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Abstract

Dynamic decode-and-forward (DDF) is a version of decode-and-forward relaying in which the duration

of the listening phase at relays is not fixed. In this paper, we investigate half-duplex DDF relaying based on

rateless codes. The use of rateless codes allows relays to autonomously switch from listening to the source

node to transmitting to the destination node. We first revisit different signal combining strategies applied at

the destination node, namely energy and information combining known from literature, and propose a new

combining method which we refer to as mixed combining. The different combining methods give rise to

different achievable rates, i.e., constrained channel capacities, for which we provide analytical expressions. The

capacity analysis reveals the conditions under which mixed combining is superior and how it can be optimized.

We then consider Raptor codes as a specific implementation of rateless codes and develop a density-evolution

approximation to predict the data-rate performance of these codes in DDF relaying. Furthermore, we devise

an optimization of the output symbol degree distribution of Raptor codes that is mainly used to benchmark

the performance of Raptor codes with a fixed degree distribution. Numerical results for exemplary three-node

and four-node relay networks show that the proposed mixed combining provides significant gains in achievable

data rate and that Raptor codes with a fixed degree distribution are able to realize these gains and to approach

closely the constrained-capacity limits.

Index Terms

Cooperative communications, dynamic decode-and-forward, relaying, rateless codes, Raptor codes, density

evolution.
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I. INTRODUCTION

In the wake of advances in multiple-antenna transmission and with the ongoing evolution towards network

communication theory, the study of cooperative communications in wireless networks has experienced a

recent revival, e.g. [1]–[5]. Cooperative communications can achieve spatial diversity and multiplexing without

requiring multiple-antennas to be collocated in a single device. The three-terminal relay channel, as the

fundamental unit of cooperative communications, was introduced in the pioneering work [6] and thoroughly

analyzed in [7]. Although early information theoretic studies on cooperative communications focussed on

full-duplex relaying, in recent years a lot of research has been directed towards practical protocols based on

half-duplex relaying, where the relay is not able to receive and transmit simultaneously, e.g. [1]–[4], [8]. Among

the various strategies that enable relays to assist the source-to-destination communication link, the decode-and-

forward (DF) strategy has attracted great attention. In DF, the transmission interval is divided into a listening

phase, during which a relay only receives, and a collaboration phase, during which the relay transmits the

successfully decoded source message. The duration of the listening phase can be predetermined [3], [4] or it

can be adapted to the actual quality of the source-to-relay channel [8]–[11]. In case of the latter, and in the

absence of channel state information (CSI) at the sender, the relay would decide on its own when to switch

from listening to collaborating, which is also referred to as dynamic decode-and-forward (DDF) [10].

Recently, starting with [12], the application of rateless codes, in particular Luby transform (LT) and Raptor

codes [13], [14], has been advocated to accomplish DDF with a flexible duration of the listening phase.

While [12] considered the three-node relay channel with non-orthogonal source-to-destination and relay-to-

destination channels, relaying with multiple relay nodes and orthogonal subchannels were studied in [15]. The

assumption of orthogonal channels enables the use of two different signal combining schemes at receiving

nodes (destination and relays) during the collaboration phase, which are referred to as energy combining (EC)

and information combining (IC) in [15]. In the context of collaboration using fixed-rate codes, the concepts of

EC and IC are also known as DF with repetition coding and coded cooperation, respectively [4].

In this paper, we study half-duplex DDF transmission using rateless codes. As in [15], we consider orthogonal

source-to-destination and relay-to-destination channels, and as in [12], [15] we assume that the destination node

knows when a relay starts to transmit, which can be accomplished by, e.g., assigning relay-specific spreading

sequences. We first consider signal combining when multiple signals are received during the collaboration phase

of DDF. We formulate EC and IC in a common framework and introduce a new combining scheme, which is a

hybrid of EC and IC and which we refer to as mixed combining (MC). We derive the pertinent capacity limits
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associated with the three combining schemes, for which, different from [15], we consider transmission with

finite-size constellations. MC requires power allocation at individual relays (but not among multiple relays),

for which we provide an optimal solution determined at the destination node and delivered to relays via a

low-rate feedback. Such a feedback requirement is similar to the acknowledgment sent from the destination

to terminate the transmission with rateless codes. Second, we analyze achievable rates for DDF using Raptor

codes. To this end, we refine and extend the density evolution [16] method proposed in [17] to the case of

DDF. In this context, we also investigate the optimization of the degree distribution of the LT component codes.

This optimization is similar to that for fixed-rate low-density parity check (LDPC) codes considered in e.g.

[18], [19], which are required to perform close to the capacity limit at different rates for the source-to-relay

and source/relay-to-destination channel. We present numerical results for the examples of source-to-destination

transmission assisted by one and two relays, respectively, which demonstrate (i) the notable advantage of the

proposed MC over EC and IC, (ii) the aptitude of Raptor codes with fixed degree distributions to closely

approach the capacity limits associated with DDF, and (iii) the suitability of the devised density evolution

approximation to predict rates achievable with Raptor codes for DDF.

