, the parent task creates a phaser representing the
X10 join barrier pf in line 3, and registers child tasks t to pf in line 6, which deregister from pf to
signal task termination in line 15.
For synchronisation, arrv(p) is the non-blocking operation for the current task to arrive at its

next local phase, and await(p) blocks the current task t until await(P ,n), where n is the local
phase of t on P , the phaser named p. In the inner loop of the example (lines 10–12), each child task
advances its phase and then awaits the others to do the same. The variant await(p,n) takes n as
an explicit argument and does not require t to be registered to p, which captures use cases such as
the wait-only phaser “registration” mode of HJ [62].12

Lastly, the structural rule for control �ow is standard. In Brenner, local data operations are
abstracted as skip, and the non-deterministic loop, which unfolds its body an arbitrary number
of times (possibly zero), is used to subsume the control �ow of standard conditional branches,
while-loops, and so on.
With respect to the dynamic deadlock veri�cation, rules [await] and [await-n] are used to de�ne

the notion of blocked tasks, in order to characterise deadlocked states (Section 3.2) and establish
the results in Section 5. Second, the operational semantics as a whole serves as a speci�cation of
how phaser system state should be maintained by an implementation of Armus veri�cation (or
conversely, a speci�cation of the phaser systems to which an implementation of Armus applies),
as we discuss for X10 and Java in Section 6.2.

3.2 Phaser Deadlocks

A phase event e , or simply event, is a pair (p,n), which may be written as pn . The ordering of phase
events on a phaser is given by the precedes relation on events, e ≺ e ′:

n < m

(p,n) ≺ (p,m)
.

Given a state S = (M,T), a task t ∈ T , and an event e = (p,n),p ∈ dom(M), we de�ne the
following:

—t iswaiting on on e , notation t wait-onS e , i� t is awaiting phasen onp. That is, there exists s
such thatT (t) = await(p,n); s , orT (t) = await(p); s andM (p) (t) = n. In such cases, we also
simply say t is awaiting.

—t is associated with e , notation t assocS e , i�M (p) (t) = n.

11Phase inheritance subsumes the X10 notion of child tasks inheriting the “initiation status” of split-phase synchronisations.
12In HJ, wait-only registration is a special case where the task is implicitly assigned a local phase of∞ and is not permitted

to arrive on the phaser. In Armus, this is modelled as allowing non-member tasks to await (but not arrive) on a phaser.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:16 T. Cogumbreiro et al.

—e is impeded by t , notation e impede-byS t , i� t assocS e
′ such that e ′ ≺ e and there exists a

task t ′ where t ′ wait-onS e . In such a case, we also simply say e is impeded.

Given an S , we will write simply wait-onS to denote the set of all (t , e) pairs such that t wait-onS
e; similarly for impede-byS .

An e impeded by t relationship, where e = (p,n), signi�es that t has a strictly earlier local phase
on p than n, and is thus required to perform some action, namely, either at least one arrv(p) or a
dereg(p), before e can be successfully observed by any awaiting task. Moreover, there is at least
one such task t ′ awaiting e , which ensures that the impede-by relation is �nite. Note that, while a
task may be waiting on at most one event, an event may be impeded by multiple tasks.
Unlike the wait-for relation in WFG-oriented approaches, neither wait-on nor impede-by in-

herently capture any notion of a task being stuck in and of themselves. Instead, we naturally
characterise phaser deadlock based on mutual dependencies between the two relations as follows.
We de�ne deadlocked states (i.e., local deadlock, as discussed in Section 2.2) based on totally dead-

locked states (global deadlock). A totally deadlocked state occurs when every task is waiting on
some event and the event is impeded by some task.

De�nition 3.1 (Totally Deadlocked State). A state (M,T) is totally deadlocked i� T � ∅ and ∀t ∈
dom(T).∃e ∈ dom(M) × N .(t wait-onS e ∧ e is impeded).

A totally deadlocked state extended with tasks that are not awaiting impeded events is consid-
ered as simply deadlocked, as the system may still potentially progress by the reduction of these
additional tasks.

De�nition 3.2 (Deadlocked State). A state S = (M,T ⊎T ′) is deadlocked on T i� the state (M,T)

is totally deadlocked. In such a case, we also simply say S is deadlocked.

The notion of local deadlocks is crucial for applications that may never terminate (typical ex-
amples being operating systems and persistent network services), and practically important for
systems that may simply be long running.

4 DYNAMIC DEADLOCK VERIFICATION FOR PHASERS

This section �rst de�nes the construction of TEGs fromBrenner system states. Second, by starting
from a more general model oriented to TEGs (as opposed to a directly WFG-oriented approach),
we are able to recover smaller but equivalent representations as optimisations, with respect to the
veri�cation properties (Section 5). These are the WFG, and the counterpart notion of SG.

4.1 Task-Event Graphs

Background. A TRG [61], also known as Transaction-Resource Graph, is a bipartite directed graph
used to model concurrency constraints between tasks and resources. We adapt this term as TEG in
Armus, since we model the concurrency constraints arising from tasks observing transient phase
events by collective synchronisation operations, as opposed to individual acquisition and release
actions on “concrete” resources.
Holt generalised TRGs to General Resource Graphs (GRGs) [35] by augmenting resource nodes

with the number of available resources. Unlike TEGs, a GRG cycle does not necessarily imply dead-
lock. The GRG must �rst be transformed a �nite number of steps to identify a potential deadlock.
Non-bipartite directed graphs of tasks and synchronisation mechanisms have also been used to
detect lock-based deadlocks [52].
Co�man et al. introduced the SG [12] to model concurrency constraints directly between syn-

chronisation mechanisms. State-of-the-art on identifying potential lock-based deadlocks includes

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:17

approaches based on SGs [7, 23, 58], where SGs are also known as Lock-Order Graphs and Lock-
Dependency Graphs. SGs have also been used to infer deadlock-free contracts for concurrency
libraries [21].
Knapp introduced the WFGs [40] to model concurrency constraints directly between tasks. As

discussed earlier, variations of WFGs are used in the state-of-the-art on deadlock detection for
distributed message passing and (static membership) barriers [34, 37].

Basic Concepts from Graph Theory. A (directed) graphG is a pair (V ,A) comprising a nonempty
�nite set of vertices V , ranged over by v,u, and a �nite set of arcs A, ranged over by a,b, c , where
an arc a is a pair (v,u) with v,u ∈ V . An arc (v,u) is directed from its head v to its tail u. We
write a ∈ G to mean G = (V ,A) and a ∈ A. Graph (U ,B) is a subgraph of graph (V ,A) i� U ⊆ V

and B ⊆ A.
A walk w on (V ,A) is a (possibly empty) sequence a1 · · ·an (also written a1..n) of arcs in A

such that, for all i < n, ai = (vi ,vi+1) and ai+1 = (vi+1,vi+2). We write ϵ to denote the walk of
length zero and a : : w to prepend edge a to walkw . For instance, walk (v1,v2) : : (v2,v3) : : ϵ is an
alternative notation for walk (v1,v2) · (v2,v3).
We write a ∈ w to mean w = a1..n , where there exists i ∈ {1, . . . ,n} and a = ai ; and v ∈ w

to mean there exists (v1,v2) ∈ w and v ∈ {v1,v2}. We have that v2 ∈ (v1,v2) · (v2,v3) and that
(v2,v3) ∈ (v1,v2) · (v2,v3), yet v4 � (v1,v2) · (v2,v3) and that (v5,v5) � (v1,v2) · (v2,v3).
We may write a walk by its constituent vertices, i.e., (v1,v2) · (v2,v3) · · · (vn−1,vn) abbreviated

as v1 · v2 · · ·vn−1 · vn . For instance, walk v1 · v2 · v3 is an alternative notation for walk (v1,v2) ·

(v2,v3).
We may also simply refer to a walk by its �rst and last vertices, i.e., a v1-vn walk means a

nonempty walkv1 · · ·vn . Given a walkw = a1 · · · · · an such that n ≥ 1, we have that an is the last
arc of walkw . A cycle is a v-v walk—note that cycles are nonempty walks.
A bipartite graph G = (V ,U ,A) is a graph (V ∪U ,A) where V and U are disjoint and, for all

a ∈ A, a = (v,u) or a = (u,v) with v ∈ V and u ∈ U .

TEGs. A TEG is a bipartite graph where the two disjoint sets of vertices are task names t ∈ T
and events e ∈ P × N . A TEG thus has two kinds of arcs: wait-on arcs (t , e) directed from a task t
to an event e , and impede-by arcs (e, t) from an event e to a task t .

De�nition 4.1 (Associated TEG). Given a state S , let W = wait-onS and I = impede-byS . The
TEG associated with S , teg (S), is the bipartite graph (U ,U ′,A), whereU = dom(W) ∪ img(I),U ′ =
img(I) ∪ dom(W) and A =W ∪ I .

Example 4.1. Figure 4 involves three tasks and two phasers. Execution (necessarily) reaches
the totally deadlocked state S indicated in the code, where (assuming the terminated main task
named t0)

S = (M,T), M = {p : {t1 : 2, t2 : 0, t3 : 1},q : {t1 : 0, t2 : 1}},
T = {t0 : end, t1 : await(p); arrv(q); await(q); end,

t2 : await(q); arrv(p); await(p); end, t3 : await(p); arrv(p); await(p); end}.

Then teg (S) = ({t1, t2, t3}, {p
1
,p2,q1},wait-onS ∪ impede-byS), where

wait-onS = {(t1,p
2), (t2,q

1), (t3,p
1)} (Solid edges),

assocS = {(t1,p
2), (t1,q

0), (t2,p
0), (t2,q

1), (t3,p
1)},

impede-byS = {(p
1
, t2), (q

1
, t1), (p

2
, t2), (p

2
, t3)} (Dashed edges).

Note that this example features two deadlock cycles. Although there are only two phasers, their
usage by the tasks induces three distinct events, leading to the cycle t1 · p

2 · t3 · p
1 · t2 · q

1 · t1. The
smaller cycle, t1 · p

2 · t2 · q
1 · t1, corresponds to a local deadlock in an intermediate situation where

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:18 T. Cogumbreiro et al.

