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Abstract—The improvement of medical care quality is a 

significant interest for the future years. The fight against 

nosocomial infections (NI) in the intensive care units (ICU) is a 

good example. We will focus on a set of observations which 

reflect the dynamic aspect of the decision, result of the 

application of a Medical Decision Support System (MDSS). This 

system has to make dynamic decision on temporal data. We use 

dynamic Bayesian network (DBN) to model this dynamic process. 

It is a temporal reasoning within a real-time environment; we are 

interested in the Dynamic Decision Support Systems in 

healthcare domain (MDDSS). 
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Infection; Bayesian Network. 

I. INTRODUCTION 

The questions that interest health scientists become 
increasingly complex. For many questions, we need much time 
of analysis to generate significant quantities of complex 
temporal data that describe the interrelated histories of people 
and groups of people [8]. In Intensive Care Units (ICUs), 
physicians focus on the continuously evolution of patients. The 
temporal dimension plays a critical role in understanding the 
patients’ state.  

The development of methods for the acquisition, modeling 
and reasoning is, therefore, useful to exploit the large amount 
of temporal data recorded daily in the ICU. In this context, a 
Medical Decision Support System (MDSS) can be developed 
to help physicians to better understand the patient's temporal 
evolution in the ICU and thus to take decisions. 

In many cases, the MDSS deals with the decision problem 
according to its knowledge; some of this knowledge can be 
extracted using a decision support tool which is the Knowledge 
Discovery from Databases (KDD) [10] [14]. The goal of the 
KDD is to extract knowledge and to interpret, evaluate and put 
it as a valid element of decision support. 

The MDSS is well applied particularly to the prediction and 
shows significantly positive results in practice [7]. The control 
of the Nosocomial1 infections (NI) is regarded as a promising 
research field in the ICU [16]. These infections are contracted 
during the hospitalization.  
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 The term "nosocomial" comes from the Greek word "nosokomeion" to 
indicate the hospital

 

From this point of view, a KDD-based MDSS aims at 
helping the physicians, users of the system, to especially 
understand and prevent the NI. The MDSS for the fight against 
NI require temporal data analysis. The dynamic aspect of the 
decisions is related to the measurements recorded periodically 
such as the infectious examinations, the antibiotic prescribed 
before admission, etc.  

The objective is to daily predict the probability of acquiring 
a NI in order to daily follow-up the patient state using a KDD 
technique. With this intention, the data base must be pre-treated 
and transformed for a temporal data mining. The data mining 
technique must take into account the dynamic aspect of the 
decision. For this reason, we choose the Dynamic Bayesian 
Network (DBN) [9] [35] which are models representing 
uncertain knowledge on complex phenomena within the 
framework of a dynamic process. It is a question of obtaining 
knowledge models which evolve with time.  

This article is organized into five sections. In the second, 
we will present the theoretical background of our decisional 
context. In section 3, we will concentrate on our problematic 
which is the fight against the nosocomial infections. We will 
also discuss the dynamic aspect of the decision. In section 4, 
we will describe, the use of the Dynamic Bayesian Networks as 
a KDD technique for supporting the dynamic medical decision-
making. Concerning section 5, we will expose some results 
obtained by the application of the DBN for fight against NI. 
Finally, a conclusion and several perspectives will be proposed. 

II. KDD-BASED MDSS: SOLUTION EXPLOITED FOR THE 

MEDICAL FIELD 

The decision is often regarded as a situation of choice 
where several solutions are possible; among them one is "the 
best" [34]. To decide is to choose in a reasonable way an 
appropriate alternative; it is a question of making a decision 
during a complete process [40]. Decision support systems play 
an increasingly significant role in medical practice. While 
helping the physicians or other professionals of the medical 
field to make clinical decisions, the MDSS exert a growing 
influence on the process of care for improved health care [30]. 
Their impact should be intensified because of our increasing 
capacity to treat more data effectively [21].  

The MDSS can help the physicians to organize, store, and 
extract medical knowledge in order to make decisions. This can 
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decrease the medical costs by providing a more specific and 
more rapid diagnosis, by a more effective treatment of the 
drugs prescriptions, and by reducing the need for specialists’ 
consultations [32]. Within this framework, we are interested in 
the MDSS allowing controlling the NI which constitute a 
significant challenge of modern medicine and which are 
considered as one of the most precise indicators of the care 
quality of the patients [11].  