The remainder of this paper is organized as follows. In Section II we introduce the cooperative communi-

cations system setup and describe the combining schemes including our proposed MC method. In Section III,

we derive the constrained capacity limits associated with DDF and different combining methods. A density

evolution approximation for DDF transmission with Raptor codes is developed in Section IV, which also serves

as the basis for the optimization of Raptor codes. Numerical results are presented and discussed in Section V,

followed by conclusions in Section VI.

II. RELAY TRANSMISSION AND SIGNAL COMBINING

In this section, we first briefly introduce the considered relay transmission system and then describe the

signal combining schemes applied at the destination node.

A. System Setup

We consider a wireless relay network as shown in Figure 1 consisting of a source node S, NR relay nodes

Ri, i = 1, . . . , NR, and a destination node D, to which the source wishes to communicate a message. For

simplicity, we assume that all nodes employ a single antenna. The channels between different nodes are modeled

as frequency-flat fading additive white Gaussian noise (AWGN) channels which remain constant during the

transmission of at least one message. The instantaneous receiver-side signal-to-noise power ratio (SNR) for the
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source-to-destination (SD), source-to-relay-i (SRi), relay-i-to-relay-j (RiRj), and relay-i-to-destination (RiD)

channel is denoted by γSD, γSRi
, γRiRj

, and γRiD, respectively.

The operation of the relay network follows closely the one described in [15]. The relay nodes are half-

duplex transceivers that apply the DDF paradigm to assist the source. That is, while the source broadcasts its

message, the relays listen to the source (listening phase) and try to decode the source message. In the case that

a relay decodes successfully before the destination, it enters the second phase (collaboration phase), in which it

retransmits the message (details of the collaboration phase follow below). The source and all collaborating relays

continue transmitting and the destination continues receiving until it has successfully decoded the data and

sends an acknowledgment. Relay nodes may receive their information only from the source node (synchronous

transmission protocol [15, Section III]) or from the source node and other relay nodes that have decoded earlier

(asynchronous transmission protocol [15, Section IV]). Hence, in the asynchronous transmission protocol, relay

nodes help each other to shorten individual listening phases. Furthermore, following the arguments in [15,

Sections II and III.A], we assume direct-sequence code-division multiple access (CDMA) transmission where

each relay node has a different spreading code available for transmission, which also enables the destination to

identify the respective senders. Applying the idealization of orthogonal spreading codes arriving at the receiver,

parallel source/relay-to-destination channels result and mutual information through different channels can be

accumulated. If perfect orthogonality is violated, a performance penalty due to interference would result.

We apply rateless codes to protect messages against channel errors and an error detection mechanism (e.g.

cyclic-redundancy check code) to terminate decoding [12], [15]. As in [8], [12], [15], we assume that CSI is

only available at the receiver sides of a communication link. In such a practically relevant scenario the use

of rateless codes is intended to achieve a relay-centric adaptation of the duration of the two communication

phases to the instantaneous channel quality. Furthermore, source and relay nodes are assumed to transmit with

the same power during the respective transmission phases [8], [12], [15].

B. Signal Combining Methods

Signal combining is performed during the collaboration phase at the destination node, and in the asynchronous

transmission protocol also at relays which have not yet successfully decoded the source message. To enable

more efficient signal combining methods, we extend the scheme from [15] in that we allow relays to transmit

not only with their own spreading sequence but also with the spreading sequence allocated to the source. This

spreading sequence re-use is a reasonable extension as (i) both resources are occupied during the collaboration

phase anyhow, i.e., this extension does not drain any additional network resources, and (ii) the self-adaptivity
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of the transmission scheme is maintained; that is, the re-use of the source spreading sequence at a relay does

not require any coordination among nodes.

Next, to describe the combining methods, let us consider the basic example of a network with a single relay.

We define the length-k source message vector m and the spreading sequences sS and sR applied at the source

and relay1, respectively. In the listening phase, the source transmits the length-nR code vector cL = mGL

applying spreading with sS, where GL is the k × nR part of the generator matrix of the rateless code. Note

that nR is not decided prior to the transmission but is determined after the relay has successfully decoded the

message m.

We now proceed with the collaboration phase, i.e., we assume that the relay successfully decoded the source

message before the destination. Let us define the length (n − nR) code vectors

cC = mGC , (1)

c
1
C = mG

1
C , (2)

where n > nR is the number of coded bits received by the destination until successful decoding, and GC and

G
1
C are k× (n−nR) generator matrices of the rateless codes used during the collaboration phase. The source

node always applies GC to generate the vector cC, which is transmitted using spreading with sS. At the relay,

the availability of two spreading sequences makes different signal combining schemes possible.

1) Energy combining (EC) : The relay node transmits the same signal as the source node, i.e., the relay

applies GC and transmits message cC using sS. Due to the different propagation delays of SD and RD

channel, the destination can apply a Rake receiver to maximal-ratio (i.e., energy) combine the source

and relay signals (cf. [15, Section III.A]). Then, decoding of the rateless code is done based on the total

generator matrix [GL GC].

