
Dynamic debugging in BASIC

G. M. Bull
Department of Computer Science, The Hatfield Polytechnic, Hatfield, Hertfordshire

One of the main advantages that on-line working provides is the ability to interact with a running
program. Interaction at run-time is important from two standpoints. Firstly, it enables the pro-
grammer to control the action of the program by providing suitable data as the execution
progresses. Secondly, and most importantly, given the right facilities, it enables a programmer
dynamically to debug the program. One of the most popular languages designed explicitly for on-line
working is BASIC. Although one is able to interact in the first sense, most implementations fail to
give any run-time debugging facilities to the BASIC user. This paper describes the range of run-time
debugging facilities provided on an implementation of BASIC at Hatfield Polytechnic on an ICL 803.

(Received January 1970, Revised July 1971)

The overall system
The essential features of BASIC are that each statement occu-
pies a single line and is prefixed by a line number which
serves both to order the lines and. to act as a labelling system.
The system described has an incremental compiler and a
routine for sorting the lines into line-number order. The sort
routine enables one to insert a line into the program, to
replace a line by retyping with the same line number and to
remove a line by typing the line number followed immediately
by a new-line character.

I
Line Input

Routine

Immediate
l— Mnrlr-

Execution

t

Statement
Number
Assembler

Statsrnent

Compiler

State

\

ment

\

Source Program
Packer

Command

Commcmd

Command
Interpreter

Immt
Mi

Exea

sdiate
sde
jtion

Fig. 1

An overall picture of the software modules is given in Fig. 1.
The line input routine assembles characters from the teletype,

converts to an internal code and exits on meeting a new line
character. If the assembled line does not start with a line
number a command is assumed and a table of command
names is scanned for a match. If it is a command (RUN, LIST
etc.), the command is obeyed. If it is an immediate-mode
statement (see later) the execute flag is set and the compiler
entered. If the line starts with a line number the compiler is
entered, and if no error is found, object code is generated. If
the execute flag is set the compiled code is executed and control
returns to the line input routine, otherwise the object code is
'patched' into the object program as it exists at that time. The
source code is then packed, sorted into line number order and
stored. The debugging facilities provided allow the programmer
dynamically to:

1. Interrupt a running program.
2. Print the values of selected variables.
3. Change the program by submitting new lines of source.
4. Change the values of selected variables.
5. Set or unset break-points on one or more lines.
6. Set or unset trace on one or more lines.
7. Cause a subroutine to be executed.
8. Execute a single line of program.
9. Continue from the point of interruption or a breakpoint,

or transfer control to any line in the program.
Apart from interrupting a running program, all other

facilities may be used at any point in time either before, after,
or during a run. The interrupt facility (the ESCAPE key on the
teletype) causes a bit to be set which is examined at the begin-
ning of the next statement to be obeyed.

The compiler
Most implementations of BASIC on executing the RUN
command, sort and then compile the complete source program
as it then exists and then, if possible, execute it. The approach
adopted here is to compile each line as it is met and by means of
a compiled program directory (CPD) and links, logically to
insert the object code for this line into the correct position
according to its line number. The CPD has a single word entry
for each line of program and records the line number, the
starting address of the compiled code corresponding to this
line, and the address of the link for this line. When the next line
of source has been compiled, an entry is made in the CPD so
that the entries are maintained in line number order. The link

Volume 15 Number 1 21

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/21/418349 by guest on 16 August 2022

A

B

C

D

Code
line

TRA

Code
line

TRA

for
10

C

for
20

E

I
Code for
line 30

TRA Stop

Fig. 2 above
Fig. 3 right

A

B

Code
line

TRA

C

D

Code
line

TRA

F

G

H

Code
line
TRA

Code
line

- TRA

for
10

G

for
20

E

for
30
Stop - ^-

for
15

C

word of each code block is a jump to the code block of the
next highest line. For example, suppose the current state is

10 READ X, Y
20 IF X < Y THEN 50
30 LET W = X*Y/2

the CPD would have three entries, say
A, B, 10
C, D, 20
E, F, 30

Where A is the address of the start of the code block for line
10 and B is the address of the link (which is always the last
word of the code block) for this line, C, D, E and F are addresses
in the same way for lines 20 and 30.
The code blocks would be as in Fig. 2. TRA is an unconditional

transfer instruction.
If the next line entered is

15 LETP = 0
the CDP becomes:

A, B, 10
G, H, 15
C, D, 20
E, F, 30

and the code blocks would be as in Fig. 3.
The compilation of the code blocks is quite straightforward

and will not be discussed; however, each code block carries
two extra words over and above the compiled code and the link.
The first word of each block is a transfer to a subroutine which
performs four tasks:

1. Plants in a standard location the line number found in the
second word. If the program is interrupted whilst running,
the line currently being obeyed may be identified.

2. If an interrupt has occurred, the message BREAK AT
LINE n is output (where n is the current line number) and
control returns to the line input routine.