In medical decision making, Knowledge Discovery from 
Databases (KDD) [10] [14] is critical. In fact, knowledge, 
which is hidden in patient records, is valuable to provide 
precise medical decisions such as the diagnosis and the 
treatments. Indeed, traditional tools of decision support 
(OLAP, Info-center, dashboard, ERP, etc.) leave the initiative 
to the user to choose the elements which he/she wants to 
observe or analyze. However, in the case of KDD, the system 
often takes the initiative to discover associations between data. 
It is then possible, in a certain manner, to predict the future, 
according to the past. 

The KDD is an interactive and iterative process aiming at 
extracting new, useful, and valid knowledge from a mass of 
data. It proceeds in four phases [10] [20] (Fig. 1):  

1) Selection of the data having a relationship with the 
analysis requested in the base;  

2) Cleaning of the data in order to correct the inaccuracies 
or data errors and transformation of the data into a format 
which prepares them for mining;  

3) The data mining, application of one or more techniques 
(neural networks, bayesian networks, decision tree, etc.) to 
extract the interesting patterns. A variety of KDD techniques 
were developed in the last few years and applied to the medical 
field; and 

4) Evaluation of the result allowing estimating the quality 
of the discovered model. Once knowledge is extracted, it is a 
question of integrating it by setting up the model or its results 
in the decisional system. 

 

 

Figure 1.  KDD process 

Various research tasks previously applied the assistance to 
the medical decision-making based on the KDD for the fight 
against NI [3] [4], there is no study (as far as we know) which 
addressed the dynamic aspect of the medical decision in this 
context. 

III. DBN-BASED MDDSS: SOLUTION EXPLOITED FOR 

THE NI CONTROL 

A. Dynamic context 

This article lies within the scope of a project aiming at 
fighting against NI2 in the Intensive Care Unit in the Teaching 
hospital Habib Bourguiba in Sfax, Tunisia [1] [23] [24] [27] 
[26] [41]. Some work proposed NI control systems based on 
the KDD techniques [3] [4]. This Work shows their 
effectiveness and their capacity to produce useful rules. But, 
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An infection is typically regarded as nosocomial if it appears 48 hours or 
more after hospital admission

 

their direct use by doctors appears difficult to us. A study on a 
prevalence of NI occurrence in the Teaching hospital Habib 
Bourguiba in Sfax, Tunisia, showed that 17,9 % of the 
hospitalized patients were victims of a NI during 24 hours [16]. 

The decision problematic on the patient state must envisage 
and prevent the NI occurrence. The risks of this infection can 
weaken the patient or delay his cure. The risk of infection is 
mainly conditioned by the fragility of the patient and the ICU 
techniques used for its survival. Our objective is to predict the 
NI occurrence each day during the hospitalization period. 

The dynamic aspect is observed on various levels of 
decision-making [38]. It is indispensable to take into account a 
set of critical factors of decision which are identified by the 
assistance in particular interviews with some of the ICU 
physicians. The identification of the factors supporting the 
appearance of the infections is a very significant stage which 
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influences the results of the decision-making. These factors are 
classified into two categories: 

1) Static data: patient admission data (age, gender, weight, 
entry and exit dates, antecedents), the SAPS II3 score ([5] [31] 
proved that this score measured in the first 24 hours of the 
intensive care is an indicator of NI risk) and the Apache 
categorization 4  [18]. These data can help to determine the 
patients’ fragility to the nosocomial infections. 

2) Temporal data: control measurements to take each day 
(intubation, Central Venous Catheter (C.V.C.) [33], the urinary 
probe [13], Infectious examinations [16] [37] [42] and the 
catch of antibiotics. 