2) Information combining (IC) : The relay re-encodes the source message using G
1
C to obtain c

1
C , which is

transmitted using spreading code sR. Due to the different spreading codes, the destination can distinguish

between source and relay signals (cf. [15, Section III.A]). The rateless code uses generator matrix

[GL GC G
1
C] for decoding; that is, SD and RD are information combined.

3) Mixed combining (MC) : The relay node generates cC and c
1
C and simultaneously transmits these messages

using spreading with sS and sR, respectively. To keep the total transmit power constant, the signal using

sS is assigned a fraction r ∈ [0, 1] and the signal using sR is transmitted with a fraction 1−r of the relay

1If we consider a single-relay network, we drop the relay index and write R and not R1 for convenience.
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transmit power, respectively. At the destination node, the source and relay signals that are transmitted with

sS are energy combined, while the relay signal transmitted with sR is used for information combining.

Hence, decoding is performed based on [GL GC G
1
C], with EC applied for the GC part.

Note that regardless of the combining scheme, the relay sends a parity vector of length (n − nR), i.e., cC or

c
1
C, that is different from the vector of nR parity symbols transmitted during the listening phase. Hence, the

considered rateless coded relay schemes always perform information combining across the two phases, which

is also referred to as code combining [20] and coded cooperation [4] in the context of relaying using fixed-rate

codes.

The generalization to relay networks with multiple relays is straightforward and has been investigated for

transmission with Gaussian signaling and EC and IC in [15]. In IC, assuming NP participating relays in

the collaboration phase, relay i generates c
i
C = mG

i
C, where G

i
C has dimension k × (n − nRi

) and nRi

is the duration of the listening phase for relay i, and transmits c
i
C using its unique spreading sequence sRi

,

i = 1, . . . , NP. In MC, which is our extension of the pure EC and IC schemes, relay i divides its transmit

power between transmitting c
i
C using sRi

and cC using sS according to ri/(1− ri).

III. ANALYSIS OF COMBINING SCHEMES

In this section, we compare the three combining schemes in terms of achievable rates. As in the previous

section, for clarity of exposition, we explain concepts considering the single-relay case (NR = 1) first and then

generalize to the multiple-relay case.

A. Maximum Achievable Rate

1) Single-Relay Case: Let us denote the capacities2 of the SR and SD channel by CSR and CSD respectively,

and the capacity of the joint SD and RD channel during the collaboration phase by CComb. We have that

CSR = C(γSR) and CSD = C(γSD), where C(γ) is the constellation-constrained capacity (in bit per channel

use) for, e.g., quadrature-amplitude modulation (QAM) or phase-shift keying (PSK) constellation at SNR γ. The

capacity CComb depends on the applied combining scheme. Following the arguments from [8], [12], arbitrarily

low error rate is achievable with a code of rate R = k/n = Rmax − δ for any δ > 0, where Rmax is given by

Rmax =
CCombCSR

CSR − CSD + CComb
. (3)

2In slight abuse of denotation, capacity is defined as average mutual information for a given signal constellation, which is also known

as constellation-constrained capacity [21, Section 3.5].
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Note that CSR > CSD, since we assumed n > nR and thus a collaboration phase is reached. Expression (3)

intuitively follows from assuming equality in the two constraints

k ≤ nRCSD + (k/R − nR)CComb , (4)

k ≤ nRCSR , (5)

for R = Rmax.

2) Multiple-Relay Case: Without loss of generality, we assume that NP relays have participated in the

collaboration until the destination has decoded the message and that relay Rj has decoded before relay Ri for

j < i. The corresponding listening phase of relay i includes nRi
sampling intervals. Then, we have the NP +1

constraints

k ≤ nR1
CSD +

NP−1
∑

i=1

(

nRi+1
− nRi

)

CComb,i +
(

k/R− nRNP

)

CComb,NP
, (6)

k ≤ nR1
CSRi

+

i−1
∑

j=1

(

nRj+1
− nRj

)

CComb,Ri,j, i = 1, . . . , NP . (7)

In (6), CComb,i, i = 1, . . . , NP, denotes the constrained capacity of the channel that is established during

the collaboration phase between the source and i relays at the transmitting side and the destination at the

receiving end applying signal combining. Similarly, in (7), CComb,Ri,j , j = 1, . . . , i − 1, i = 1, . . . , NP, is

the constrained capacity of the channel when the source and j previously activated relays are transmitting

and relay i is receiving and combining those signals. Expressions for these capacities will be given in the

next section. While CComb,Ri,j = CSRi
for the synchronous transmission protocol, CComb,Ri,j ≥ CSRi

in the

asynchronous transmission protocol, since relays help each other to decode the source message. Setting (7) to

equality allows us to solve for nRi
, i = 1, . . . , NP, and Rmax is the rate R obtained from equality in (6). The

number of active relays NP is given by the smaller of the constraints NP ≤ NR and nRNP
< n ≤ nRNP+1

.