Fig. 4. A (totally) deadlocked phaser program (Example 4.1).

Fig. 5. Deadlock by awaiting incorrectly on a future phase (Example 4.2).

t1 and t2 have blocked but t3 has not. The two cycles arise from t2 impeding both p events under
observation: t2 is associated with p0, thus impeding p1 and p2.

Example 4.2. Figure 5 demonstrates a deadlock due to a single task awaiting a future phase (i.e.,
a phase ahead of its local phase) on a phaser that it is registered to. In such cases, the relevant
impede-by dependency is inherent from the impeding task being the same as the observing task:
t1 is associated with p0, impeding p1 which t1 is itself waiting on. This (anti-)pattern thus causes
deadlock in any system context.
The feature of awaiting “future” phases can be used by unregistered tasks (e.g., wait-only con-

sumers), for which this is technically the same as awaiting any arbitrary phase (since such tasks
do not actually have a local phase on the phaser). Then there is no issue of deadlock because the
associated-events predicate does not hold between such tasks and the observed events.

4.2 Deriving Wait-For Graphs and State Graphs from Task-Event Graphs

We can compress a bipartite TEG to a smaller model by vertex contraction: contracting the event
vertices results in a WFG, and contracting the task vertices results in a SG.

De�nition 4.2 (Associated WFG, SG). Assume a state S and its associated TEG, teg (S) =
(U ,U ′,A).

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:19

Fig. 6. Concurrency constraint graphs associated with state S in Example 4.3.

—TheWFG associated with S , wfg (S), is the graph (U ,A′) whereA′ = {(t , t ′) | ∃e ∈ U ′.(t , e) ∈
A ∧ (e, t ′) ∈ A}.

—The SG associated with S , sg (S), is the graph (U ′,A′) where A′ = {(e, e ′) | ∃t ∈ U .(e, t) ∈

A ∧ (t , e ′) ∈ A}.

Example 4.3. Consider the following deadlocked state S = (M,T) of the running example from
Listings 1 and 3, taking num_tasks to be 3. Tasks t1, t2, and t3 are the child tasks waiting on the
cyclic barrier (clock) pc , and the main (parent) task t0 is waiting on the join barrier (�nish) pf .

M =
{

pc : {t1 : 1, t2 : 1, t3 : 1, t0 : 0}, pf : {t1 : 0, t2 : 0, t3 : 0, t0 : 1}
}

,

T = {t0 : await(pf); s0, t1 : await(pc); s1, t2 : await(pc); s2, t3 : await(pc); s3}.

(We omit the continuations s0..4 for brevity.) Consequently, wait-onS and impede-byS are,
respectively,

{(

t0,p
1
f

)

,

(

t1,p
1
c

)

,

(

t2,p
1
c

)

,

(

t3,p
1
c

)}

,

{(

p1c , t0
)

,

(

p1
f
, t1
)

,

(

p1
f
, t2
)

,

(

p1
f
, t3
)}

.

Figure 6 depicts the TEG associated with S , and by contraction the associated WFG and SG.

Dynamic Graph Model Selection. A bene�t of our approach is that the deadlock detection can be
optimised by dynamically selecting between aWFG or SG model as appropriate. The selection can
be guided by the cost of cycle detection. The following is the worst-case time complexity for using
the WFG and the SG.

Proposition 4.4 (Time Complexity). Given a state S , letW stand for wait-onS and I stand for

impede-byS . Deadlock detection using the associatedWFG is O(|W |2 + |W |), while deadlock detection

using the SG associated with is O(|I |2 + |I |).

Proof. Cycle detection in a graph (V ,A) has a time complexity of O(|A| + |V |) [66]. For any
graph, |A| ≤ |V |2 [4], thus we can bound the complexity by O(|V |2 + |V |). Since the WFG vertices
are the tasks, deadlock detection using theWFGwith |W | tasks has a complexity of O(|W |2 + |W |).
Similarly for the SG, we have O(|I |2 + |I |). �

Based on this observation, we can expect the WFG or the SG to be more e�cient than the other
based on the ratio of tasks to synchronisation events in the runtime system. Some of the scenarios
for each case are as follows.
WFGs are suitable when events outnumber tasks, which we may expect in situations where

barriers are used to represent resources and the means to regulate their access. Such situations
arise in data�ow/stream processing [64, 71], and applications such as clocked variables [2]. This
characteristic is further pronounced in applications of asynchronous phase advancing that relate
events to resources, as in producer-consumer patterns, where a potentially large number of events
may arise from even a small number of phasers and tasks.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:20 T. Cogumbreiro et al.

By contrast, we may expect SGs to be suitable, due to tasks outnumbering events, in settings
where parallelism is based on the scaling of tasks, such as single program, multiple data (SPMD)
systems, e.g., using MPI or OpenMP, and phaser accumulators [63].

Ultimately, we expect that the ratio of tasks to events may be di�cult to predict in many barrier
applications, with the potential for signi�cant variance during execution, motivating an approach
to dynamic graph model selection. Such situations may arise in advanced languages such as X10,
that support ad hoc combined use of multiple forms of barrier abstractions, and other hybrid sys-
tems, such as combinations of MPI and OpenMP.
Section 7.3 evaluates the performance impact of dynamic graph model selection in practice.

The results—especially those for deadlock avoidance—con�rm the above remarks, namely, that
the WFG is indeed more e�cient in programs where events outnumber tasks, and vice versa for
SG. We also note that in every benchmark application except for the simplest one (named SE),
using the TEG directly (as a base case comparison) is always slower than using the best option out
of WFG or SG.

5 DEADLOCK VERIFICATION PROPERTIES

This section presents correctness properties of phaser deadlock veri�cation in Armus. First, we
show that theWFG and the SG associated with a state S are equivalentwith respect to the presence
of cycles. Second, we show that deadlock detection for a state S by cycle detection in the associated
WFG is sound and complete, i.e., the WFG contains a cycle if, and only if, S is deadlocked. The
de�nitions and proofs are available as a machine-checked Coq implementation.13

5.1 Model-Equivalence Theorem

In this section, we show that a state S , whenever there is a cycle in the associated WFG, there
is also a cycle in the associated SG, and vice versa. Precisely, given a state S and a cycle in the
associated WFG, from v1 to v1, we can construct a path in the associated SG from u1 to un , as
depicted in the next graph, where the dotted arcs are in the WFG, the solid and the dashed arcs
are both in the TEG, and the squiggly arcs are in the SG. From the edges (v1,u1) and (un ,v1), we
show that the edge (un ,u1), not depicted below, is an edge in the SG, and therefore there is a cycle
in the SG that passes through u1.

The equivalence of �nding a cycle in the WFG and SG can be stated generally for any bipartite
graph.

De�nition 5.1 (Contracted Graph). LetG = (V ,U ,A) be a bipartite digraph. Let the contraction of
G intoGV = (V ,AV) whereAV is de�ned as (v1,v2) ∈ AV if, and only if, ∃u ∈ U such that (v1,u) ∈
A and (u,v2) ∈ A. Similarly, let the contraction of G into GU = (U ,AU) where AU is de�ned as
(u1,u2) ∈ AU if, and only if, ∃v ∈ V such that (u1,v) ∈ A and (v,u2) ∈ A. We call a ∈ GV a V -arc,
and a ∈ GU a U -arc. Similarly, we callw ∈ GV a V -walk, andw ∈ GU aU -walk.

13https://gitlab.com/cogumbreiro/brenner-coq.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://gitlab.com/cogumbreiro/brenner-coq

Dynamic Deadlock Verification for General Barrier Synchronisation 1:21

Henceforth until the end of the section, let v denote a vertex such that v ∈ V and let u denote a
vertex such that u ∈ U . In a bipartite graph’s contraction GV , any path with three vertices can be
“translated” into a path in GU that only has two vertices (i.e., a U -arc).

De�nition 5.2. Let (v1,v2) ⌣ (v2,v3) ⌢G (u1,u2) hold if the arcs (v1,u1), (u1,v2), (v2,u2), and
(u2,v3) are all in G.

It follows trivially that (v1,v2), (v2,v3) are arcs inGV and that (u1,u2) is an arc inGU . The next
graph depicts proposition (v1,v2) ⌣ (v2,v3) ⌢G (u1,u2).

Now letw ⌢G w ′ relate a V -walkw with aU -walkw ′.

De�nition 5.3 (Walk Contraction). Let G = (V ,U ,A) be a bipartite digraph. Letw ⌢G w ′ be de-
�ned inductively as

ϵ ⌢G ϵ a ⌢G ϵ

a1 ⌣ a2 ⌢G b (a2 : : w1) ⌢G w2

(a1 : : a2 : : w1) ⌢G (b : : w2)

Lemma 5.4. LetG = (V ,U ,A) be a bipartite graph. Ifw is aV -walk, then there exists aU -walkw ′

such thatw ⌢G w ′.

Proof. The proof follows by induction on the structure of w . There are two cases to consider.
The �rst case is whenw = ϵ ; the proof follows trivially takingw ′ = ϵ . By de�nition, we have that
ϵ is a U -walk and that ϵ ⌢G ϵ holds. The second case is when w = a : : w1 and we want to show
that there is someU -walkw ′ such that a : : w1 ⌢G w ′. By inspecting the structure ofw1, we have
two further sub-cases to analyse: (a) eitherw1 is ϵ , or (b) a = (v1,v2) andw1 = (v2,v3) : : w2.

(a) We conclude the proof of this sub-case withw ′ = ϵ , since by de�nition ϵ is aU -walk and
a : : ϵ ⌢G ϵ holds.

(b) By applying the induction hypothesis to w2 is a V -walk, we get that there is some U -
walkw ′′ such that (v2,v3) : : w2 ⌢G w ′′. The sub-case concludes by showing that given a
V -walk (v1,v2) : : (v2,v3) : : w2, aU -walkw ′′, and (v2,v3) : : w2 ⌢G w ′′, then there exists
some U -walk w ′ such that (v1,v2) : : (v2,v3) : : w2 ⌢G w ′ holds. The proof follows by
inverting the proposition (v2,v3) : : w2 ⌢G w ′′, which can be proved from knowing that
for every path V -walk v1 · v2 · v3 there exists a U -walk u1 · u2 such that v1 · v2 · v3 ⌢G

u1 · u2.