3. Tests the break bit in word two of the compiled code block
to see if a break has been set; if so the message BREAK AT
LINE n is output and control returns to the line input
routine.

4. Tests the trace bit in word two of the compiled code block
to see if a trace has been set on the line; if so *n is output
(where n is the current line number). Control returns to the
object code. The flow chart for the subroutine is shown in

Fig. 4. The second word contains the statement number and
two bits used to record break and trace.

New commands
Most implementations of BASIC embed the language in a
standard command set; six new commands have been added to
give the user the required facilities:

1. BREAK, UNBREAK, and CONTINUE
Break points may be set by: BREAK list of line numbers,
where a list entry may either be a single line number or of
the form n-m, meaning all lines in the range n to m inclusive.
The effect is to set a bit in the compiled code block of each
of the lines in the list. If a line does not exist, the message
NO SUCH LINE m is displayed and the next entry in the
list is taken. At run-time the effect is to halt the program
just before obeying a given line (say line n) and to output
the message BREAK AT LINE n. At this point appropriate
action may be taken. To continue from line p, following a
break, one types the command CONTINUE p. If no line
number is given the next line in sequence is assumed. All
breaks remain set until explicitly unset byeither UNBREAK
list of line numbers, or UNBREAK, which unsets all
breaks previously set.

2. TRACE and UNTRACE
The trace command is of the form: TRACE list of line
numbers, and causes the trace bit to be set on all the listed
lines. At run-time the effect is to output the message *n,
without halting just before obeying line n. The trace
remains set until explicitly unset by UNTRACE list of line
numbers, or UNTRACE, which unsets all traces.

3. EXECUTE
A single line of program may be executed, and control
returned to the line input routine following the execution,

Plant line
number

Fig. 4

22 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/21/418349 by guest on 16 August 2022

by means of the command EXECUTE or EXECUTE n.
Note if the statement executed is a GOTO or a GOSUB
statement or a conditional statement which is true, control
will not be lost. In all cases the message BREAK AT LINE
n is displayed, where n is the line to which control has been
transferred. If the executed statement is non-branching, n
will be the next highest line number.

Immediate mode-statements

It is possible to write statements which are not to be included
in the program, but are executed immediately and then dis-
carded. This gives the user a 'desk calculator' mode which will
not be discussed here, but more importantly it provides a
powerful debugging tool. This facility is made available with
the three statements PRINT, LET, and GOSUB.

Thus typing:
PRINT C, D

causes the current values of C and D to be printed.
LET B = SQR(X)

causes B to be assigned the value of the square root of X
GOSUB n

causes control to be transferred to line n and control lost until
a RETURN statement is obeyed, at which point control
returns to the line input routine. In this way one is able to test
a complete subroutine in isolation.

Example
Consider the following example of a program to tabulate sin(;c)
against x for x = 0(0-5) &5. The program contains a number of
logical errors. The following conversation demonstrates ways
of discovering the errors and correcting them. All computer
typeouts are underscored, or enclosed in brackets for multiline
sections.
NEW EXAMPLE
READY

10 READ E
20 LET T = 1
30 LET N = 1
40 FOR X = 0 TO 6.5 STEP 0.5
50 LET S = X
60 LETT = -T*X*X/(N*(N + 1))
70 LET N = N + 2
80 IF ABS(T) > E THEN 110

JUMP WARNING

90 PRINT X, S
100
110

GOTO 40
LET S = S +

120 GOTO 60
130 NEXTX
140 DATA 0.00005
150 END
RUN

TEXAMPLE
0 0
0 0
0 0
BREAK AT LINE 100

BREAK 70

READY

CONTINUE
BREAK AT LINE 70

This warning is given since
line 110 has not yet been
met. It tells the programmer
that an entry has been made
in the jumptable but a run-
time failure will occur if
line 110 is not entered and if
an attempt is made to trans-
fer control to line 110.

Interrupted during printing.
The interrupt is detected in
the line following the print
statement.
Set up a break point on line
70.

PRINT S; T

0 0

TRACE 40-130
READY

CONTINUE
*70
*80
0 0
*100
*40
*50
*60
BREAK AT LINE 70

100 GOTO 103

JUMP WARNING

100GOSO 130

[ILLEGAL INSTRUCTION
100 GOTO 130
UNTRACE

Have a look at the values of
S andT
Not correct!

Set up a trace to follow the
flow since we do not appear
to be incrementing X.

The break point is met
again.
The trace points to line 100
being incorrect. The first
try for line 100 has a
typing error, (103 for 130).
The jump warning points
this out.
Another error made. The
arrow points to the position
in the line where the error
was discovered and gives an
error message.