At each day i (1 i  hospitalization duration), the decision 
on the patient state depends on the NI probability pi and thus 
on the values of the factors (static and temporal data) described 
above to the current day but also to the previous days, as well 
as to all the knowledge obtained by learning in time and 
recording former events. In fact, a basic decision is taken at the 
admission of the patient (t0). The future decision refers to a 
decision to be made after the consequences of a basic decision 
become (partially) known. A future decision is linked to the 
basic decision because the alternatives that will be available in 
the future depend on the choice made in the current basic 
decision. As time moves on, the future decision at current stage 
(t) becomes the basic decision at the next decision stage (t+1), 
when a new knowledge extracted by data mining (probability 
of acquiring a NI) and future decision should be addressed. 
This link repeats itself as long as the patient is hospitalized (cf. 
Fig. 2). The learn-then-decide-then-learn pattern describes how 
the decision-maker responds to new knowledge gained during 
the decision-making process. The elements described above, 
especially the existence of linked decisions, clearly show that 
decision-making in NI control is a dynamic process. In this 
scope, the decision-making process requires the consideration 
in time of linked or interdependent decisions, or decisions that 
influence each other. This dynamic decision-making pattern is 
a chain of decide, then learn; decide, then learn more; and so 
on. Such a system is so called Medical Dynamic Decision 
Support System (MDDSS). 

 

Figure 2.  Temporal factors for the NI prevention 

The MDDSS aims at the daily estimation of the NI 
occurrence probability, in percentage, during the ICU patient 
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Simplified Acute Physiology Score II:  is used to evaluate and compare the 
gravity of the patients to the intensive care. It is about a predictive model of 
mortality of the patients.

 

4 
classification of the previous patient state that is statistically related to the 

appearance of NI
 

hospitalization. This probability is calculated using a KDD 
technique. It is the content of the following section. 

B. Dynamic KDD technique 

Because of their capacity to represent uncertain knowledge, 
Bayesian networks (BN) play an increasingly important role in 
many medical applications. They have been introduced in the 
1980s as a formalism of representation and reasoning with 
models of problems involving uncertainty and adopting 
probability theory as a basic framework. Research to explore 
the use of this formalism in the context of medical decision 
making started in the 1990s [36] [29]. 

The medical literature contains many examples of the BN 
use. We can quote a BN model developed to assist clinicians in 
the diagnosis and selection of antibiotic treatment for patients 
with pneumonia in the ICU [28]. Burnside and al. [6] proposed 
the use of BN to predict Breast Cancer Risk. 

A BN is a Graphical model (marriage between probability 
theory and graph theory). It is a graph with probabilities for 
representing random variables and their dependencies. It 
efficiently encodes the joint probability distribution (JPD) of a 
set of variables. Its nodes represent random variables and its 
arcs represent dependencies between random variables with 
conditional probabilities. It is a directed acyclic graph (DAG) 
so that all edges are directed and there is no cycle when edge 
directions are followed [15] [19]. 

The joint probability distribution of random variables S = 
{X1, … , XN} in a Bayesian network is calculated by the 
multiplication of the local conditional probabilities of all the 
nodes. Let a node Xi in S denote the random variable Xi, and 
let Pa(Xi) denote the parent nodes of Xi. Then, the joint 
probability distribution of S = {X1, … , XN} is given by (1): 

P(X1, X2, …, XN} = 



N

i 1 p(Xi | Pa(Xi))                   

Unfortunately, a problem with the BN is that there is no 
mechanism for representing temporal relations between and 
within the random variables. For this reason, to represent 
variables that change over time, it is possible to use Dynamic 
Bayesian Networks (DBNs) [9] [35].  

DBN encodes the joint probability distribution of a time-
evolving set of variables X[t] = {X1[t],…, XN[t]}. If we 
consider T time slices of variables, the dynamic Bayesian 
network can be considered as a "static" Bayesian network with 
T  N variables. Using the factorization property of Bayesian 
networks [9] [35], the joint probability density of XT = 
{X[1],…, X[T]} can be written as (2): 

P(X[1], …, X[N]} = Tt 1



N

i 1 p(Xi[t] | Pa(Xi[t]))  Where 
Pa(Xi[t]) denotes the parents of Xi[t]  

DBNs are a generalization of Kalman Filter Models (KFM) 
and Hidden Markov Models (HMM). In the case of (HMM), 
the hidden state space can be represented in a factored form 

 

Time (in days) ICU Patient 

admission 
 1 day  2 days n-1 days 

P0= x% P1= x1% =                   
P (measures/x) 

P2= x2% =                     
P (measures/x1) 

Pn-1= x n-1% =                 
P (measures/xn-2) 

… n days 

Pn= xn% =                           
P (measures/xn-1) 

End of hospitalization 

Collected 
data 

Measures Measures Measures Measures 
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instead of a single discrete variable. Usually dynamic Bayesian 
networks are defined using the assumption that X[t] is a first 
order Markov process [35] [39]. 

