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Abstract 

This paper presents two cache schemes for a shared-memory shared bus multiprocessor. Both 

schemes feature decentralized consistency control and dynamic type classification of the datum 

cached (i.e. read-only, local, or shared). It is shown how to exploit these features to minimize the 

shared bus traffic. The broadcasting ability of the shared bus is used not only to signal an event but 

also to distribute data. In addition, by introducing a new synchronization construct, i.e. the Test-and-

Test-and-Set instruction, many of the traditional parallel processing "hot spots" or bottlenecks are 

eliminated. Sketches of formal correctness proofs for the proposed schemes are also presented. It 

appears that moderately large parallel processors can be designed by employing the principles 

presented in this paper. 
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1. Introduction 

For many years, manufacturers of high speed uniprocessors have placed a very fast buffer memory 

(known as a cache) between the processor and main memory in order to reduce the average memory 

access time. It is well known that during execution of a program most of the memory references are 

to a small subset of the entire address space of the program. This subset can be dynamically 

maintained in the cache so that most of the memory references can be quickly satisfied. In 

uniprocessors, without any help from the programmer, caches have routinely achieved hit ratios (the 

fraction of all references that are found in the cache) of about 95 percent. There is yet another, 

commonly agreed advantage of uniprocessor caches - they are transparent to the user. 

It is thus natural to investigate the uses of caches in configurations consisting of many processors 

sharing a common memory since, in such parallel processors, access to the common main memory is 

significantly more expensive than in uniprocessors and so the ability to reduce such access cost is 

even more important Briggs and Dubois [DUB82] classify cache schemes for parallel processors as 

ather shared or private, where shared caches are placed near the main memory, usually one per 

'memory module', whereas private caches are placed near the processors, usually one per processor 

or set of processors. (Many others have also studied shared and private caches for various 

multiprocessor architectures. See, for example, [BEL74], [DUB81], [TAN76], [CEN76], [BRI81], 

[SMI82], [G0083], [FRA84].) In this paper, we are concerned only with private caches and their 

corresponding schemes. It is worth noting that in the rest of the paper we will use the terms private 

and shared in a different context, as explained below. 

We assume a configuration in which the processors perform all their accesses through the cache. 

In such systems, it is natural to divide data into two classes: local (which we sometimes refer to as 

private) and shared. It is also useful to further subdivide these into read-only (e.g. code) and 

read/write classes. Note that variables need not be statically classified, e.g. for some period of 

program execution a data item can be read/write and for some other period it can be read-only. 

To motivate our cache schemes consider the data gathered from the execution of parallel programs 

on the CM*, a parallel processor consisting of 50 processors. Limited cache emulation experiments 

were performed to ascertain the fraction of references satisfied by the cache. In these experiments, 

only code and local data were considered cachabie and a write-through policy was adopted for local 

data. Thus writes to local data were counted as cache misses since they caused communication 

external to the processor/cache. All references to shared (non-code) data also caused a cache miss. 

Table 1-1 generated by Raskin [RAS78] shows the results for two applications and various cache. 

sizes. The figures indicate the fraction of the total number of references that caused cache misses 



classified according to the operation. Note that for the largest cache size, which is small by today's 

standards, most read references succeeded in finding their value in the cache and that these 

constituted most of all the references. The figure of 6% read misses is roughly close to that measured 

on uniprocessors and could be reduced further by employing a larger cache. Although most 

references are to read-only data, references to shared data still account for 5 to 10% of all memory 

references. For good overall performance, many of the shared memory references must be satisfied 

by the private cache. 

Cache Size Read Miss Local Shared Total Miss 

(set size 1 word) Ratio Writes Read/Write Ratio 

256 26.1 8 5 39.1 
25 6.7 10 41.7 

512 21.7 8 5 34.7 

28.8 6.7 10 37.5 

1024 11.3 8 5 24.3 

10.8 6.7 10 27.5 

2048 6.1 8 5 19.1 

5.8 6.7 10 22.5 

Table 1 � 1: Cm* Emulated Cache Results 

In this paper we present a cache scheme that, in addition to handling read-only code and private 

variables, handles shared memory references. At first blush, it seems that one cannot gain much by 

caching shared data. Upon closer examination, one finds numerous situations in which this is not so. 