Rmax is an important measure as, in principle, the application of rateless codes provides the possibility of

self-adaptation of the actual code rate arbitrarily close to Rmax. For brevity, we refer to Rmax from (6) and

(7) (which is given explicitly in (3) for the single-relay case) as the achievable rate or constrained capacity in

the following.
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B. Comparison of Combining Schemes

1) Single-Relay Case: Since EC benefits from SNR combining and IC uses parallel channels, the capacities

CComb for the combining schemes from Section II-B in the single-relay case are given by3

CEC
Comb = C(γSD + γRD) (8)

CIC
Comb = C(γSD) + C(γRD) (9)

CMC
Comb = C(γSD + rγRD) + C((1− r)γRD) . (10)

Furthermore, since Rmax in (3) is strictly monotonically increasing in CComb, we wish to maximize CComb

for given γSD and γRD. While for general constellations, e.g., QAM and PSK, the constellation-constrained

capacity C(γ) cannot be expressed in closed form [21, Section 3.5], we know from the relation between mutual

information and the minimum mean-square error (MMSE) when estimating the transmitted signal point from

the received signal and the strict monotonicity of the MMSE with respect to the SNR γ [22, Theorem 1] that

C(γ) is a strictly concave function of γ [22, Appendix A]. The following lemma is useful to compare the

capacities (8)-(10).

Lemma 3.1: Consider the constellation-constrained capacity C(γ) and SNR values a, b, c > 0. Then,

C(a + b) + C(c) > C(c + b) + C(a) ⇔ c > a .

Proof: Denote the derivative of C(γ) by C ′(γ). Since C(γ) is strictly concave and increasing, the slope

C ′(γ) is strictly decreasing. Hence,

C(a + b) + C(c) > C(c + b) + C(a) ⇔ C(a + b)− C(a) > C(c + b)− C(c)

⇔

a+b
∫

a

C ′(x)dx >

c+b
∫

c

C ′(x)dx

⇔ c > a

Theorem 3.2: For general finite-size constellations, the capacities of the combining channels satisfy

CEC
Comb <











CIC
Comb, for all (γSD > 0, γRD > 0)

CMC
Comb, for all (γSD > 0, γRD > 0, r < 1)

, (11)

CIC
Comb < CMC

Comb if and only if (1− r)γRD > γSD . (12)

3Note that we do not penalize the degree-of-freedom expansion necessary to achieve orthogonal SD and RD channels, since it is the

underlying assumption, as in [15], that this expansion is done (e.g. using spreading sequences) no matter what combining is used.
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Proof: Inequality (11) is the special case a = 0 in Lemma 3.1. Inequality (12) follows from Lemma 3.1

when substituting a = γSD, b = rγRD, and c = (1− r)γRD.

From this theorem we conclude that MC can be superior to IC if and only if γRD > γSD. More specifically,

any choice of r ∈ (0, 1 − γSD/γRD) will lead to CMC
Comb > CIC

Comb.

2) Multiple-Relay Case: The case of multiple relays is a straightforward extension of the single-relay case.

For example, the MC capacity CComb,i used in (6) is given by

CMC
Comb,i = C



γSD +

i
∑

j=1

rjγRjD



+

i
∑

j=1

C
(

(1− rj)γRjD

)

, (13)

from which EC and IC follow as special cases for rj = 1 and rj = 0, j = 1, . . . , i, respectively. Similarly, the

MC capacity CComb,Ri,j in (7) for the transmission to relay Ri in the asynchronous protocol reads

CMC
Comb,Ri,j = C

(

γSRi
+

j
∑

k=1

rkγRkRi

)

+

j
∑

k=1

C ((1− rk)γRkRi
) . (14)

Theorem 3.3: In the case of NP active relays, MC and IC capacities satisfy

CIC
Comb,NP

< CMC
Comb,NP

if and only if ∃i ∈ {1, . . . , NP} (1− ri)γRiD > γSD . (15)

Proof: For the if part, let i∗ such that (1− ri∗)γRi∗D > γSD, and let us choose ri = 0 for i = 1, . . . , NP

and i 6= i∗. Then, from Lemma 3.1 it follows that

CMC
Comb,NP

= C (γSD + ri∗γRi∗D) + C ((1− ri∗)γRi∗D) +
NP
∑

i=1

i6=i∗

C(γRiD)

> C(γSD) + C(γRi∗D) +

NP
∑

i=1

i6=i∗

C(γRiD) = CIC
Comb,NP

.

For the only if part, we assume ∀i (1− ri)γRiD ≤ γSD. Then, again using Lemma 3.1, we obtain

CMC
Comb,NP

= C

(

γSD + r1γR1D +

NP
∑

i=2

riγRiD

)

+ C ((1− r1)γR1D) +

NP
∑

i=2

C ((1− ri)γRiD)

≤ C(γSD) + C

(

γR1D +

NP
∑

i=2

riγRiD

)

+

NP
∑

i=2

C ((1− ri)γRiD) .

Continuing this upper bounding based on Lemma 3.1, we arrive at the inequality CMC
Comb,NP

≤ CIC
Comb,NP

.