(The Coq version of this lemma is named a_to_b_total, in aniceto-coq/src/Graphs/

Cycle.v) �

Lemma 5.5. Let G = (V ,U ,A) be a bipartite graph. If (u1,u2) is the last arc of U -walk w ′ and

w ⌢G w ′, then there exists a V -walk v1 · v2 · v3 such that v1 · v2 · v3 ⌢G u1 · u2.

Proof. The proof follows by induction on the derivation tree ofw ⌢G w ′. Inverting proposition
w ⌢G w ′, we get three cases to consider: (i)w = w ′ = ϵ ; (ii)w = (v1,v2) andw

′
= ϵ ; and (iii)w =

(v1,v2) : : (v2,v3) : : w1,w
′
= a : : w2, and (v2,v3) : : w1 ⌢G (u1,u2) : : w2.

We conclude cases (i) and (ii) with the same proof. By hypothesis (u1,u2) is the last arc of w
′,

thus (u1,u2) ∈ w
′; however,w ′ = ϵ , and therefore (u1,u2) ∈ ϵ , which cannot be by de�nition of arc

membership.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:22 T. Cogumbreiro et al.

As for case (iii), we inspect the structure of w2 and get two further sub-cases: (a) w2 = ϵ and
(b)w2 = (u2,u3) : : w3.

(a) At this pointw ′ = a : : ϵ and therefore a = (u1,u2). We can now conclude by applying the
hypothesis (v2,v3) : : w1 ⌢G (u1,u2) : : ϵ .

(b) Recall we want to show that there exists a V -walk v1 · v2 · v3 such that v1 · v2 · v3 ⌢G

u1 · u2. Since we know that (u1,v2) is the last arc of a : : (u2,u3) : : w3, then arc (u1,v2) is
also the last of walk (u2,u3) : : w3. Thus, we apply the induction hypothesis to conclude
our proof.

(The Coq version of this lemma is named a_to_b_end, in aniceto-coq/src/Graphs/

Cycle.v) �

Lemma 5.6. Let G = (V ,U ,A) be a bipartite graph. If the V -walk w is a cycle, then there exists a

U -walkw ′ that is a cycle.

Proof. Applying Lemma 5.4 to our hypothesis, we get that there exists a U -walk w ′ such that
w ⌢G w ′ holds. By inverting the latter there are two cases to consider: (a) w = (v,v) : : ϵ and
(b)w = a1 : : w1 andw

′
= a2 : : w2.

In case (a) there exists a vertex u such that we have (v,u) ∈ A and (u,v) ∈ A. We conclude the
proof since (u,u) is a cycle in the U -graph.
In case (b), since w is a cycle, let w = (v1,v2) : : w1 and (vn ,v1) be the last arc of w , when a1 =

(v1,v2). Applying Lemma 5.5 to the hypothesis that (vn ,v1) is the last arc of w , we get
vn−1 · vn · v1 ⌢G un−1 · un . We illustrate the two paths below.

From (un ,v1) ∈ A and (v1,u1) ∈ A, we get that (un ,u1) is an edge in GU , thus

(The Coq version of this lemma is named cycle_a_to_b, in aniceto-coq/src/Graphs/

Cycle.v.) �

Corollary 5.7. There exists a cycle w on graph wfg (S) if, and only if, there exists a cycle w ′ on

graph sg (S).

Proof. We apply Lemma 5.6 to each side of the implication.
(The Coq version of this corollary is named sg_to_wfg and wfg_to_sg, in brenner-coq/src/

ResourceDependency.v.) �

5.2 Soundness

The property of soundness ensures the absence of false positives, i.e., soundness entails that if there
is a cycle w in the WFG of a given state S , then such state is deadlocked. The proof is split into
two main steps. First, we divide the task map from state S into two disjoint task maps, according
to the membership of the tasks (vertices) in cycle w . Second, we then show that any state whose

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:23

task map is composed of the vertices mentioned in cyclew is totally deadlocked, which allows us
to conclude that state S is deadlocked.

Lemma 5.8. Let S = (M,T) and G be the WFG associated with S . Let w be a walk on G such that

t ∈ w if, and only if, t ∈ dom(T). Ifw is a cycle, then state S is totally deadlocked.

Proof. To show that S is totally deadlocked, we must prove that (i) all tasks in S are waiting on
some event, (ii) all tasks are being impeded by some event, and (iii) T is nonempty.

Part (i). We need to show that if t ∈ dom(T), then there exists an event e such that t wait-onS e .
Since t ∈ dom(T), from the hypothesis we have that t ∈ w . Given thatw is a cycle and that t ∈ w ,
then there exists a task t ′ such that (t , t ′) ∈ w , which we invert to conclude that t wait-onS e .

Part (ii). We need to show that if t wait-onS e , then there exists some task t ′ such
that t ′ impede-byS e . From t wait-onS e , we get that t ∈ dom(T) and by hypothesis t ∈ w . But
as w is a cycle and t ∈ w , then there is some vertex t ′ such that (t , t ′) ∈ w . From (t , t ′) and t is
waiting on e , we have that e impede-byS t

′.
Part (iii). Task map T is nonempty, since w is a cycle, which by de�nition has at least one ver-

tex t ∈ w , thus, by hypothesis, t ∈ dom(T).
(The Coq version of this lemma is named soundness_totally, in brenner-coq/src/Soundness.

v.) �

Theorem 5.9. Ifw is a cycle on the WFG of S , then state S is deadlocked.

Proof. Let state S = (M,T ⊎T ′) be such that t ∈ w if, and only if, t ∈ dom(T). Let G be the
WFG associated with S and G ′ be the WFG associated with (M,T). Next, we show that if w ∈ G,
then w ∈ G ′, which can be shown by proving that if (t , t ′) ∈ G, then (t , t ′) ∈ G ′. By de�nition
of WFG-edge, our hypothesies are (t , t ′) ∈ w , t wait-onS e , and e impede-byS t

′; and we want to
show that t wait-on(M,T) e and that e impede-by(M,T) t

′.
First, we show that t wait-on(M,T) e . From t ∈ w , we have that t ∈ dom(T), thus

t wait-on(M,T) e .
Second, we show that e impede-by(M,T) t

′, or, by the de�nition of impedes, that there exists
some event er such that er ≺ e and t assoc(M,T) er , which we get by inverting e impede-byS t

′.
Hence, we only need to show t assoc(M,T) er , which holds by inverting t assocS e and knowing
that t ∈ dom(T).
Sincew is a cycle in the WFG associated with (M,T) such that t ∈ w if, and only if, t ∈ dom(T),

then by applying Lemma 5.8 we get that (M,T) is totally deadlocked, which concludes our proof.
(The Coq version of this theorem is named soundness, in brenner-coq/src/Soundness.

v.) �

5.3 Completeness

The property of completeness entails the absence of false negatives, i.e., for any deadlocked state S
we can exhibit a cycle in the WFG of S . The proof is divided into two steps. First, we consider
totally deadlocked states S , in which we observe that each task is a vertex in the WFG of S with
an outgoing arc. There is a cycle in any �nite graph whose vertices have at least an outgoing arc,
so totally deadlock states have a cycle. Second, we show the WFG of a totally deadlocked state is
a subgraph of the WFG of the relative deadlocked state, thus we can conclude our proof.

Lemma 5.10. Let G = (V ,A) be the WFG associated with some state S . If S is totally deadlocked,

then there exists a cyclew in G.

Proof. We know that if (i)A is nonempty, and (ii) all vertices inG have an outgoing arc, thenG
has a cycle. Our mechanisation provides a constructive proof of this result, yet since this is a
standard result outside of the focus of this article we redact its discussion.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:24 T. Cogumbreiro et al.

Part (i), we show that graph A is nonempty. Let S = (M,T). Since S is totally deadlocked,
then there exists some t ∈ dom(T). Furthermore, we know that all tasks are waiting on some
event e , thus t wait-onS e . But given that S is totally deadlocked, then there is some task t ′ such
that e impede-byS t

′. Hence, (t , t ′) ∈ G and thereforeG is nonempty.
Part (ii), we show that if t ∈ G, then there exists some task t ′ such that (t , t ′) ∈ G. From t ∈ G

and the de�nition of totally deadlocked, we get that there exists an event e such that t wait-onS e .
Hence, by de�nition of totally deadlocked, there exists some task t ′ such that e impede-byS t

′ and
t ′ ∈ S ; let us take t ′. From t wait-onS e and e impede-byS t

′, we get that (t , t ′) ∈ G.
(The Coq version of this lemma is named totally_deadlock_has_cycle, in brenner-coq/src/

Completeness.v.) �

Theorem 5.11. If S is deadlocked, then there exists a walkw such thatw is a cycle in the WFG of

state S .

Proof. Let graph G be the WFG associated with S . Now, by inverting the hypothesis that S
is deadlocked, we get that S = (M,T ⊎T ′), (M,T) is totally deadlocked, and G ′ is the WFG as-
sociated with (M,T) such that G ′ is a subgraph of G. From Lemma 5.10 and (M,T) being totally
deadlocked, we get that there exists a cyclew inG ′. Yet, sinceG ′ is a subgraph ofG, thenw is a cycle
in G.
(The Coq version of this theorem is named completeness, in brenner-coq/src/Completeness.

v.) �

6 ARMUS IMPLEMENTATIONS

This section discusses the implementation of Armus for X10 and Java. Our open source
implementations6 are the �rst sound and complete tools for barrier-deadlock veri�cation in both
cases. Key features are scalability from dynamic selection between WFG and SG models (Sec-
tion 6.1) and support for distributed barriers (Section 6.3).
Armus is implemented as a two-layer framework. The Veri�cation Layer is a platform-

independent core library for managing the monitored system state and performing the deadlock
detection. The Application Layer consists of a speci�c implementation for each target language.
It is responsible for correlating the barrier operations in the target language with Armus phaser
operations, to extract and maintain the system state in a consistent manner.