In the context of the NI prevention, the DBN technique 
uses fixed and temporal variables presented in the following 
section. 

IV. DBN APPLICATION FOR THE DATA MINING 

A. DBN variables 

Our study concerns the application of the DBN technique 
on a temporal medical data base containing 280 patients’ data.  

The data acquisition and selection is the first KDD-based 
MDDSS phase. It concerns the implementation of the temporal 
data base that consists on a large collection of time series. It is 
a succession of couples < (v1,t1),(v2,t2)…,(vi,ti),…> where vi is 
a value or a vector of values taken at a moment ti. The values vi 
of a sequence are often real numbers [12]. In our context, the 
time series are a set of daily sequentially recorded values. The 
data pretreatment allows applying scripts to prepare useful 
variables for the knowledge extraction: (1) fixed data having 
only one value during the hospitalization period of a patient; 
and (2) temporal data having a value for each time serie (day) 
during the hospitalization period. 

The estimation of the NI occurrence probability of the 
patient is represented by the following variables (table 1): 

TABLE I.  VARIABLES OF BAYESIAN NETWORKS 

Fixed variables 

Code Wording 

Sex Patient gender 

age1 Patient age 

Periode_entr Indicates the entry season in ICU 

Orig  Origin 

Detorig Origin details 

priseAnti Antibiotic catch 

Knaus Apache categorization of the previous patient state. 

Cissue Issue : the patient is dead or survived 

Diag Diagnosis 

Ant Antecedent 

Result Static NI prediction probability 

Temporal variables 

Code Wording 

dsj Difference between ICU admission and exit dates  

acti Act carried out at the day i 

cissuei Issue 

examinfi Infectious examinations at the day i 

sensi 
Sensibility to the germ (causing the Infectious 
examinations at the day i) to the prescribed 
antibiotic 

resulti dynamic NI prediction probability at day i 

The theory of the Bayesian Networks allows us to represent 
relationships between these observed variables in a 

probabilistic way which is well adapted to the uncertainty 
inherent to medical questions. 

B. Construction of knowledge model on fixed data (Static BN) 

Causal links between the fixed variables are represented on 
figure 3. However observations made on a one static BN for a 
patient are not sufficient to estimate the NI occurrence 
probability. 

 

Figure 3.  Causal links in static Bayesian network (static extracted knowledge 
model) 

The extracted model could detect relations between logical 
variables like the relation between the age and the antecedent, 
between the age and cissue (the patient deceased or is 
survived). However obtained graph, contains "illogical" links 
between the nodes (for example, the age acts on the antibiotic 
catch). We also noted missing links which present interesting 
independence relations (For example, the relation between 
result and cissue). 

The probabilities are calculated using P(Vi|C) with: 

 Vi : the node (sex, age1, periode_entr… diag1) having 
discrete values, and  

 C: the class to be predicted (cissue and result) having 
Boolean values (yes/no): the patient catches a NI or not 

We obtain a static Bayesian Network: a causal graph with 
the probabilities associated to each node. The use of the 
probabilities and the causal graph provide knowledge models 
which are not very rich. So, experiments made with this BN 
showed that the prediction was instable and could produce false 
alerts. In order to represent the influence of past events over the 
present state of the patient, it is necessary to extend this model 
into a dynamic BN. 

C. Construction of knowledge model on temporal data (DBN) 

The Figure 4 shows a dynamic extracted model based on 
temporal variables. The causal graph represents the 
interdependence between the temporal variables. We used for 
this dynamic structure the values of each time serie (act1… 
act10, exinf1… exinf30)

5  connected directly with the two 
predictive nodes which are the result and issue.  
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In our context, we have 10 acts and 30 infectious examinations carried out 
daily to the patients.

  

age 1 Periode_entr

detorig
act 1priseAnti

cat knaus

origsex

cissue act 1diag1 diag2 ant1

result
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Figure 4.  Causal links in Dynamic Bayesian Network (extracted model for 
t=n) 

The principle of our Dynamic Bayesian Network can be 
defined by: 

 At t=0, we use extracted static knowledge model 
(figure 3) 

 For 1  t  T (patient hospitalization duration): 
unrolling the extracted temporal knowledge models 
(figure 4). 

We obtain a final Dynamic Bayesian Network that has the 
following causal graph (figure 5). 