C. Optimization of Mixed Combining

We are now interested in the vector of power ratios r
.
= [r1, . . . , rNP

] that maximizes the capacity CMC
Comb,NP

when NP relays are active. That is, we adjust r according to MC combining at the destination node. Optimiza-
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tion of r also with respect to the inter-relay channels used in the asynchronous transmission protocol would

require communication of CSI, which we refrain from in this work.

Considering (13) and the fact that C(γ) is concave, we consider

dCMC
Comb,NP

dri

∣

∣

∣

ri=ropt,i

= 0 , i = 1, . . . , NP , (16)

to obtain the optimal vector ropt
.
= [ropt,1, . . . , ropt,NP

], which leads to the set of linear equations

γSD +

NP
∑

j=1

ropt,jγRjD − (1− ropt,i)γRiD = 0 , i = 1, . . . , NP . (17)

While the solution of (17) satisfies ropt,i ≤ 1, the condition ropt,i ≥ 0 is not always true for all i = 1, . . . , NP.

We thus have the following necessary and sufficient conditions for ropt [23, Section 4.4]:

dCMC
Comb,NP

dri

∣

∣

∣

ri=ropt,i

= 0 , for all ropt,i > 0 , (18a)

dCMC
Comb,NP

dri

∣

∣

∣

ri=ropt,i

≤ 0 , for all ropt,i = 0 . (18b)

For a small number of active relays (18) can be solved by inspection using (17). In the single-relay case we

obtain the closed-form solution

ropt = max{0, (1 − γSD/γRD)/2} . (19)

We observe from (19) that ropt = 0, i.e., MC becomes identical to IC, only if γRD < γSD. Otherwise, the

effect of MC is to equalize the effective SNRs γSD + rγRD and (1− r)γRD as both become (γSD + γRD)/2

for r = ropt.

Since (18) can only be evaluated at the destination node, where the ratios γRiD/γSD are known, a low-rate

feedback channel from the destination which conveys a quantized version of ropt to the relays is required. This

feedback is alike the acknowledgment signal sent in rateless coded systems by the destination to terminate the

transmission after successful decoding [12], [15], [24]. In Section V we also show results for the single- and

two-relay cases that suggest that the effect of quantization of ropt on performance is negligible.

IV. RAPTOR CODES FOR DDF

In this section, we investigate the asymptotic performance of the rateless codes on relay channels using

density evolution (DE) [16]. In particular, we specialize the capacity-based results from the previous section

to the class of Raptor codes constructed from a given ensemble of LDPC and LT codes. To this end, we first

refine the DE analysis for Raptor codes presented in [17] for direct source-to-destination communication and

then generalize it to case of relay transmission using DDF as described in Section II. Furthermore, the DE

analysis also allows us to optimize the degree distribution of the LT part of Raptor codes.
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A. Density Evolution for Raptor Codes

1) Preliminaries: DE is an algorithm to track message densities in message-passing decoding of codes,

most notably belief propagation (BP) decoding, with the goal of determining the SNR threshold above which

arbitrarily small bit-error rate (BER) can be achieved. It builds on the concentration theorem according to

which the decoder performance for code realizations converges to the expected value for the code ensemble in

the limit of infinitely long codes assuming cycle-free code graphs. To simplify the algorithm, one-dimensional

approximations of DE have been proposed, among which mean-value evolution [25] and information-content

evolution [26] are the most popular.

These DE approximations have been applied to the analysis and design of Raptor codes in [27] and [17].

More specifically, in [27] the evolution of the message mean assuming Gaussian densities for all [25] or, as a

more refined approach, some messages [28] has been derived for the LT part of the code, and in [17] information

content evolution is considered for describing joint decoding of LT and LDPC precode of a Raptor code, again

applying the Gaussian approximation for the distribution of messages. In particular, the interaction between

LT and precode decoding is described by the exchange of extrinsic mutual information to track convergence

in iterative decoding.

In the following, since we also apply joint decoding, we start from the approach in [17] and extend it in

that we do not require the “pessimistic assumption” [17] that the graph of the precode is reinitialized each

time the LT code passes its extrinsic information to the precode. We therefore expect to obtain a better match

between predictions from DE and decoding results achieved with BP.

2) The DE Algorithm: Let ι(x) =
∑

i ιix
i−1, ω(x) =

∑

i ωix
i−1, λ(x) =

∑

i λix
i−1, and ρ(x) =

∑

i ρix
i−1

denote the edge degree distribution for LT input symbols, LT output symbols, precode variable nodes, and

precode check nodes, respectively, and I(x) =
∑

i Iix
i and Λ(x) =

∑

i Λix
i the LT input symbol and precode

variable node degree distribution, respectively (cf. [17], [27]). The information content for messages from LT

variable nodes, LT check nodes, precode variable nodes, and precode check nodes is denoted as Lv, Lc, Pv,

and Pc, respectively. Furthermore, Le and Pe represent the extrinsic information delivered by the LT code

to the precode and vice versa, and Cv is the initial information content coming from the channel. The joint

decoding graph for the Raptor code is illustrated in the top part of Figure 2, which also shows the information

content variables. Finally, we use the superscript “·(ℓ)” to denote the decoding iteration count and define J(x)

as the constellation-constrained capacity of the binary-input AWGN channel with noise variance 2/x.
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Then we can formulate the following update equations for the information content for the LT code:

L(ℓ)
v =

∑

i

ιiJ
(

(i− 1) J−1(L(ℓ−1)
c ) + J−1(P (ℓ−1)

e )
)

(20)

L(ℓ)
c = 1−

∑

i

ωiJ
(

(i− 1)J−1(1− L(ℓ)
v ) + J−1(1−Cv)

)

. (21)

The decoding of the precode is described by

P (ℓ)
v =

∑

i

λiJ
(

(i− 1)J−1(P (ℓ−1)
c ) + J−1(L(ℓ−1)

e )
)

(22)

P (ℓ)
c = 1−

∑

i

ρiJ
(

(i− 1)J−1(1− P (ℓ)
v )
)

. (23)

After each half-iteration the extrinsic information content is computed as

L(ℓ)
e =

∑

i

IiJ
(

iJ−1(L(ℓ)
c )
)

(24)

P (ℓ)
e =

∑

i

ΛiJ
(

iJ−1(P (ℓ)
c )
)

. (25)

We can eliminate the check node and extrinsic information content to obtain

L(ℓ)
v = φL(L(ℓ−1)

v , P (ℓ−1)
v ) (26)

P (ℓ)
v = φP (P (ℓ−1)

v , L(ℓ−1)
v ) , (27)

which is our DE approximation. If for given degree distributions and channel input Cv the recursion reaches

the fixed point (Lv, Pv) = (1, 1), then we expect that decoding is successful. Denoting by Rpre = 1−
R

1

0
ρ(x)dx

R

1

0
λ(x)dx

the precode rate and by α the average LT edge degree, for which ι(x) = eα(x−1) [27], the corresponding a

posteriori rate of the Raptor code (cf. [17, Eq. (1)]) is given by

RRap =
Rpre

α
∑

i
ωi

i

. (28)

Conversely, if another fixed point is reached in (26), (27), decoding is expected to fail. We observe from (21)

that the information content Lc converges to mutual information Cv of the channel for Lv → 1.

To illustrate our proposed DE, Figure 4 presents the evolution of the information content L
(ℓ)
v and L

(ℓ)
c

for the Raptor code with ω(x) from [14, Table I, 2nd column] over the binary-input AWGN channel with

capacity C = 0.48 bit/(channel use) as function of the iteration number ℓ. We observe that decoding converges

to Lv = 1 and Lc = Cv, respectively, for rates up to R = 0.453 bit/(channel use), which thus are deemed

achievable. On the other hand, information content converges to Lv < 1 and Lc < Cv for rates R ≥ 0.454

bit/(channel use). Hence, we expect high error rates in this rate region.
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B. Density Evolution over Relay Channels

We now extend the DE approximation to the case of DDF in relay channels. To this end, we need to consider

the Tanner graph representation and the mutual information Cv provided from channel observations, which

are different for the different combining schemes. Figure 2 shows the decoding graphs for EC, IC, and MC

(top to bottom) assuming NP = 1 active relay. For simplicity, we will focus on this single-relay case in the

following, and generalization to NP > 1 is straightforward.

In the previous section, we tacitly assumed that the channel observation messages are symmetric Gaussian

distributed. Since we have AWGN channels, in the listening phase this assumption is true for binary modulation

and a good approximation for bit-interleaved coded modulation with multilevel signaling and Gray labeling [29]

(cf. [30] for other labelings). In the collaboration phase, the channel observation messages at the destination

can be modelled by a Gaussian mixture distribution

pCv
(x) =

NM
∑

j=1

pjNsym(µj) , (29)

where Nsym(µ) denotes the symmetric Gaussian probability density with mean µ and variance 2|µ| [26] and

NM and pj are the number of mixture components and their weights, respectively. Denoting by f
.
= nR/n the

fraction of the transmission interval required for listening, the following can immediately be inferred from the

graph representation in Figure 2 and the description of the combining schemes in Sections II-B and III-B:

EC: NM = 2, (p1, p2) = (f, 1− f) , (µ1, µ2) =
(

J−1(CSD), J−1(CEC
Comb)

)

(30)

IC: NM = 2, (p1, p2) =

(

1

2− f
,
1− f

2− f

)

, (µ1, µ2) =
(

J−1(CSD), J−1(CRD)
)

(31)

MC: NM = 3, (p1, p2, p3) =

(

f

2− f
,
1− f

2− f
,
1− f

2− f

)

,

(µ1, µ2, µ3) =
(

J−1(CSD), J−1(C(γSD + rγRD)), J−1(C((1− r)γRD))
)

. (32)

Then, taking the mixture density (29) into account, we need to re-write update equation (21) as

L(ℓ)
c = 1−

NM
∑

j=1

pj

∑

i

ωiJ
(

(i− 1) J−1(1− L(ℓ)
v ) + J−1(1− J(µj))