6.1 Verification Layer

The Veri�cation Layer (VL) is a Java library that has two main purposes:maintenance of the system
state required by the deadlock veri�cation and the actual deadlock checking.

Overall Methodology. Based on the formal developments in the preceding sections, we give a
practical methodology for deadlock veri�cation that is readily applicable to existing barrier and
phaser systems, including distributed implementations. A key point that we leverage: Armus dead-
lock veri�cation can be performed on a composition of per-task views of the system state obtained
from only awaiting tasks. Such “partial” system views are safe abstractions of the centralised, global
view represented by a formal system state S , w.r.t. the deadlock veri�cation.
The methodology stipulates: whenever a task enters a potentially blocking await operation, the

event it is waiting on and the set of events currently associated with that task are recorded; we refer
to this localised information as the blocking status of the task. The blocking status recorded for a
task is cleared on completion of the await operation. Note that a blocking status is invariant while
the task remains awaiting; in particular, its phaser memberships.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:25

The deadlock veri�cation is then conducted as follows:

(1) A snapshot of the global wait-on and associated-events relations (Section 3.2) is obtained
by compiling all the currently recorded blocking statuses.

(2) The impede-by relation is derived from the above, giving the base components of the TEG
(De�nition 4.1).

(3) The TEG components are used to construct the associated WFG or SG (De�nition 4.2).
The system is deadlocked if, and only if, there is a cycle in the constructed graph.

Given the blocking statuses of all currently awaiting tasks, the obtained wait-on is the same
as wait-onS for the full system state S , but the associated events relation is the subset of assocS
restricted to awaiting tasks only. In comparison to the core de�nitions in Section 3.2, this restriction
serves as a safe optimisation that reduces the size of derived impede-by. The restriction preserves
soundness because new cycles are never introduced (edges may only be pruned), and completeness
because existing cycles are always retained (all tasks involved in a cycle are in wait-onS).

VL State Management. Following this methodology, the VL maintains Armus system state as
a map from tasks to blocking status records. Its key set comprises the tasks that are currently
executing an operation corresponding to an Armus phaser await. Each record is a pair: the event
that the task is waiting on, and the set of events associated with the task; this information is
provided by the Application Layer (Section 6.2). The VL directly maintains the system state as
per-task records (as opposed to the derived wait-for and impede-by dependencies) to optimise the
processing of operations related to updating the blocking statuses, since they are more frequent
than deadlock checking.

Graph Selection and Cycle Checking. The deadlock checker, following steps (1)–(3), implements
the core functionality for compiling the wait-for and impede-by dependencies from the block-
ing statuses, graph model selection and construction, and cycle detection. We use JGraphT14 to
perform cycle detection.
The VL supports two graph selectionmodes: static and dynamic. In the static mode, the deadlock

checker always uses the speci�ed model type (cf. inherent coupling to WFGs by design, e.g., [34]).
In the dynamicmode, the graphmodel is dynamically selected according to the heuristics described
below, meaning that the veri�cation may switch between models during execution. We outline the
implementation of each mode.

—TheWFG-static mode closely follows the main methodology (as outlined in Section 6.1) by
constructing the associated WFG in two passes over the blocking status records. The �rst
derives the impede-by dependencies. The second constructs theWFG by generating an edge
from each event being waited on by a task to the events impeded by that task.

—In the SG-staticmode, SG construction is optimised into one pass by directly generating an
edge from each event e associated with the task to the event the task is waited on, excluding
e . This optimisation is possible because the barrier facilities of Java and X10 support only
the await(p) form of awaiting (i.e., not await(p,n)), and hence (1) it is unnecessary to build
the SG edges transitively; and (2) SG cycles of length one, (e, e), cannot arise.

A tradeo� of conducting a single pass is that the resulting graph contains at least the
nodes of the formally de�ned SG, and possibly more, namely, events modelled as being
impeded but not being observed by any task. However, this remains correct because these

14http://jgrapht.org/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://jgrapht.org/

1:26 T. Cogumbreiro et al.

additional nodes have no incoming edges (so no new cycles are introduced) and no edges
are removed.

—The dynamicmode starts with the SG construction pass, but additionally builds the impede-
by dependencies alongside. We employ a heuristic during this pass: if the number of SG-
edges exceeds the number of blocked status records processed by a con�gurable threshold,
the VL switches to WFG construction (by �nishing the building of impede-by). By default,
our implementation uses a threshold of twice as many SG-edges as tasks, obtained from
practical experiments. If the initial SG pass completes, the VL may still opt to build the
WFG according to the ratio of tasks to event nodes (following Proposition 4.4).

6.2 Application Layer

We present implementations of the Application Layer (AL) for verifying barrier deadlocks in X10
and Java, Armus-X10 (Section 6.3), and JArmus (Section 6.4), respectively. The AL implementations
serve as frontend user tools that work by “weaving” Armus veri�cation instructions into the pro-
gram. Armus-X10 currently supports the Java backend of X10 (Managed X10); an implementation
for the C++ backend would follow the same principles.
Armus-X10 and JArmus are implemented as a post-compilation step, taking the generated Java

bytecode as input. Any Java/X10 program that passes standard compilation is accepted by the Ar-
mus tools, returning a valid Java/X10 program (i.e., with respect to standard JVM dynamic class
veri�cation) that is modi�ed only by the insertion of Armus instructions. The resulting program
thus features the same barrier usage as the original, but with the Armus dynamic deadlock ver-
i�cation guarantees for the targeted barrier programming facilities (detailed below). Both imple-
mentations use AspectJ15 to weave the required VL calls around the target operations; e.g., to pass
the blocking status to the VL on entering a potentially blocking barrier operation, and to clear the
blocking status afterwards.

Deadlock Detection and Avoidance. Our implementations support deadlock avoidance in addition
to standard detection. Avoidance mode is implemented by running the main veri�cation method-
ology (as outlined above) inline with every invocation of a potentially blocking operation. This
is achieved by weaving both the VL state update and deadlock checking calls around every such
target operation. From the user perspective, the target operation is interrupted by an exception if
it will introduce a deadlock. For certain applications, such exceptions may be handled by the pro-
grammer in a manner that promotes resilience to deadlocks. See Section 8 for further discussion
of deadlock avoidance.
In the default detection mode, only the VL state update calls are weaved into the user program;

Armus performs the deadlock veri�cation periodically. In contrast to avoidance, the detection
mode only reports already existing deadlocks, with lower performance overhead. The compar-
ative performance of detection and avoidance is evaluated in Section 7.1.

6.3 Armus-X10

Armus-X10 supports fully automatic instrumentation of all usages of clocks, �nishes, and the
SPMDBarrier, including their distributed versions. All of the key information required by Ar-
mus, such as task IDs and the barrier membership of each task, is directly obtained from the
X10 runtime. Our implementation uses a small extension that considers tasks as waiting on a
set of events (i.e., a single task may have multiple wait-on relationships), to explicitly handle the
X10 advanceAll command for synchronising on every clock that the calling task is registered

15https://eclipse.org/aspectj/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://eclipse.org/aspectj/

Dynamic Deadlock Verification for General Barrier Synchronisation 1:27

with. Alternatively, we could treat advanceAll in Armus without these extensions, through its
encoding into split-phase synchronisations (call resume on each clock in arbitrary order, followed
by advance on each in arbitrary order).16

Distributed Deadlock Detection. One of the key design goals of X10 is to promote a smoothmigra-
tion between shared memory and distributed deployments of barrier programs [10]. A distributed
barrier program is composed of tasks synchronising on shared barriers while running at di�erent
places, which may map concretely underneath to processes running in separate address spaces on
the same, or di�erent, machines, synchronising by asynchronous message passing. Listing 4 gives
a distributed version of the code in Listing 1 (corrected to avoid the original deadlock) where each
child task is executed in a separate place, as designated by the at clause of the async statement.

Listing 4. Distributed X10 version of Listing 1 (corrected to avoid the original deadlock), executing each child

task at a di�erent remote place p.

A distributed deployment of Armus-X10 features an instance of the Armus runtime at each dis-
tributed site, with reliable access to a (remote) central data store: our implementation uses a TCP
connection from each site to a failure resilient Redis17 server. Each Armus instance periodically
uploads its local blocking status to the data store, i.e., a disjoint portion of the global system state.
Likewise, the deadlock checker periodically, and asynchronously, polls the data store for the cur-
rent snapshot of the system state, on which it performs the deadlock detection. Consistency is
ensured by the use of TCP for ordered and reliable delivery of the state update messages between
each site and the central store. We do not assume any synchronisation between the blocking status
messages from di�erent sites.
The basis for this approach is rooted in the basic methodology outlined in Section 6.1. First, note

that it is sound to conduct the veri�cation on the partial snapshot of system state formed from
the blocking statuses of any subset of blocked tasks (i.e., due to asynchronous delays of update
messages). Then the key point regarding overall soundness (i.e., the key di�erence between this
distributed setting and the basic methodology) relates to the clearing of blocking statuses from the
central storewhen tasks complete their await operations. The asynchrony of thesemessagesmeans
that the deadlock detectionmay be conducted on amodel that includes “dead” edges, i.e., those built
from a blocking status for which the task has completed its await in the actual system. However,

16http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf (Section 15.1.4).
17http://redis.io/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://redis.io/

1:28 T. Cogumbreiro et al.

it is inherently impossible for such an edge to be part of a cycle in the model if the relevant task
is no longer blocked in the actual system (i.e., a false-positive scenario), since phaser deadlock is a
stable property. The stability of deadlocks and assumption of reliable network infrastructure also
ensures a form of completeness for this setting, in that a deadlock is always eventually detected.
The correctness of the veri�cation is thus una�ected by any discrepancy arising due to asynchrony,
between the analysis state according to the central store and the concrete state of the actual system.