Many references to shared data are for synchronization (i.e. testing and setting locks) and 

communication (i.e. storing information in shared memory to which many other processes later refer). 

Under our cache scheme, these situations cause a minimum of external traffic. 

Consider another situation in which caching shared data is possible. Since it is assumed that 

shared variables can be modified at any time, compilers are careful not to leave the contents of such 

variables in registers for long periods of time.1 Thus, repeated reference to shared variables cause 

repeated memory accesses. Often these variables are not modified between fetches and so for short 

periods of time shared variables act like local variables and, in principle, can be cached. The 

programmer cannot always detect these situations; indeed, they can depend solely on the timing of 

the various processors or on the input data. Our cache scheme elegantly processes such situations 

A classical error encountered by many novice users of CM* is to busy-wait on a shared variable without explicitly telling the 

Bliss compiler to refetch the value before each test 
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and thereby the performance of the parallel processor can be improved. 

The cache schemes presented in this paper are transparent to the user and hence data is not 

required to be pre-tagged (e.g. as shared read/write). Moreover, since transparency implies 

consistency, data modified by one processor must be immediately detected by all the other 

processors and it is the case that a processor always reads the latest' value stored (i.e. written by 

some processor). Ensuring consistency in a decentralized way is very tricky; we formally prove that 

our scheme satisfies this property. 

Although many types of parallel processors have been proposed we concentrate on just one 

'generic* type - a collection of processing elements (PE's) connected to a set of memories. We 

assume that the PE's and memories are connected by a logically single bus (although physically this 

may be a set of buses), allowing for inexpensive broadcasting. In such a design, it is clear that the 

bus is the critical resource and its use must be carefully limited. The more successful the cache 

scheme is in reducing bus traffic, the easier it is for the bus to accommodate large numbers of 

processors . We realize that the use of a single shared bus has limited applicability, and therefore 

show in section 7 how to adopt our scheme to multiple bus configurations accommodating larger 

numbers of processors. 

Our scheme is in many ways an extension of the one presented by Goodman [G0083]. We assume 

the same underlying architecture and exploit some of the same abilities of the shared bus, although 

we show how to use bus broadcast capability more efficiently and how to extend our results to a 

multiple bus architecture. The Goodman scheme may be classified as 'event broadcasting', whereas 

in our proposed schemes events and data values are broadcast. As will be seen, we assume that 

each address line in the cache is tagged, however, we can do even more with fewer tags. Moreover, 

the architecture is further exploited to optimize processing of traditional 'hot spots' or bottlenecks 

that arise in parallel processing. We also believe that the formal proofs of multiple cache consistency 

validates their behavior. 

The structure of the paper is as follows: the first section explicitly states our assumptions 

concerning both the pattern of data references as well as the underlying machine architecture and 

cache capabilities. The main results, two cache schemes, are then presented along with some 

analysis of their functioning. The schemes can be distinguished by their assumptions concerning the 

broadcast abilities of the machine. Consideration of synchronization is presented in Section 6 and 

ways to increase the shared bus bandwidth are shown in Section 7. 
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2 . A s s u m p t i o n s 

Before describing the cache schemes it is important to clearly state our assumptions. We first 

review our assumptions concerning the average pattern of use of data in a parallel processor as 

described in the introduction: 

1. Each data item is referenced more often with a read operation than with a write operation. 

2. References to local data and to read-only shared data are more frequent than to 

read/write shared data. 

3. Many shared variables act like local variables for moderately long periods of execution 

time. 

The first assumption indicates that it may be desirable to increase the overhead of the write 

operation in order to optimize the read operations. The latter two assumptions imply that one should 

optimize references to local and read-only data. 

In regards to the underlying architecture, we make the following assumptions, all of which can be 

satisfied by existing technologies: 

1. There is a logically single bus connecting the n PE*s and I/O with memory. 

2. There is a bus arbitrator that allocates access to the bus. 

3. A cache is associated with each PE and communicates both with the PE and with the 

shared bus. 

4. The caches can "listen" to the bus activity and detect the referenced address, the activity 

(read or write), and the data. 

5. The bus cycle time is no faster than the cache cycle time. Thus each cache has time to 

monitor the bus and take appropriate action before the next bus cycle. Similarly, the PE 

cycle time should 2 be no faster than the cache cycle time so that the PE does not spend 

time waiting for the cache to respond. 