)

. (33)

Hence, for a given f , DE approximation can be performed according to (26) and (27) using the check-

node update (33). To determine f for a given target relay-channel rate R = k/n, we first obtain the rate

RRap,SR = k/nR from (28) through the DE approximation for the SR channel. Then, f = nR/n = R/RRap,SR

can be used.
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C. Optimized Degree Distribution

The DE approximation can also be used to optimize the output symbol edge degree distribution ω(x) of

Raptor codes for cooperative communications considered here. Again, we will concentrate on the single-relay

case, and then remark on the extension to multiple active relays. Furthermore, we hasten to say that such

an optimization requires knowledge of instantaneous SNRs for all channels (SD, SR, RR, RD), and thus the

purpose of optimization is to obtain performance benchmarks for Raptor codes with fixed degree distribution.

To optimize ω(x) we need to consider check-node information content. Substituting (20), (25) into (33) and

(22), (24) into (23) gives us the coupled update equations

L(ℓ)
c = ϕL(L(ℓ−1)

c , P (ℓ−1)
c , {µi}) (34)

P (ℓ)
c = ϕP (P (ℓ−1)

c , L(ℓ−1)
c ) . (35)

Furthermore, to obtain a condition on ω(x) for a contracting mapping with fixed point (Lc, Pc) =

(
∑NM

j=1 pjJ(µj), 1)
.
= (R̃, 1) that lends itself for efficient numerical solution, we replace (35) by the conservative

approximation P
(ℓ)
c = ϕP (0, L

(ℓ)
c ). This leads to the one-dimensional recursion

L(ℓ)
c = ϕL(L(ℓ−1)

c , ϕP (0, L(ℓ−1)
c ), {µi})

.
= ϕ̃(L(ℓ−1)

c ) , (36)

which has been considered in [17] for non-relay communication with Raptor codes. Convergence to Lc = R̃

is ensured by

ϕ̃(Lc) > Lc ∀Lc ∈ [0, R̃) . (37)

Furthermore, [17] (see also [27, Section V]) suggests the following additional conditions to facilitate successful

start of BP decoding away from Lc = 0:

ϕ̃(0) > ε , lim
Lc→0

ϕ̃′(Lc) > 1 , (38)

where ε is some small positive constant. Adapting the above conditions to our situation of relay transmission,

we obtain the optimization problem (39) shown on the next page for the single-relay channel, where (39g)-

(39i) are the conditions for successful decoding at the relay. ϕ̃SR(z) is the SR-channel version of (36) and αSR

denotes the average edge degree for input symbols of the SR-channel part of the LT code. From the graphs

in Figure 2 we observe that αSR = f · α for EC and αSR = f
2−f · α for IC and MC. δi, i = 1, 2, 3, in (39d)

and (39g) are small step-size and offset parameters to sample the interval in which ϕ̃(z) > z and ϕ̃SR(z) > z

should hold, respectively, [17], [27].
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max
α,f

1

α
∑

i
ωopt,i

i

(39a)

ωopt(x) = argmin
ω(x)

∑

i

ωi

i
(39b)

s.t.
∑

i

ωi = 1 (39c)

ϕ̃(z) > z ∀z ∈ [0, δ1, . . . , R̃ − δ2) (39d)

ω1R̃ > ε (39e)

ω2α
NM
∑

j=1

pje
−J−1(1−J(µj ))/4 > 1 (39f)

ϕ̃SR(z) > z ∀z ∈ [0, δ1, . . . , CSR − δ3) (39g)

ω1CSR > ε (39h)

ω2αSRe−J−1(1−CSR)/4 > 1 (39i)

Due to the approximation (36), the inner optimization (39b)-(39i) for ωopt(x) is a linear program, which

can be solved using standard numerical tools, e.g., the CVX package [31]. The outer optimization (39a) with

respect to α and f is a two-dimensional search. To reduce this to a one-dimensional search problem, and thus

arrive at an optimization problem similar in complexity to those for non-relay transmission considered in [17],

[27], we propose to select

f =
Rmax

CSR
. (40)

That is, the relative durations of listening and collaboration phase are adjusted according to the corresponding

channel capacities, which is the solution for f = nR/n from (6), (7).

The generalization of (39) to the multiple-relay case leads to an (NP + 1)-dimensional search with respect

to α and the relative durations fi = nRi
/n of the listening phases of the NP active relays. However, applying

the solution from (6), (7) for fi for all relays i = 1, . . . , NP, reduces the optimization to a one-dimensional

search, and hence optimization of the degree distribution of the Raptor code can be performed computationally

efficient (cf. [17], [27]).

February 1, 2011 DRAFT



15

V. RESULTS AND DISCUSSION

In this section, we present numerical results to illustrate the performance of Raptor coded DDF relaying,

compare the three combining schemes used at the destination node, and discuss the optimization of the degree

distribution.