6.4 JArmus

JArmus supports the standard Phaser API, and the other barrier programming facilities in the
java.util.concurrent package that it subsumes, such as CountDownLatch and CyclicBarrier.
The Java Phaser is a limited version of the general concept of phasers that supports dynamic
membership and split-phase synchronisations, but does not permit asynchronous advancing of
local phases by individual members (and, consequently, cannot support awaiting arbitrary phases).
This limitation is related to a design choice of these APIs that, unlike the X10 runtime, do not
record barrier membership with respect to an explicit notion of task (i.e., thread) ID. Instead, a
Phaser simply records the number of times the register method is called, without considering
the identity of calling threads. It is left to the programmer to use register appropriately, and
hence the relationship between the threads that called register and the actual participants of a
synchronisation (i.e., threads calling one of the await methods) is also left implicit. Similarly for
CyclicBarrier, the programmer declares the number of participants (and shares the object with
that many tasks), but does not specify which tasks participate in synchronisations.

Listing 5. Deadlock-free Java version of Listing 1 using the standard Phaser API and JArmus.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:29

Due to the above limitation, JArmus, unlike Armus-X10, does not support fully automatic in-
strumentation of Java programs that use these APIs. JArmus instead relies on the programmer to
manually provide the missing thread membership information by additionally calling the static
register method of the JArmus class, typically on task start up (cf. the clocked clause in an
X10 async). For example, Listing 5 lists a Java version of the running example from Listing 1 using
Phaser and JArmus. The Java “registration” of each child task to, e.g., the “clock” Phaser c (line 6),
is matched by a JArmus.register, taking the phaser as an explicit argument and the ID of the
calling thread implicitly, at the start of the task (line 10). The Java registration of the parent task,
implicitly signi�ed by initialising the phaser to a count of 1 (line 1), is similarly matched by an
explicit JArmus.register (line 3).

In general, there is no precise method for statically inserting these JArmus calls automatically,
nor any way to reconstruct the missing membership information at runtime from the existing
Phaser (or CountDownLatch, CyclicBarrier) classes alone. In practice, if the user does not cor-
rectly use JArmus.register to register a task to some phaser, then a JArmus runtime exception
will typically be raised if and when the task attempts a relevant operation on the phaser, due to
the Armus instrumentation of the latter.
The information on which tasks are participating, rather than just counting the number of par-

ticipants, would be a crucial requirement to extend Java Phaser to support all synchronisation
patterns possible with phasers. For instance, in a multi-producer-single-consumer pattern, the
phase number of each producer allows the consumer to proceed stepwise at the pace of whichever
is the “slowest” producer, and which may vary throughout the computation.

7 EVALUATION

The aim of the evaluation process is to (1) ascertain whether the performance impact of Armus
scales with the increase in the number of tasks, (2) evaluate the performance overhead of dis-
tributed deadlock detection, and (3) compare execution impact of selecting between the SG with
the WFG and using the dynamic model selection approach.
The hardware used to run the benchmarks has four AMD Opteron 6376 processors, each with

16 cores, making a total of 64 cores. There are 64GB of available RAM. The operating system used
is Ubuntu 13.10. For the languages, we used Java build 1.8.0_05-b13, and X10 version 2.4.3. For
compiling and running we used the default compiler and runtime �ags of each benchmark suite.
We follow the start-up performance methodology detailed in [26]. We take 31 samples of the

execution time of each benchmark and discard the �rst sample. Next, we compute the mean of the
30 samples with a con�dence interval of 95%, using the standard normal z-statistic.

7.1 Impact of Non-Distributed Verification

The two goals of this evaluation are (i) to measure the impact of veri�cation on standard Java
benchmarks and (ii) to measure whether the veri�cation scales with the increase of the number
of tasks. We run the veri�cation algorithm against a set of standard parallel benchmarks available
for Java. JArmus is run in the detection mode (every 100ms) and in the avoidance mode, both use
the dynamic model selection. Note that the Java applications we checked are not distributed.
We select benchmarks from the NPB suite [24] and the Java Grande Forum (JGF) [65] benchmark

suite. The NPB ranges from kernels to pseudo-applications, taken primarily from representative
Computational Fluid Dynamics (CFD) parallel applications. The JGF is divided into three groups of
applications: micro-benchmarks, computational kernels, and pseudo-applications. All benchmarks
proceed iteratively, and use a �xed number of cyclic barriers to synchronise stepwise. Furthermore,
all benchmarks check the validity of the produced output.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:30 T. Cogumbreiro et al.

Fig. 7. Comparative execution time for non-distributed benchmarks (lower means faster).

For the sake of reproducibility, we list the parameters of the benchmarks run as speci�ed in [24,
65]: BT uses size A, CG uses size C, the Java version of FT uses size B, MG uses size C, RT uses B,
and SP uses size W. Note: the input set chosen for benchmark SP only allows it to scale up to 31

tasks; however, to simplify the presentation of the graphs, we have represented the results of this
benchmark in the 32-task category.
Figure 7 summarises the comparative study of the execution time for each benchmark. The

results for the NPB and JGF benchmark suites are depicted in Figures 7(a)–(f). In detection mode,
since there is a dedicated task to perform veri�cation, we observe that the overhead does not
increase linearly as we add more tasks. The runtime factor sits below 1.15× and in most cases is
negligible. In avoidance mode, each task checks the graph whenever it blocks, so as we add more
tasks, the execution overhead increases. Still, in the worst case, benchmark CG, the runtime factor
is 1.50×, which is acceptable for application testing purposes.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:31

Fig. 8. Comparative execution time for distributed deadlock detection (lower means faster).

7.2 Impact of Distributed Verification

The goal of the evaluation is to measure the runtime overhead of deadlock detection in available
X10 distributed applications. Armus-X10 is con�gured with the distributed deadlock detection
mode, running the veri�cation algorithm every 200ms. The chosen benchmarks are available via
the X10 source code repository.18 Deadlock avoidance is unavailable in the distributed setting.

Benchmarks FT and STREAM come from the HPC Challenge benchmark [46], SSAC2 is an HPCS
Graph Analysis Benchmark [3], and JACOBI and KMEANS are available from the X10’s website. For
reproducibility purposes the non-default parameters we select are FT magnitude 11; KMEANS 25k
points, 3k clusters to �nd, and �ve iterations; JACOBI matrix of size 40, maximum iterations are
40; SSCA2 215 vertices, a with a probability of 7%, and no permutations; and STREAM with size of
524k.
Figure 8 depicts the execution time of each benchmark with and without veri�cation. There is

no statistical evidence of an execution overhead with running deadlock detection mode.

7.3 Impact of the Graph Model Choice

The goal of this evaluation is to measure the impact of the graph model in the veri�cation pro-
cedure. To this end, we analyse the worst-case behaviour: programs that generate graphs with
thousands of edges. In particular, we evaluate our dynamic model selection against the usual static
model selection (WFG and SG).
We select a suite of programs that spawn tasks and create barriers as needed, depending on the

size of the program, unlike the classical parallel applications we benchmark in Sections 7.1 and 7.2
where the number of tasks should correspond to the number of available processing units (cores).
The suite of programs exercises di�erent worst-case scenarios for the veri�cation algorithm: many
tasks versus many barriers.
The chosen benchmarks are educative programs taken from the course on Principles and Practice

of Parallel Programming, taught byMartha A. Kim and Vijay A. Saraswat, Fall 2013.19 BFS performs
a parallel breadth-�rst search on a randomly generated graph. There is a task per node being
visited and a barrier per depth level of the graph. FI computes a Fibonacci number iteratively with
a shared array of clocked variables (each pairs a barrier with a number). Each element of the array

18http://sourceforge.net/projects/x10/�les/x10/2.4.3/x10-benchmarks-2.4.3.tar.bz2/download.
19http://www.cs.columbia.edu/∼martha/courses/4130/au13/.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

http://sourceforge.net/projects/x10/files/x10/2.4.3/x10-benchmarks-2.4.3.tar.bz2/download
http://www.cs.columbia.edu/~martha/courses/4130/au13/

1:32 T. Cogumbreiro et al.

Fig. 9. Comparative execution time for di�erent

graph model choices (lower means faster), using

deadlock avoidance.

Fig. 10. Comparative execution time for di�erent

graph model choices (lower means faster), using

deadlock detection.

Table 3. Average Edge Count per Benchmark

per Graph Mode

SE FI FR BFS PS

Auto 24 808 190 7 6
SG 53 2,143 1,735 3 7
WFG 24 1,285 89 605 789
TEG 74 2,077 1,643 1,776 1,450

holds the outcome of a Fibonacci number. When the program starts it launches n tasks. The i-th
task stores its Fibonacci number in the i-th clocked variable and synchronises with task i + 1 and
task i + 2 that read the produced value. FR computes a Fibonacci number recursively. Recursive
calls are executed in parallel and a clocked variable synchronises the caller with the callee. SE
implements the Sieve of Eratosthenes using clocked variables. There is a task per prime number
and one clocked variable per task. PS computes the pre�x sum—or cumulative sum—for a given
number of tasks. Given an input array with as many elements as there are tasks, the outcome of
task i is the partial sum of the array up to the i-th element. All tasks proceed stepwise and are
synchronised by a global barrier.
Figures 9 and 10 depict the execution time of each benchmark veri�ed by Armus-X10 in avoid-

ance and detection modes (respectively) where we vary the selection method of the graph model.
Table 3 lists the average number of edges used in veri�cation and the relative execution time over-
head of each benchmark. When running in detection, since there is no statistical di�erence in the
average overhead (cf. Figure 10), Table 3 simply lists the veri�cation overhead of auto mode when
running in avoidance mode only.
We can classify the benchmarks in three groups according to the ratio between the number

of tasks and the number of resources: (i) similar count of tasks and resources, benchmark SE;
(ii) much more resources than tasks, benchmarks FI and FT; and (iii) much more tasks than re-
sources, benchmarks BFS and PS. When (i) there are as many resources as there are tasks, then all
graph models perform equally well. When (ii) there are more resources than tasks, and (iii) vice
versa, the choice of the graph model is of major importance for a veri�cation with low impact on
the execution time.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:33

Overall, dynamic graph selection outperforms static graph selection. Furthermore, the worst
model to choose from is the bipartite TEG graph, as it contains more information than the WFG
and the SG.When considering dynamic graph selection, theworst-case runtime factor for deadlock
detection is 1.2× and 2.4× for deadlock avoidance. The graph model choice severely ampli�es the
veri�cation overhead in deadlock avoidance. The case in point is benchmark PS; the runtime factor
for dynamic selection is 1.8×, for SG is 2.6×, for WFG is 5.9×, and for TEG is 14.4×.