READY

UNBREAK
READY

CONTINUE 20
TO 0

.5 .5
1 1
BREAK AT LINE 100

TRACE 80-130
READY

CONTINUE
r*ioo
*130
* 80
* 90
1.5 1.5
*100
BREAK AT LINE 130

20
30
42 LET T = 1
44 LET N = 1
UNTRACE
READY

CONTINUE 40
TO 0

.5 .377604
1 .540278
1.5 .570753
BREAK AT LINE 100

BREAK 80
READY

LET X = 0.5
CONTINUE 42
BREAK AT LINE 80

PRINT T
-.125

Interrupted during printing.
Still not correct so try
tracing again.

Interrupted
Since the program does not
appear to goto line 110 we
deduce that T is always too
small. We notice T and N
are initialised outside the
loop instead of inside.

Program breaks
executing line 70

before EXECUTE 60
BREAK AT LINE 70

Interrupted—still not cor-
rect.
Set up break point

Force X to 0.5
Start at line 42
Program hits break point

Print second term of sine
series for X = 0.5

Execute line 60 to compute
third term of the series.

Volume 15 Number 1 23

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/21/418349 by guest on 16 August 2022

PRINT T
2.60417E-03

42 LET T = X
44 LET N = 2
UNBREAK

READY
LIST

Program breaks at the fol-
lowing line after an execute.
Print value of third term.
Both incorrect when
checked by hand.
This leads us to question
initial values of T and N.
New lines 42 and 44 com-
piled and replace old ver-
sions.
Call for a listing of the
program as it now stands.

EXAMPLE
10 READ E
40 FOR X = 0 TO 6.5 STEP 0.5
42 LET T = X
44 LET N = 2
50 LET S = X
60 LET T = -T*X*X/(N*(N + 1))
70 LET N = N + 2
80 IF ABS(T) > E THEN 110
90 PRINT X, S
100 GOTO 130
110 LETS = S + T
120 GOTO 60
130 NEXTX
140 DATA 0.00005
150 END
READY

CONTINUE 40

0
.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
END

0
.479427
.841468
.997497
.909296
.598449
.141131

-.350788
-.756849
-.97751
-.958933
-.705536
-.279387

.215107
OF PROG

Conclusions
In the above example, some, but by no means all of the potential
of a dynamic debugging system is exhibited. Most arguments in
favour of time-sharing place emphasis on quick turn-around
for testing, access to a filing system, and interaction with the
running program by supplying data dynamically to control its
action. However, in the author's opinion, the greatest advan-
tages will be realised when systems provide debugging aids
similar to those described here for all languages available at the
terminal.

Acknowledgements
The author is indebted to his colleague W. Freeman for his
suggestions and comments on the draft of this paper.

References
BASIC Reference Manual. Dartmouth College, Hanover, NH, USA.
BULL, G. M., and FREEMAN, W. (1971). BASIC—A preliminary specification. Hatfield Polytechnic Comp. Sc. Tech. Memo No. 1.
BULL! G. M. (1971). BASIC—its growth and development, /. Instn. Comp. Sc, Vol. 2, No. 3, p. 51.
BARRON, D. W. (1969). A note on program debugging in an on-line environment, The Computer Journal, Vol. 12, No. 1, p. 104.
BARRON, D. W. (1971). Approaches to conversational FORTRAN, The Computer Journal, Vol. 14, No. 2, p. 123.
BARRON, D. W. (1971). Programming in Wonderland, The Computer Bulletin, Vol. 15, No. 4, p. 153.

Correspondence
To the Editor
The Computer Journal

Sir,
With reference to your article 'Step size adjustment at discontinuities
for fourth order Runge-Kutta Methods', by P. G. O'Regan,
published in this Journal, Volume 13, Number 4, November 1970,
I should like to point out that equation (21) appears to be incorrect
in the fifth term of the right-hand side which should, I think, be
A%14B* - 21B2C + 3C2) instead of/15(14.B4 - 21B2C - 3C2). The
last column of Table 1 of the article was evidently computed using
the erroneous equation.

Table 1 has been recomputed to a precision of 20 significant digits
using the correct equation and the results are reproduced below.
The answers for Newton's iteration formula are quoted to 9 decimal
places, for which two iterations were necessary. The revised table
shows'even more clearly than the original that Newton's iteration
formula (23) is more accurate than (21).

Yours faithfully,
E. WHITELEY (Miss)

Table 1

0

0 1
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1 0

h = 0 1

10°(at -
0

-0-202
-0-655
- 1 1 7 0
-1-606
-1-871
-1-915
-1-729
-1-340
-0-809
-0-228

an) 106(at - aui)106(at - a
0

- 0-301
- 2-249
- 9-336
- 27-730
- 66-426
- 137-403
- 255-782
- 439-996
- 711-955
-1097-231

0

-0-201
-0-609
-0-808
- 0 0 5 5

2-948
10-292
25130
51-967
96-976

168-339

lv) 106(at - av)
0

- 0-202
- 0-657
- 1-187
- 1-703
- 2-252
- 3081
- 4-741
- 8-214
- 1 5 0 8 0
-27-727

Structures Department
Royal Aircraft Establishment
Farn borough
Hampshire
13 August 1971

24 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/21/418349 by guest on 16 August 2022