6. Each cache has the ability to interrupt (i.e. kill) the current bus activity and to replace it 

with one of its own. The cache is fast enough to first observe a bus action and to then 

interrupt it 

7. A direct-mapping cache with a one word blocksize is assumed. 

Our choice of set size and block size of one has two motivations. First, a high cache hit ratio may 

not always result in good performance. For example if block size is a page then every cache miss, 

o 
It need not be. 
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although infrequent, takes a very long time. Secondly, shared data appears to have different, if any, 

notions of locality. There is no reason to suspect that nearby address of shared variables will be used 

by the same processor at the same time. Moreover, the larger the cache size the less important the 

block size, even for code and local data. 

3. The RB Cache Scheme 

In this section we describe the workings of the RB cache scheme whose name is derived from the 

fact that values fetched in response to certain CPU reads are broadcast to all of the caches. We 

finesse the problem of maintaining read/write shared data in the private caches of the processors by 

dynamically redefining such data in terms of the other two classes of data. Since concurrent read or 

write operations to the same data word are serialized (enforced by the use of a shared bus), whenever 

there is a write to a read/write shared data item, we consider that data item to be a variable local to 

the PE executing the write. Whenever a read/write shared data item is read, we consider it to be a 

read-only shared data item. Our goal is to have the caches dynamically decide these properties in a 

decentralized fashion so that little additional processing overhead is incurred. 

Since cache behavior will depend on the current status of the data item, we associate with each 

address line a set of tag bits indicating the state of the data item associated with that address line. We 

shall concentrate on a single address line (sometimes referred to as a physical address or a variable) 

and its corresponding entry in the caches, so that when we say the cache is in the invalid state (or 

state I), we mean that the cache entry for this address is tagged as invalid. Each PE interacts with its 

associated cache by issuing a read or a write. Such actions cause the cache to either respond to the 

PE immediately or cause the cache to first perform a bus read or bus write and, upon successful 

completion, respond to the P E Moreover, the cache constantly monitors the bus and as a result may 

change its state and/or the value of a cache entry. 

We begin with a scheme consisting of three states for each address line. The states are 'readable' 

(R), 'invalid9 (I), and 'local' (L). The meaning of the invalid state should be self-evident: the data in the 

cache is assumed to be incorrect and thus any reference to it will cause a corresponding bus action 3. 

Similarly, a readable state means that the data in the cache is valid and consistent with main memory, 

and can be read immediately from the cache. The local state means that the data can be read or 

A read will cause the data to be fetched from the global memory and a write causes data to be stored into shared memory 

and at the same time to be broadcast to all other caches. This latter action can be accomplished by a bus write to the global 

memory thereby eliminating the need for a special signal. 
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written locally causing no bus activity.4 

We call the collection of cache states for a particular address5 a configuration. In the RB scheme, 

for each address (and ignoring caches not contain the address) there are only two types of 

configurations. A variable local to PE, will be in state L in cache i and in state I in any other cache 

containing this variable; we call this set of states the local configuration. A shared read-only variable 

is in state R in all caches containing it; we call this the shared configuration. Our scheme dynamically 

assigns these configurations. 

We describe the functioning in a case by case manner. First assume the variable, say x, is 

contained in all caches and recall that we say cache i is in state R to mean that the address line for the 

physical address representing variable x is tagged with an 'R\ 

(i) Let x be in the shared configuration. A read simply fetches the cached value; no bus activity is 

generated. A write by PE, to variable x causes the value to be updated in cache i as well as a 

broadcast of a bus write. The bus write updates the memory and at the same time causes all 

other caches to change into state I. 

(ii) Let x be in a local configuration with cache i in the local state. There are two subcases to 
consider. 

a X is referenced by PE/. A read of x by PE, simply fetches the cached value and a write to x 

just updates the cached value; there is no bus activity generated. 

b. Now consider x referenced by PE,-, jj£ i. A write updates the cached value in cache j , 

changes its state to L, and generates a bus write to x with the new value. This bus write 

causes all other caches to be in state I. The only tricky situation is when PE y reads x. 