8 RELATEDWORK

This section lists related work focusing on deadlock veri�cation in parallel programming lan-
guages. The Background on graph-based approaches to deadlock detection was discussed in
Section 4.1.

Deadlock Prevention. The literature around source code analysis to prevent barrier-related dead-
locks is vast. The fork/join programming model is easily restricted syntactically to prevent dead-
locks from happening. Lee and Palsberg [43] present a calculus for a fork/join programmingmodel,
suited for inter-procedural analysis through type inference, and establish a deadlock freedomprop-
erty. The work also includes a type system that is used to identify may-happen-parallelism, further
explored in [1]. Finally, related work on “barrier matching” tackles the problem of barrier dead-
locks in a setting where there is only global barrier synchronisation [39, 73].

Cogumbreiro et al. [14] propose a static typing system to ensure the correctness of phased ac-
tivities for a fragment of X10 that disallows awaiting on a particular clock. Therefore, programs
that involve more than one clock and that perform single waits cannot be expressed, or veri�ed
(cf. the X10 and Java programs we present in Section 2).

The tool X10X [28] is amodel checker for X10. Model checkers perform source code analysis and
can be used to discover potential deadlocks. This class of tools is a�ected by the state explosion
problem: the analysis grows exponentially with the number of possible interleaves of the program.
Thus, X10X may not be able to verify complex programs. In general, prevention is too limiting to
be applied to the whole system, so language designers use this strategy to eliminate just a class of
deadlocks.
Ganjei et al. propose a static veri�cation technique for unbounded phaser synchronisation [25].

The proposed tool performs symbolic execution on a simple language with branching and condi-
tional loops. The authors show that the problem of static deadlock freedom for such a language is
undecidable.

Deadlock Avoidance. The problem of deadlock avoidance is a verywell studied problem that dates
as far back as the 1960s, e.g., Banker’s Algorithm by Edsder Dijkstra [22]. For instance, Minoura
[47] and Reveliotis et al. [56] cover the problem complexity in deadlock avoidance with intricate
synchronisation patterns. In general, deadlock avoidance can only disallow actions that lead to a
deadlock and inform the culprit task of its error, e.g., Armus throws an unchecked exception. For
some synchronisation mechanisms, however, it is possible to preclude schedules that may lead to
a deadlock by controlling the lock acquisition order [6, 27, 51, 70]; using transactions to avoid data
races which lead to deadlocks with futures [50, 72]; executing critical regions as transactions [55];
and adding extra data in streaming computation [45]. To our best knowledge, techniques that
avoid deadlocks in the context of barrier synchronisation only handle a few situations of barrier
deadlocks, unlike our proposal that is complete (with reference to Theorem 5.11). For instance, in
X10 and HJ, tasks deregister from all barriers upon termination; this mitigates deadlocks that arise
frommissing participants. HJ avoids deadlocks that originate from the interaction between phasers

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

1:34 T. Cogumbreiro et al.

and �nish blocks by limiting the use of phasers to the scope of �nish blocks. Cogumbreiro et al.
use Armus in the context of a tool that specialises in avoiding deadlocks caused by futures [16].

Deadlock Detection. UPC-CHECK [57] deals with deadlock detection, but in a simpler setting
where barriers are global; in contrast, our work can handle group synchronisation. Literature con-
cerningMPI deadlock detection takes a top-down approach: the general idea is given, but mapping
it to the actualMPI semantics is left out. DAMPI [69] reports a program as deadlocked after a period
of inactivity, so it may indicate false positives, i.e., it can misidentify a slow program as being dead-
locked. Umpire [32] and MUST [34] (a successor of Umpire) use a graph-based deadlock detection
algorithm that subsumes deadlock detection to cycle detection, but omit a formal description on
how the graph is actually generated from the language (cf. Theorems 5.9 and 5.11). We summarise
the distributed detection technique of MUST. First, all sites collaborate to generate a single stream
of events to a central site. The di�culty lays in ordering and aggregating the events generated by
the various tasks. Then, the central site processes the stream of events to perform the collective

checking, where, among other things, it identi�es any completed barrier synchronisations. Finally,
since MUST maintains a distributed wait state, the site performing the collective checking must
broadcast the status of terminated synchronisations back to the various sites of the application. The
wait state is required to delay the graph analysis as much as possible. In our approach, tasks only
require local information to maintain data consistency, which means that, in a distributed setting,
Armus does not require the last synchronisation step that MUST performs. Furthermore, unlike
MUST, Armus is capable of verifying split-phase synchronisation, known in MPI as non-blocking
collective operations.

Transitive Closure. Instead of testing whether the wait-for dependencies are cyclic (such as Ar-
mus does), one can test if a given blocked task can reach itself through the wait-for dependencies.
The reachability problem can be solved by maintaining the transitive closure of the reachability
relation on the wait-for graph. Such a technique has been used in the context of deadlock avoid-
ance [5], yet the theoretical bounds are worst when compared to cycle detection. Computing the
transitive closure from scratch can be solved with matrix multiplication [48]; the best known algo-
rithm solves this problem in O(n2.376) [17]. Alternatively, the transitive closure can be maintained
dynamically [20], but updating the graph takes O(n2) time. Furthermore, maintaining the transi-
tive closure usually assumes a �xed set of vertices throughout the execution, and the problem is
compounded since updates and tests run concurrently.

Veri�cation of Other Barrier Properties. Saraswat and Jagadeesan [59] formalise the concurrency
primitives of X10. Le et al. [42] devise a veri�cation for the correct use of a cyclic barrier in a
fork/join programming language. Vasudevan et al. [68] perform static analysis to improve perfor-
mance of synchronisation mechanisms. Cogumbreiro et al. [15] formalises the Habanero phasers
and a causality relation on phasers; the results are mechanised using the Coq proof assistant. Crafa
et al. [18] present a small-step semantics of X10 with support for fault tolerance; the formalisation
omits clocks (which are similar to phasers). The results of the article are mechanised using the
Coq proof assistant. Murthy et al. [49] propose the design of a distributed phaser, using skip lists.
Scenarios of the distributed protocol are veri�ed with the SPIN model checker.

9 CONCLUSION

We put forward Armus, a dynamic veri�cation tool for barrier deadlocks that features both detec-
tion and avoidance, distribution support, and scalability improvements based on dynamic graph
model selection. The target of veri�cation is the core language Brenner, introduced to represent
programs with various barrier synchronisation patterns. The graph-based deadlock veri�cation of

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

Dynamic Deadlock Verification for General Barrier Synchronisation 1:35

Armus is formalised and shown to be sound and complete against Brenner. We prove that one
can select from any of two graph models (WFG and SG) and correctly identify a deadlock situa-
tion. This result lets our tool dynamically choose the model that yields a smaller graph—a novelty
in checking for deadlocks. Our benchmarks show that dynamic model selection outperforms the
standard static model selection. Overall, the worst-case runtime factor for deadlock detection is
1.21×, and is often not statistically signi�cant, e.g., in distributed benchmarks. We present two
applications: Armus-X10 monitors any unchanged X10 program for deadlocks; JArmus is a library
to verify Java programs. To the best of our knowledge, our work is the �rst dynamic veri�cation
tool that can correctly detect Java and X10 barrier deadlocks.
For future work, our goal is to extend the veri�cation of our implementation. Our starting point

is to verify the algorithm for distributed deadlock detection. Another direction is the veri�cation
of MPI programs that introduce complex patterns of point-to-point synchronisation and enable a
direct comparison with state-of-the-art in barrier deadlock detection.

ACKNOWLEDGMENTS

We thank Olivier Tardieu and the PPoPP reviewers for their comments and suggestions on an
earlier version of this work.

REFERENCES

[1] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K. Shyamasundar. 2007. May-happen-in-parallel

analysis of X10 programs. In PPoPP. ACM, 183–193. DOI:https://doi.org/10.1145/1229428.1229471

[2] Daniel Atkins, Alex Potanin, and Lindsay Groves. 2013. The design and implementation of clocked variables in X10.

In ACSC (CRPIT), Vol. 135. ACS, 87–95. http://crpit.com/abstracts/CRPITV135Atkins.html.

[3] David A. Bader and Kamesh Madduri. 2005. Design and implementation of the HPCS graph analysis benchmark on

symmetric multiprocessors. In HiPC. Lecture Notes in Computer Science, Vol. 3769. Springer, 465–476. DOI:https:

//doi.org/10.1007/11602569_48

[4] Jørgen Bang-Jensen and Gregory Z. Gutin. 2009. Digraphs: Theory, Algorithms and Applications (2nd ed.). Springer.

[5] Ferenc Belik. 1990. An e�cient deadlock avoidance technique. Transactions on Computers 39 (1990), 882–888.

DOI:https://doi.org/10.1109/12.55690

[6] Gérard Boudol. 2009. A deadlock-free semantics for shared memory concurrency. In ICTAC. Lecture Notes in Com-

puter Science, Vol. 5684. Springer, 140–154. DOI:https://doi.org/10.1007/978-3-642-03466-4_9

[7] Yan Cai and Wing-Kwong Chan. 2014. Magiclock: Scalable detection of potential deadlocks in large-scale multi-

threaded programs. Transactions on Software Engineering 40, 3 (2014), 266–281. DOI:https://doi.org/10.1109/TSE.2014.

2301725

[8] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java: The new adventures of old X10. In

PPPJ. ACM, 51–61. DOI:https://doi.org/10.1145/2093157.2093165

[9] Soumen Chakrabarti, Manish Gupta, and Jong-Deok Choi. 1996. Global communication analysis and optimization.

ACM SIGPLAN Notices (1996), 68–78. DOI:https://doi.org/10.1145/231379.231391

[10] Philippe Charles, Christian Grotho�, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph

von Praun, and Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform cluster computing. In OOPSLA.