The distribution result of the joined probabilities is given by 
(3): 

P(         ) = ∏ ∏ P(         P (            ))    

With:  

 T is the interval of hospitalization time,  

 N is the total number of the variables for each 
extracted model. 

The DBN application gives good prediction results 
presented in the next section. 

V. PREDICTION RESULTS 

This section presents the prediction results of an 
experimentation conducted over more than one year in the ICU 
of the teaching hospital Habib Bourguiba in Sfax, Tunisia.  

After having generated many bases of examples, we 
applied our algorithm to real data coming from the ICU. We 
could extract knowledge models and transform them 
automatically to obtain probabilistic, quantitative and 
qualitative prediction results. These prediction results of our 
system are reliable to 74%, which is very encouraging. 

Indeed, our study relates to the prediction of the patient 
state. This prediction is dynamic; it evolves throughout the 
patient hospitalization by new measurements. 

 

Figure 5.  The causal graph of the Dynamic Bayesian Network 

With each dayi of the patient hospitalization, we could 
envisage his state at the future by a probability, which will be 
used, in the prediction of the dayi+1, with these measured 
observations.  

We used a base of test which contains 58 cases (patients), 
for the performance evaluation of the system. We obtained the 
results given by the matrix of confusion6 represented by the 
table 2. 

                                                           
6  

Yes : to have a NI -  No : not to have a NI - Total : the total of the 
predictions 

TABLE II.  THE CONFUSION MATRIX OF THE RESULTS PROVIDED BY THE 

DYNAMIC BAYESIAN NETWORK 

 Predicted 

Negative Positive 

Actual 
Negative 34 7 

Positive 8 9 

We calculated the rates of evaluation starting from the 
prediction results obtained by our structure elaborated by the 
DBN. We found that the classification rate was correct to 0.74, 
the positive capacity of prediction = 0.56 and the negative 
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T
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capacity of prediction = 0.81. The generated observed vs. 
predicted results given by the table 2 are represented by the 
histogram (cf. Fig. 6).  

An extension of the prediction phase could then be 
improved. With our current system, the prediction is made 
offline i.e. daily after the acquisition of all the data collected 
during the last 24 hours of hospitalization for a patient. This 
prediction can be improved so that it is carried out at each 
observation detected by our system and at every moment. 

 

Figure 6.  Prediction results 

VI. CONCLUSION 

In this paper, we described an application of decision 
support system to the hospitalized patients in the ICU. This 
system aims at helping the physicians to estimate the NI 
appearance. The decision given by this system is dynamic 
because it is based on the patient state described in terms of a 
set of temporal factors of which the unit of time is the day. The 
dynamic decision system evolves and proceeds in several 
stages corresponding to the increasing levels of the patient 
situation comprehension (scale of time). On each level, a set of 
knowledge can be generated. 

In this study we used the KDD as a decisional tool. A data 
pre-treatment is used in order to transform medical data into 
standardized data usable by the system. The KDD technique 
used is the Dynamic Bayesian Networks (DBN). It is used for 
the modeling of complex systems when the situations are 
dubious and/or the data are of complex structure. In our case, 
the complexity of the data is due to the fact that they are 
temporal and not regular. 

We have implemented the dynamic BNs based on fixed (at 
t=0 that gives a static BN) and temporal data (daily taken 
measurements during the hospitalization stay). The application 
of the developed models for the NI prediction gives good 
results.  

VII. FUTURE WORK 

Under the angle of the Human-Computer Interaction (HCI) 
and basing on this experiment in the medical field, our research 
perspectives are related to the design and the evaluation of a 
MDDSS based on a KDD process. We are confronted to the 
need to develop a specific methodology for the design and the 
evaluation of DSS based on the KDD while taking starting 
point the criteria, methods and techniques resulting jointly from 
the HCI field [2] [22] and the visualization field [25]. This last 

technology makes it possible to present the data and knowledge 
in a visual form making it possible to the user to interpret the 
data, to draw the conclusions as well as to interact directly with 
these data. It is considered that the visualization techniques can 
improve the current KDD techniques by increasing the 
implication of the user and his confidence in connection with 
the observations discovered [17]. Such a methodology of 
evaluation must allow the study of cognitive and emotional 
experience of the DSS users for the fight against the 
nosocomial infections [43]. 
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