Since x is in state I in cache j , a bus read is issued which is "seen" by all the other 

caches. Without intervention, the bus read will fetch the value stored in shared the 

memory, however, cache i, which is in state L, interrupts the bus read and performs its 

own bus write updating memory to the correct value. The original bus read will be retried 

immediately. In addition to fetching the correct value, this bus read is noticed by all the 

caches which then read the value returned from the read, cache it, and change into state 

R. 

Since the cache size is smaller than the memory size, there must be some mechanism for replacing 

old cache entries with newly referenced ones. The exact choice of a replacement policy is 

orthogonal to our scheme. We need only describe the actions to be taken by the cache when it 

decides to overwrite an old entry. Only those overwritten items that are tagged local need to be 

written back to the memory. A reference to an item not in the cache behaves exactly as if it were in 

Implied is that the cache copy is inconsistent with the memory and with all other caches. 

'We use the terms address, variable, and data item interchangeably. They all refer to a single word of shared memory. 
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the invalid state; a write ( or a read) results in a bus write (or a bus read) and the state is changed to 

local (or readable). 

A few final points need to be addressed. As explained, bus writes caused by write-backs are the 

only ones that need to update memory, however, for ease of implementation all cache writes should 

do so. Since shared variables are maintained within the cache, we must ensure consistency when 

they are referenced by "nonsimple" read or write operations. In particular, we note that read-modify-

write operations fit quite well into our scheme. The initial 'read with lock1 does not reference the value 

in the cache; it causes a 'read with lock* bus operation and as a side effect causes all other caches to 

enter the read state. Any bus writes before the unlock will fail and so it does not matter what the other 

caches do until the write-with-unlock is broadcast over the bus. This action then sets all the other 

caches into the invalid state, i.e. a local configuration is assumed. 

We make the informal description precise by describing the state transitions for a cache. Once 

again we are only concerned with a single address line and talk about a cache being in a particular 

state when we mean that the address of concern in the cache is tagged with this state. 

� The cache is in the Read state: In response to a CPU read, the cached value is returned 

to the processor and in response to a CPU write three things happen: a bus write is 

generated (this informs the other caches that the variable is now considered local), the 

cache is updated with the new value, and the cache is tagged as Local (state L). A bus 

read (generated by some other cache) has no effect on a cache in state R, however, a 

bus write causes the cache to change its state to Invalid. 

� The cache is in the Invalid state: In response to a CPU read, the cache generates a bus 

read and upon successful completion of the bus read, the data returned is stored in the 

cache (as well as being returned to the processor), and the cache state is changed to 

Read. In response to a CPU write similar actions occur a bus write is generated 

(informing all other caches of this fact), the cache value is updated to this new value, and 

the cache state is set to Local. In response to a bus write, a cache in the Invalid state will 

do nothing, whereas, in response to a bus read the following occurs: the value returned 

in response to the read is stored into the cache and the cache state is changed to Read. 

(Note that all caches that contain the target address of a bus read, will perform these 

actions, so that the value read will, in effect, be broadcast to all the processors for future 

use.) 

� The cache is in the Local state: In response to a CPU read, the cached value is returned 

to the processor and in response to a CPU write, the value in the cache is updated to this 

new value (no bus activity is generated). Bus writes cause a cache in the local state to 

change its state to Invalid, whereas, bus reads cause the following actions to occur The 

bus read is interrupted and replaced by a bus write of the cached value. The cache state 

is changed to Read. (The interrupted bus read will be retried on the next cycle causing 

the new value to be broadcast to all the caches.) 



8 

Figure 3-1 details the state transition diagram corresponding to this explanation. The transition 

lines are marked with the action causing the transition as well as being marked with a possible 

modifier indicating some action taken by the cache during the transition. 

4. Proof of Consistency - Sketch 

A cache scheme for a parallel processor is consistent if a read by a processor will always fetch the 

"latest" value written. This section first defines the term "latest" and then shows why the RB cache 

scheme is consistent. 

We first review our assumptions. There are N processors connected to N caches. The caches are 

connected to the memory via a logically single shared bus. In order to define the notion of "latest" 

value one need only define a serial execution order of all the instructions processed by the machine 

that is consistent with the parallel executions of the PE's. That is, for each parallel execution of the 

machine, there must exist a corresponding serial execution of the instructions that produces the 

same results. The notion of latest value can then easily be defined in terms of this virtual serial 

execution. 