ACM, 519–538. DOI:https://doi.org/10.1145/1094811.1094852

[11] Sung-Eun Choi and Lawrence Snyder. 1997. Quantifying the e�ects of communication optimizations. In ICPP. IEEE,

218–222. DOI:https://doi.org/10.1109/ICPP.1997.622647

[12] Edward G. Co�man, Jr., M. J. Elphick, and Arie Shoshani. 1971. System deadlocks. Computing Surveys 3, 2 (1971),

67–78. DOI:https://doi.org/10.1145/356586.356588

[13] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2015. Dynamic deadlock veri�cation for

general barrier synchronisation. In PPoPP. ACM, 150–160. DOI:https://doi.org/10.1145/2688500.2688519

[14] Tiago Cogumbreiro, Francisco Martins, and Vasco Thudichum Vasconcelos. 2013. Coordinating phased activities

while maintaining progress. In COORDINATION, Lecture Notes in Computer Science, Vol. 7890. Springer, 31–44.

DOI:https://doi.org/10.1007/978-3-642-38493-6_3

[15] Tiago Cogumbreiro, Jun Shirako, and Vivek Sarkar. 2017. Formalization of Habanero phasers using Coq. Journal of

Logical and Algebraic Methods in Programming 90 (2017), 50–60. DOI:https://doi.org/10.1016/j.jlamp.2017.02.006

[16] Tiago Cogumbreiro, Rishi Surendran, Francisco Martins, Vivek Sarkar, Vasco T. Vasconcelos, and Max Grossman.

2017. Deadlock avoidance in parallel programs with futures: Why parallel tasks should not wait for strangers.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://doi.org/10.1145/1229428.1229471
http://crpit.com/abstracts/CRPITV135Atkins.html
https://doi.org/10.1007/11602569_48
https://doi.org/10.1007/11602569_48
https://doi.org/10.1109/12.55690
https://doi.org/10.1007/978-3-642-03466-4_9
https://doi.org/10.1109/TSE.2014.2301725
https://doi.org/10.1109/TSE.2014.2301725
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1145/231379.231391
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/ICPP.1997.622647
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/2688500.2688519
https://doi.org/10.1007/978-3-642-38493-6_3
https://doi.org/10.1016/j.jlamp.2017.02.006

1:36 T. Cogumbreiro et al.

Proceedings of the ACM on Programming Languages 1, OOPSLA, Article 103 (2017), 26 pages. DOI:https://doi.org/

10.1145/3143359

[17] Don Coppersmith and Shmuel Winograd. 1990. Matrix multiplication via arithmetic progressions. Symbolic Compu-

tation 9, 3 (1990), 251–280. DOI:https://doi.org/10.1016/S0747-7171(08)80013-2

[18] Silvia Crafa, David Cunningham, Vijay Saraswat, Avraham Shinnar, and Olivier Tardieu. 2014. Semantics of (Re-

silient) X10. In ECOOP, Lecture Notes in Computer Science, Vol. 8586. Springer, 670–696. DOI:https://doi.org/10.

1007/978-3-662-44202-9_27

[19] Steve Deitz. 2006. Parallel Programming in Chapel. Retrieved January 2018 from https://www.cct.lsu.edu/∼estrabd/

LACSI2006/Programming%20Models/deitz.pdf. Presented at LACSI.

[20] Camil Demetrescu and Giuseppe F. Italiano. 2005. Trade-o�s for fully dynamic transitive closure on DAGs: Breaking

through the O (n2) barrier. Journal of the ACM 52, 2 (2005), 147–156. DOI:https://doi.org/10.1145/1059513.1059514

[21] JyotirmoyV. Deshmukh, E. Allen Emerson, and Sriram Sankaranarayanan. 2011. Symbolic modular deadlock analysis.

Automated Software Engineering 18, 3–4 (2011), 325–362. DOI:https://doi.org/10.1007/s10515-011-0085-0

[22] Edsger W. Dijkstra. 1965. Cooperating Sequential Processes. Technical Report. Technical University of Eindhoven.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html EWD-123.

[23] Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable deadlock detection for concurrent programs. In FSE.

ACM, 353–365. DOI:https://doi.org/10.1145/2635868.2635918

[24] Michael A. Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan. 2003. Performance and scalability of the NAS

parallel benchmarks in Java. In IPDPS. IEEE. DOI:https://doi.org/10.1109/IPDPS.2003.1213267

[25] Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng. 2017. Safety veri�cation of phaser programs. In FMCAD.

IEEE, 68–75. DOI:https://doi.org/10.23919/FMCAD.2017.8102243

[26] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In

OOPSLA. ACM, 57–76. DOI:https://doi.org/10.1145/1297027.1297033

[27] Prodromos Gerakios, Nikolaos Papaspyrou, Konstantinos Sagonas, and Panagiotis Vekris. 2011. Dynamic deadlock

avoidance in systems code using statically inferred e�ects. In PLOS. ACM, 1–5. DOI:https://doi.org/10.1145/2039239.

2039247

[28] Milos Gligoric, Peter C. Mehlitz, and DarkoMarinov. 2012. X10X: Model checking a new programming language with

an “old” model checker. In ICST. IEEE, 11–20. DOI:https://doi.org/10.1109/ICST.2012.81

[29] Rajiv Gupta. 1989. The fuzzy barrier: A mechanism for high speed synchronization of processors. SIGARCH Computer

Architecture News 17, 2 (1989), 54–63. DOI:https://doi.org/10.1145/68182.68187

[30] Tobias Hilbrich, Bronis R. de Supinski, Fabian Hänsel, Matthias S. Müller, Martin Schulz, and Wolfgang E. Nagel.

2013. Runtime MPI collective checking with tree-based overlay networks. In EuroMPI. ACM, 129–134. DOI:https:

//doi.org/10.1145/2488551.2488570

[31] Tobias Hilbrich, Bronis R. de Supinski, Wolfgang E. Nagel, Joachim Protze, Christel Baier, and Matthias S. Müller.

2013. Distributed wait state tracking for runtime MPI deadlock detection. In SC. ACM, 1–12. DOI:https://doi.org/10.

1145/2503210.2503237

[32] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and Matthias S. Müller. 2009. A graph based approach for MPI

deadlock detection. In ICS. ACM, 296–305. DOI:https://doi.org/10.1145/1542275.1542319

[33] Tobias Hilbrich, Matthias S. Müller, Martin Schulz, and Bronis R. de Supinski. 2011. Order preserving event aggrega-

tion in TBONs. In EuroMPI, Lecture Notes in Computer Science, Vol. 6960. Springer, 19–28. DOI:https://doi.org/10.

1007/978-3-642-24449-0_5

[34] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, andMatthias S. Müller. 2012. MPI runtime error

detection with MUST: Advances in deadlock detection. In SC. IEEE, 1–11. DOI:https://doi.org/10.1109/SC.2012.79

[35] Richard C. Holt. 1972. Some deadlock properties of computer systems. Computing Surveys 4, 3 (1972), 179–196.

DOI:https://doi.org/10.1145/356603.356607

[36] Shams Mahmood Imam and Vivek Sarkar. 2014. Cooperative scheduling of parallel tasks with general synchroniza-

tion patterns. In ECOOP, Lecture Notes in Computer Science, Vol. 8586. Springer, 618–643. DOI:https://doi.org/10.

1007/978-3-662-44202-9_25

[37] Kamal Jain, MohammadTaghi Hajiaghayi, and Kunal Talwar. 2005. The generalized deadlock resolution problem. In

ICALP, Lecture Notes in Computer Science, Vol. 3580. Springer, 853–865. DOI:https://doi.org/10.1007/11523468_69

[38] Inbum Jung, JongwoongHyun, Joonwon Lee, and JoongsooMa. 2001. Two-phase barrier: A synchronization primitive

for improving the processor utilization. International Journal of Parallel Programming 29, 6 (2001), 607–627. DOI:https:

//doi.org/10.1023/A:1013153020460

[39] Amir Kamil and Katherine Yelick. 2009. Enforcing textual alignment of collectives using dynamic checks. In LCPC.

Lecture Notes in Computer Science, Vol. 5898. Springer, 368–382. DOI:https://doi.org/10.1007/978-3-642-13374-9_25

[40] Edgar Knapp. 1987. Deadlock detection in distributed databases. Computing Survey 19, 4 (1987), 303–328. DOI:https:

//doi.org/10.1145/45075.46163

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://doi.org/10.1145/3143359
https://doi.org/10.1145/3143359
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1007/978-3-662-44202-9_27
https://doi.org/10.1007/978-3-662-44202-9_27
PLX-HTTPS://www.cct.lsu.edu/~estrabd/LACSI2006/Programming%20Models/deitz.pdf
PLX-HTTPS://www.cct.lsu.edu/~estrabd/LACSI2006/Programming%20Models/deitz.pdf
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1007/s10515-011-0085-0
PLX-HTTPS://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1109/IPDPS.2003.1213267
https://doi.org/10.23919/FMCAD.2017.8102243
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/2039239.2039247
https://doi.org/10.1145/2039239.2039247
https://doi.org/10.1109/ICST.2012.81
https://doi.org/10.1145/68182.68187
https://doi.org/10.1145/2488551.2488570
https://doi.org/10.1145/2488551.2488570
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1145/1542275.1542319
https://doi.org/10.1007/978-3-642-24449-0_5
https://doi.org/10.1007/978-3-642-24449-0_5
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1145/356603.356607
https://doi.org/10.1007/978-3-662-44202-9_25
https://doi.org/10.1007/978-3-662-44202-9_25
https://doi.org/10.1007/11523468_69
https://doi.org/10.1023/A:1013153020460
https://doi.org/10.1023/A:1013153020460
https://doi.org/10.1007/978-3-642-13374-9_25
https://doi.org/10.1145/45075.46163
https://doi.org/10.1145/45075.46163

Dynamic Deadlock Verification for General Barrier Synchronisation 1:37

[41] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commuications of the ACM 21,

7 (1978), 558–565. DOI:https://doi.org/10.1145/359545.359563

[42] Duy-Khanh Le,Wei-Ngan Chin, and Yong-Meng Teo. 2013. Veri�cation of static and dynamic barrier synchronization

using bounded permissions. In ICFEM, Lecture Notes in Computer Science, Vol. 8144. Springer, 231–248.

[43] Jonathan K. Lee and Jens Palsberg. 2010. Featherweight X10: A core calculus for async-�nish parallelism. In PPoPP.

ACM, 25–36. DOI:https://doi.org/10.1145/1693453.1693459

[44] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The design of a task parallel library. In OOPSLA.

ACM, 227–242. DOI:https://doi.org/10.1145/1640089.1640106

[45] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D. Chamberlain. 2010. Deadlock avoidance for streaming compu-

tations with �ltering. In SPAA. ACM, 243–252. DOI:https://doi.org/10.1145/1810479.1810526

[46] Piotr R. Luszczek, David H. Bailey, Jack J. Dongarra, Jeremy Kepner, Robert F. Lucas, Rolf Rabenseifner, and Daisuke

Takahashi. 2006. The HPC challenge (HPCC) benchmark suite. In SC. ACM. DOI:https://doi.org/10.1145/1188455.

1188677

[47] Toshimi Minoura. 1982. Deadlock avoidance revisited. Journal of the ACM 29, 4 (1982), 1023–1048. DOI:https://doi.

org/10.1145/322344.322351

[48] Ian Munro. 1971. E�cient determination of the transitive closure of a directed graph. Information Processing Letters

1, 2 (1971), 56–58. DOI:https://doi.org/10.1016/0020-0190(71)90006-8

[49] Karthik Murthy, Sri Raj Paul, Kuldeep S. Meel, Tiago Cogumbreiro, and John M. Mellor-Crummey. 2016. Design and

veri�cation of distributed phasers. In EuroPAR. Lecture Notes in Computer Science, Vol. 9833. Springer, 405–418.

DOI:https://doi.org/10.1007/978-3-319-43659-3_30

[50] Armand Navabi, Xiangyu Zhang, and Suresh Jagannathan. 2008. Quasi-static scheduling for safe futures. In PPoPP.

ACM, 23–32. DOI:https://doi.org/10.1145/1345206.1345212

[51] Yarden Nir-Buchbinder, Rachel Tzoref, and Shmuel Ur. 2008. Deadlocks: From exhibiting to healing. Lecture Notes

in Computer Science, Vol. 5289. Springer, 104–118. DOI:https://doi.org/10.1007/978-3-540-89247-2_7

[52] Yusuke Nonaka, Kazuo Ushijima, Hibiki Serizawa, Shigeru Murata, and Jingde Cheng. 2001. A run-time deadlock

detector for concurrent Java programs. In APSEC. IEEE, 45–52. DOI:https://doi.org/10.1109/APSEC.2001.991458

[53] Matthew T. O’Keefe and Henry G. Dietz. 1990. Hardware barrier synchronization: Dynamic barrier MIMD (DBM). In

ICPP. Pennsylvania State University, 43–46.

[54] Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and data-�ow compilation of OpenMP streaming

programs. Transactions on Architecture and Code Optimization 9, 4 (2013), Article 53, 25 pages. DOI:https://doi.org/

10.1145/2400682.2400712

[55] Hari K. Pyla and Srinidhi Varadarajan. 2010. Avoiding deadlock avoidance. In PACT. ACM, 75–86. DOI:https://doi.

org/10.1145/1854273.1854288

[56] Spiridon A. Reveliotis, Mark A. Lawley, and Placid M. Ferreira. 1997. Polynomial-complexity deadlock avoidance

policies for sequential resource allocation systems. Transactions on Automatic Control 42, 10 (1997), 1344–1357.

DOI:https://doi.org/10.1109/9.633824

[57] Indranil Roy, Glenn R. Luecke, James Coyle, and Marina Kraeva. 2013. A scalable deadlock detection algorithm for

UPC collective operations. In PGAS. University of Edinburgh, 2–15. http://www.pgas2013.org.uk/sites/default/�les/

pgas2013proceedings.pdf.

[58] Malavika Samak and Murali Krishna Ramanathan. 2014. Trace driven dynamic deadlock detection and reproduction.

In PPoPP. ACM, 29–42. DOI:https://doi.org/10.1145/2555243.2555262

[59] Vijay Saraswat and Radha Jagadeesan. 2005. Concurrent clustered programming. In CONCUR. Lecture Notes in Com-

puter Science, Vol. 3653. Springer, 353–367. DOI:https://doi.org/10.1007/11539452_28

[60] Rahul Sharma, Michael Bauer, and Alex Aiken. 2015. Veri�cation of producer-consumer synchronization in GPU

programs. In PLDI. ACM, 88–98. DOI:https://doi.org/10.1145/2737924.2737962

[61] Chia Shih and John A. Stankovic. 1990. Survey of Deadlock Detection in Distributed Concurrent Programming Environ-

ments and Its Application to Real-Time Systems. Technical Report. University of Massachusetts. https://web.cs.umass.

edu/publication/details.php?id=447 UM-CS-1990-069.

[62] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. 2008. Phasers: A uni�ed deadlock-free con-

struct for collective and point-to-point synchronization. In ICS. ACM, 277–288. DOI:https://doi.org/10.1145/1375527.

1375568

[63] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. 2009. Phaser accumulators: A new reduction

construct for dynamic parallelism. In IPDPS. IEEE, 1–12. DOI:https://doi.org/10.1109/IPDPS.2009.5161071

[64] Jun Shirako, David M. Peixotto, Dragoş-Dumitru Sbîrlea, and Vivek Sarkar. 2011. Phaser beams: Integrating stream

parallelism with task parallelism. Presented at the X10 Workshop.

[65] Lorna A. Smith, J. Mark Bull, and Jan Obdrzálek. 2001. A parallel Java Grande benchmark suite. In SC. ACM, 10.

DOI:https://doi.org/10.1145/582034.582042

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1693453.1693459
https://doi.org/10.1145/1640089.1640106
https://doi.org/10.1145/1810479.1810526
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/322344.322351
https://doi.org/10.1145/322344.322351
https://doi.org/10.1016/0020-0190(71)90006-8
https://doi.org/10.1007/978-3-319-43659-3_30
https://doi.org/10.1145/1345206.1345212
https://doi.org/10.1007/978-3-540-89247-2_7
https://doi.org/10.1109/APSEC.2001.991458
https://doi.org/10.1145/2400682.2400712
https://doi.org/10.1145/2400682.2400712
https://doi.org/10.1145/1854273.1854288
https://doi.org/10.1145/1854273.1854288
https://doi.org/10.1109/9.633824
http://www.pgas2013.org.uk/sites/default/files/pgas2013proceedings.pdf
http://www.pgas2013.org.uk/sites/default/files/pgas2013proceedings.pdf
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1007/11539452_28
https://doi.org/10.1145/2737924.2737962
https://web.cs.umass.edu/publication/details.php?id=447
https://web.cs.umass.edu/publication/details.php?id=447
https://doi.org/10.1145/1375527.1375568
https://doi.org/10.1145/1375527.1375568
https://doi.org/10.1109/IPDPS.2009.5161071
https://doi.org/10.1145/582034.582042

1:38 T. Cogumbreiro et al.

[66] Robert Tarjan. 1972. Depth-�rst search and linear graph algorithms. SIAM Journal on Computing 1, 2 (1972), 146–160.

DOI:https://doi.org/10.1137/0201010

[67] Franklyn Turbak. 1996. First-class synchronization barriers. In ICFP. ACM, 157–168. DOI:https://doi.org/10.1145/

232627.232645

[68] Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and Stephen A. Edwards. 2009. Compile-time analysis and special-

ization of clocks in concurrent programs. In CC. Lecture Notes in Computer Science, Vol. 5501. Springer, 48–62.

DOI:https://doi.org/10.1007/978-3-642-00722-4_5

[69] Anh Vo. 2011. Scalable Formal Dynamic Veri�cation of MPI Programs Through Distributed Causality Tracking. Ph.D.

dissertation. University of Utah. Advisor(s) Gopalakrishnan, Ganesh. AAI3454168.

[70] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and Scott Mahlke. 2008. Gadara: Dynamic dead-

lock avoidance for multithreaded programs. In OSDI. USENIX, 281–294. https://www.usenix.org/conference/osdi-08/

gadara-dynamic-deadlock-avoidance-multithreaded-programs.

[71] Haitao Wei, Hong Tan, Xiaoxian Liu, and Junqing Yu. 2012. StreamX10: A stream programming framework on X10.

In X10. ACM, 1–6. DOI:https://doi.org/10.1145/2246056.2246057

[72] Adam Welc, Suresh Jagannathan, and Antony Hosking. 2005. Safe futures for Java. In OOPSLA. ACM, 439–453.

DOI:https://doi.org/10.1145/1094811.1094845

[73] Yuan Zhang, Evelyn Duesterwald, and Guang R. Gao. 2008. Concurrency analysis for shared memory programs with

textually unaligned barriers. In LCPC. Lecture Notes in Computer Science, Vol. 5234. Springer, 95–109. DOI:https:

//doi.org/10.1007/978-3-540-85261-2_7

[74] Yingchun Zhu and Laurie J. Hendren. 1998. Communication optimizations for parallel C programs. In PLDI. ACM,

199–211. DOI:https://doi.org/10.1145/277650.277723

Received March 2017; revised January 2018; accepted May 2018

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 1. Publication date: December 2018.

https://doi.org/10.1137/0201010
https://doi.org/10.1145/232627.232645
https://doi.org/10.1145/232627.232645
https://doi.org/10.1007/978-3-642-00722-4_5
PLX-HTTPS://www.usenix.org/conference/osdi-08/gadara-dynamic-deadlock-avoidance-multithreaded-programs
PLX-HTTPS://www.usenix.org/conference/osdi-08/gadara-dynamic-deadlock-avoidance-multithreaded-programs
https://doi.org/10.1145/2246056.2246057
https://doi.org/10.1145/1094811.1094845
https://doi.org/10.1007/978-3-540-85261-2_7
https://doi.org/10.1007/978-3-540-85261-2_7
https://doi.org/10.1145/277650.277723