The following shows how to construct one such serial execution order. Assume that each 

processor can execute a maximum of P c instructions during each bus cycle. Thus, after / bus cycles, 

at most (PcX^VXO instructions can be executed. Let c/t/ be a number between 0 and Pc—l used to 

indicate the cycle number of PE/ after the Xth bus cycle (thus, PE/ could have executed up to 

(^c)(0+c/,/ instructions by time c^). Given a parallel execution of T bus cycles we define a serial 

execution of length at most {P^NYJ). The instruction executed by PE,, ci%t cycles after the Xth bus 

cycle is given position (P^NKt)+(Pc){i) + citi in the serial order. If the PE is waiting on the bus or 

cache, or still completing the instruction begun earlier, then a no-op is assumed. It should be clear 

that such a serial execution order corresponds to the parallel execution since one processor can only 

have an effect on another through bus activity. 

In the previous section, the cache scheme was described in terms of local and shared 

configurations. It is important to show that these are indeed the only possible configurations 

attainable and, in particular, that it is not possible for the same address to be tagged as local in more 

than one cache at the same time. This is made precise in the following: 

Lemma: For each address, the following holds: 

� At the start of each bus cycle, for each address, one of the following is true: 

o The address is in the shared configuration: if the address is in the cache then it is in 
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BR 

Legend Modifiers 

C W - C P U Write Request 

CR � CPU Read Request 

BW � Bus Write Request 

BR - Bus Read Request 

1 - Generate a BW (i.e. write through) 

2 - Interrupt BR and supply 

the data from the cache 

3 � Generate a BR (i.e. cache miss) 

Figure 3-1: State Transition Diagram for each 

Cache Entry for the RB Scheme 
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state R. 

o The address is in the local configuration: the address is in state L in at most one 

cache and is in stale I for all other caches that contain it. 

� The latest value written is contained either in some cache that is in state L or else in any 

cache that contains this variable. 

Proof: We will actually only sketch the proof, a full formal version follows directly but adds little to 

the understanding. Assume that the caches contain the entire address space so that the issue of 

overwrites can be ignored for the moment. Also, consider only actions associated with a single 

address (a reasonable assumption since actions involving other addresses are disconnected). 

Each cache can be considered a finite state automaton defined by the state diagram in Figure 1. 

For each value of N (the number of processors), define a product machine, M, as the collection of the 

N finite state automata plus one more to represent the function of the common memory. The validity 

of the lemma follows directly from the direct examination of this product machine. 

The caches will be numbered between 1 and N, and the common memory can be viewed as yet 

another cache (although somewhat special) which is referred to as number 0. Initially, the memory 

will be tagged with an L, indicating that the only correct value of the address is contained in t he 

memory, and ail caches tagged as I. Thus, one state of the product machine (the initial state) can be 

written as � � � \N, where X/means cache i is tagged with an X (= L,l, or R). 

All states reachable from the initial state are now described. Note that these states are identical to 

the local and shared configurations. We use the notation A:S1 = >S2 to mean that action A (either a 

cpu read or write) causes the product machine to change from state S1 to state S2. 

cpu read/: � � � \ N � > R 0 � � � R# 

cpu write/: » > l 0 � � � IMMI*I ' ' ' to 

cpu ready: l 0 � � � I j - W i + i � � � to s > R o ' ' ' Ri\r 

cpu write/: » > l 0 " � 1 ' ' ' to 

cpu read : R 0 � � � Rjy �> R 0 � * � R# 

cpu write,: � > l 0 � � � I f - iMi+ i 4 ' � to 

The product machine can be easily extended to include overwrites in a straightforward manner. 

Each address is still assumed to be in the cache represented by the finite state automaton, however, 

the automaton can be extended to include a state NP (not present) with the transitions to and from 



11 

that state added in the natural way. An overwrite of an address tagged I or R can be modeled by the 

product machine as simply setting the tag of the address to NP. An overwrite of an address tagged L 

requires that the address be 'written back' to the memory. This is modeled by having the memory 

(cache 0) perform a cpu write of this value. The overwritten address in the cache will also be tagged 

NP and the memory tagged L 

We can now present our consistency theorem. 

Theorem: Each PE always reads the latest value written. 

Proof There are various cases to consider based on the class of the variable, local or shared, and 

upon the previous pattern of use of a shared variable. Assume PE, is to read variable X. 

Case £ ja local variable: This is the easiest case. Since local, the latest value of X is the one written 

by PE/. The value fetched will either be from the I t h cache or from memory. The cache behaves just 

like a uniprocessor cache. 

Case £ ia shared and last written & EE*' In this case it should also be clear that the latest value is 

fetched. By the lemma, at most one cache can be in local state and that cache contains the latest 

value. If some other PE has read the value in the meantime, the i r t cache will be in the read state. In 

any event, the latest written value is either in the cache or has been evicted from the cache and is 

thus correctly fetched from memory. 

Case X is shared and last written bv PEj ( f l : 

Subcase PE,- is first non PE ; & read & The read will cause a bus read and the value will be fetched 

from that cache. Since cache / will then enter state R, so will all the other caches. 

Subcase PE/ reads x after other PE's tsasL & By the previous subcase, all the caches that contain 

the variable will contain its latest value. � 

In the next section, a Read-Write Broadcast scheme will be introduced. A proof of its correctness is 

a straightforward adaptation of the previous proof. 
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5, The RWB Cache Scheme 

In the RB scheme, the caches note the occurrence of bus reads and bus writes as well as the data 

returned in response to bus reads, whereas in this section, an improved scheme, the RWB scheme, is 

presented in which the caches also note the data part of the bus writes. The result is that the RWB 

scheme has improved performance, although, at the extra cost of a new type of bus action and an 

additional state. The broadcasting abilities of the shared bus are further exploited to optimize certain 

patterns of references common to parallel programs. Although these reference patterns only 

represent a small fraction of all memory references, a large portion of the PE's are often concurrently 

involved and so efficient processing is important. 

The RWB scheme differs from the RB scheme in the way in which the caches change from the local 

configuration to the shared configuration. Assume a variable X is in the local configuration and that 

PE/ was the last to modify its value. In the RB scheme, a read by some PE;- i) was the only 

operation that caused X to change to the shared configuration. We now propose that this 

configuration change occur whenever a PE ; i) references X (including a write to X). 

The motivation is as follows: Variables are initially assumed to be in the local configuration and the 

first write will cause a change to the shared configuration. Only when a variable is used exclusively 

by one PE does it reenter the local configuration6. Consider the initialization of an array that is much 

too large to fit in a cache. Under the RB scheme, there would be two bus writes for each item; one for 

the first CPU write initializing the element and one again later as a writeback when the addressline is 

reused (i.e. and overwrite). In RWB, there will be only one bus write per item. 

Many shared variables tend to be referenced in the cyclical pattern: written by some one PE and 

then read by others. In such cases, the bus write caused by a PE writing to a variable in the shared 

configuration simply broadcasts the new value to all interested caches. Subsequent read references 

will cause no bus activity. A case in point are the read-modify-write operations. Upon completion of 

such operations, the RWB scheme will leave the caches in a shared configuration so that subsequent 

reads cause no bus activity. Finally, the RWB scheme allows for a more robust memory management; 

if the value of a variable is corrupted while in memory or in some cache, there is a higher probability 

that some cache contains a correct copy. 

H"here is considerable latitude in deciding when a variable is assumed to be consider local to a PE. For expository 

purposes, we assume that two writes to a variable with out any intervening references to the variable by any other PE is enough . 

to indicate local usage. Straightforward modifications are possible if one wishes at least k uninterrupted writes to indicate local 

usage. 
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The details are as follows: A new state called first-write (state F) is added, as well as a new bus 

signal called invalidate (i.e. Bl). The first write to a variable, say by PE„ in shared configuration 

causes all caches to remain in state R except for the \th cache that goes into state F. A subsequent 

write by PE„ then confirms the fact that the variable is to be assumed local. Cache i enters state L 

and broadcasts an invalidate signal causing all other caches to enter state I (i.e., assume a local 

configuration). While still in this intermediate configuration (cache i in state F and the rest in state R), 

all reads have no configuration effect and data can be fetched from any cache. A write by some other 

PE ; will cause cache j to change to state F and cause a bus write to occur. The data written is read by 

all caches and they in turn enter state R. Figure 5-1 makes this precise. 

A read causing a cache miss, will in turn generate a bus read. If the variable is in the local 

configuration then the actions are identical to the previous scheme. All other configurations will be 

unchanged. On the other hand, a bus write caused by a cache miss will be treated as above causing 

all other caches to assume state R and this cache state F. 

The special bus invalidate signal can be implemented by reserving one value from the range of 

values assumed by any data word to indicate an invalidate signal. 

6. Synchronization Using Caches 

The behavior of a parallel computation can be characterized as a series of parallel actions 

alternated by phases of communication and/or synchronization. Although some of the parallel 

actions may cause resource contention (e.g. access the same memory module), the use of large 

private caches as well as appropriately designed connection hardware alleviates most of these 

problems. Unfortunately, the steady-state assumptions concerning memory traffic and resource 

contention often are greatly disturbed by the phases of synchronization (also know as parallel 

computation "hot spots'9). It is desirable to eliminate, or at least reduce, the effects of the hot spots. 

Although there have been many types of synchronization primitives proposed for parallel 

processing (see, for example [Rud8l]), we concentrate on the classic test-and-set primitive (TS). The 

standard parallel computer implementation of the test-and-set instruction generates a read-modify-

write operation between processing element and the shared memory. That is, a special bus read 

operation is generated that locks the appropriate shared memory location7, returns the value back to 

the PE, the PE then performs some operation on the value that may modify it, and finally the modified 

In some implementations all of memory is locked, in others only sections of memory. It is generally considered too 
expensive to associate a lock with each memory address. 
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CW - CPU Write Request 1 � Generate a BW (i.e. write through) 
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BR - Bus Read Request 3 - Generate a BR (i.e. cache miss) 

Bl - Bus Invalidate Request 4 - Generate a Bl 

Figu re 5-1: State Transition Diagram for each 

Cache Entry for the RWB Scheme 
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value is stored back into the shared memory cell and the lock removed. Accordingly, if many PE's 

simultaneously test-and-set the same memory location, as in the case of a lock for shared data 

structure, high bus traffic and memory contention will result. We show how our cache scheme can 

reduce these ill effects. 

The analysis of bus traffic may consist of two components. One is the bus traffic generated by 

successful synchronization operation (i.e. getting a lock) and the second is the traffic generated by 

unsuccessful (spinning and waiting) operations. The latter category introduces an unnecessary 

burden on the bus traffic and memory contention. We propose a variation of the traditional 

synchronization primitive, called a test-and-test-and-set (TTS). Recall that a test-and-set instruction 

is an atomic operation on a variable with the following implementation of the test and set semantic: 

T e s t - a n d - s e t V t o X: 
I f V * 0 Then V : » X 

E l s e nil 

The test-and-test-and-set operation could be seen as a combination of a test instruction followed by 

a test-and-set instruction and can be described as follows: 

T e s t - a n d - T e s t - a n d - S e t V t o Xz 
I f V * 0 Then nil 
E l s e 

IF V - 0 Then V : » X 
E l s e nil 

The advantage of the test-and-test-and-set is that a read-modify-write cycle will be generated only 

when the initial test has succeeded. The bus traffic component connected with unsuccessful 

synchronization attempts can therefore be minimized. Indeed, the initial test part of the instruction 

could be executed in the local cache, without generating bus traffic. Only when the test succeeded 

(indicating a good chance that the lock will be free) will the test-and-set part be executed. 

The test-and-test-and-set can be implemented in hardware by creating a new primitive instruction, 

or alternatively, in software by preceding each test-and-set instruction with a simple test instruction 

We consider this latter possibility as a definite advantage since it enables the use of off-the-shelf 

processors. Much existing software could be used with minor modifications. 

Next, we will consider the implication of the proposed cache consistency schemes to the elimination 

of hot spots. We assume off-the-shelf processing elements and hence we will use the software 

implementation of test-and-test-and-set class of instructions. 
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6.1. Synchronization Using RB Scheme 

In order to study the behavior of the RB cache scheme we will use an example of synchronization 

between M processes (1 process per processor) using a shared data structure lock S. The lock S is 1 

if the data structure is currently reserved for use by some process and is 0 if the data structure is not 

in use. 

Figure 6-1 demonstrates the cache behavior when using test-and-set instruction. The first m 

columns relate to the m caches. Each entry in these columns indicates the state (R,L, or I) and the 

value (0,1, or -) that is in the cache for the lock S. The m + 7 s t column gives the value of S in memory. 

Each row represents the situate at a point in time with successive rows representing the progression 

over time. Note that an attempt to get the lock via a test-and-set instruction causes a read-modify-

write cycle. We treat such an instruction as a non-cachable read when the test-and-set fails and as a 

write when it succeeds. 
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R ( l ) R ( l ) R ( l ) 1 Others t r y to get S 

Figure 6-1: Synchronization with Test-and-Set for RB Scheme 

Note that during the period when the lock is reserved for P 2 all attempts by other processors to 

reserve the lock will be unsuccessful and will continuously generate bus traffic and memory 

contention. 

The use of the TTS primitive eliminates much of the bus traffic during the period when the lock is 

reserved for PE 2 . Figure 6-2 demonstrates the states resulting when TTS is used in place of TS. 

Note in this case the unsuccessful attempts to get the lock are spins in the cache and do not 
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L ( l ) I ( - ) I ( - ) 1 Px get the S 

R ( l ) R ( l ) R ( l ) 1 Others t r y t o ge t S 

Figure 6-2: Synchronization with Test-and-Test-and-Set for RB Scheme 

generate bus traffic. 

6.2. Synchronizat ion Using RWB Scheme 

We now consider the cache synchronization behavior for the RWB scheme and use the same 

example as above. Again the TTS primitive will be used and Figure 6-3 presents the results. 

When compared to RB scheme note the substantial minimization of cache invalidation, along with 

the reduction of bus traffic due to unsuccessful synchronization attempts. Further examples of the 

RWB scheme can be found in [RUD84]. 

7. Shared Bus Bandwidth 

In a multiprocessor, even one using our cache schemes, bus utilization increases with increasing 

numbers of processors. Eventually, bus saturation occurs. In this section, we try to estimate the bus 

bandwidth required to avoid saturation for a given number of processors. We analyze bus traffic and 

concentrate on the average case since the main purpose of caches is to improve average case 

performance; the analysis wffl not consider peak values. 

Assume the following notation: 

x - number o f accesses per second generated by a 

p r o c e s s o r in M i l l i o n Accesses per Second (MACS) 
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Figu re 6-3: Synchronization with Test-and-Test-and-Set for RWB Scheme 

1/h - the cache miss r a t i o 

m - number of processors on the shared bus 

Then the shared bus bandwidth (SBB) satisfies the following: 

SBB > mx/h 

Consider the following example: 

1/h * 10% 

n * 128 

x 1 MACS 

*> SBB » 12.8 MACS 

If it is not possible to build a shared bus capable of accommodating the desired shared bus traffic 

(i.e. SBB is too large), then a multiple shared bus could be employed. The question is then, how to 

extend our proposed cache schemes to function correctly in a multiple shared bus configuration. 

Figure 7-1 shows a dual shared bus configuration. The private caches and the shared memory are 

divided into two memory banks using the least significant address bit. Each part of the divided cache 

will generate, on average, half of the traffic that would otherwise be produced by an undivided cache. 
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Hence, the required bandwidth for each shared bus will be about half. Using this method, the cache 

scheme proposed could easily be extended for a small number of multiple shared buses. Initial 

evaluation shows that by using the proposed cache schemes, relatively large parallel processors 

having as many as 32 to 256 processors could be economically built using existing off-the shelf 

components and today's technology. 

8. Conclusion 

We have presented two cache schemes for shared memory parallel processors. Their main feature 

is that local and read-only shared variables are dynamically detected and classified to allow the 

caches maintain consistency while greatly reducing memory access time. A second feature is the use 

of the broadcasting ability of a shared bus to not only signal an event but to distribute the data. It 

appears that moderately large parallel processors can be designed in this fashion. 

Our scheme exploits the ability of the caches to listen1 to the bus traffic, hence, our ideas may not 

be applicable to other parallel architectures. In particular, it is not clear how they can be applied to 

architectures consisting of a set of processors connected to a set of memories via a logarithmic 

interconnection network. The advantages of our scheme (e.g. complete transparency to the user), 

however, make it desirable to explore the possibility of applying it to other architectures. 

Two questions raised in our presentation appear to be promising for further research. The first is 

how to extend our scheme to hierarchical structures more amiable to large scale parallel processing. 

The second is the exploitation of replicated values in the various caches to improve the reliability of 

the memory. 
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