A. Parameters

As in most related works, we assume binary phase-shift keying (BPSK) modulation at the source and the

relays. The default Raptor code, i.e., without optimization of ω(x), consists of a rate-0.95 regular LDPC code

and an LT code generated using the degree distribution from [14, Table I, 2nd column].

We focus on NP = 1 and NP = 2 active relays as relevant example cases. The SRi and RiD channels

associated with the i-th relay (i ∈ {1, 2}) and the SD channel are modeled as flat Rayleigh fading with

instantaneous SNRs γSRi
= GSRi

γSD and γRiD = GRiDγSD, where GSRi
and GRiD denote the SNR gains of

the SRi and RiD channel with respect to the SD channel. For this purpose, we adopt the log-distance path-loss

model γAB = c · (dAB)−κ with distance dAB between nodes A and B and path-loss exponent κ, so that (see

[32, Section II] for the single-relay case)

GSRi
= [1 + ζ2

Ri
− 2ζRi

cos(θRi
)]κ/2 , (41)

GRiD = GSRi
/ζκ

Ri
, (42)

where

ζRi

.
=

dRiD

dSRi

(43)

and θRi
is the angle of the line connecting source, relay Ri, and destination (see Figure 3). In the case of the

asynchronous transmission protocol, the relay-to-relay link has the instantaneous SNR γR1R2
= GR1R2

γSD, for

which the SNR gain follows from the geometry shown in Figure 3 as

GR1R2
=

[

(

(GSR1
)−

1

κ cos(ϑR1
)− (GSR2

)−
1

κ cos(ϑR2
)
)2

+
(

(GSR1
)−

1

κ sin(ϑR1
)− (GSR2

)−
1

κ sin(ϑR1
)
)2
]

−κ/2

(44)

and

cos(ϑRi
) = (GSRi

)−
1

κ (1− ζRi
cos(θRi

)) , sin(ϑRi
) = (GRiD)−

1

κ sin(θRi
) . (45)

The relative instantaneous SNRs are thus specified by θRi
and ζRi

, i = 1, 2. If not stated otherwise, the optimal

power allocation ratio r = ropt as defined in Section III-C is applied for MC.
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B. Results

1) Single-relay Network: We start with the single-relay case and select κ = 4, θR = π, and ζR = 4/3, so that

GSR = 15 dB and GRD = 10 dB as an exemplary scenario. We evaluate the achievable rate Rmax from (3) for

the different combining schemes introduced in Section II-B. Figure 5 shows the numerical results in terms of the

respective cumulative density functions (CDFs) for Rmax (lines) for the average SNR γ̄SD = E{γSD} = 0 dB.

While, as expected, IC is superior to EC, we observe further significant improvements due to the proposed MC.

In particular, MC achieves notably lower outage rates, i.e., the probability that a certain rate is not supported

by the relay channel, for rates between Rmax = 0.5 to Rmax = 0.8 bit/(channel use), corresponding to the

range of outage rates between 10 % and 80 %. Also included in this figure are CDF values (makers) for rates

predicted by the DE analysis from Section IV-B for the default Raptor code. For ease of comparison, the

obtained rates are multiplied with a factor of 1.1. The almost perfect match of the shifted CDFs from the DE

and the CDFs for the capacity-based achievable rate shows that Raptor codes are an effective coding method

to turn the capacity-gains due to improved signal combining into actual rate gains.

Figure 6 shows the average achievable rate R̄max = E{Rmax} (solid lines), where averaging with respect

to channel fading is done by means of Monte Carlo integration, as a function of the average SD channel

SNR γ̄SD for the three combining schemes. The consistent advantage of MC over IC and EC is confirmed,

and the gains in terms of average SNR can be on the order of 3 dB compared to EC and 1 dB with respect

to IC. Also included in this figure are the rates predicted from DE analysis (dashed lines) and simulated

rates using Raptor codes (dash-doted lines). For the latter, the input-word length is chosen as k = 9500 bits.

Again, DE results follow closely the capacity-based results. In fact, the rate ratio of 1.1 established in Figure 5

also applies to the curves in this figure. It can further be seen from Figure 6 that DE well predicts the rates

achieved with finite-length Raptor codes. A proper comparison of simulated and achievable rates reveals that

the Raptor codes require an “overhead factor” [14], [15] (1 + ǫ) = Rmax

RRap
consistently of about 1.15, which is

quite remarkable considering the length of the codes and quite close to the 11% overhead predicted by DE

assuming asymptotically long codes. We note that this overhead is practically independent of the combining

scheme, which corroborates the usefulness of the proposed MC for improved performance in DDF relaying

and the ability of Raptor codes to make use of the available mutual information regardless of the type of

combining channel through which it is provided.

The markers in Figure 6 represent R̄max when ropt from (19) is quantized using a size-2 codebook designed

based on 1000 sample values for γSD/γRD such that the mean-square error with respect to ropt is minimized.
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As can be seen, the performance of MC is hardly affected by quantization, which demonstrates that MC can

be implemented with little extra feedback from the destination in addition to the feedback signaling successful

decoding.

Next, we compare the average achievable rate R̄max for the different combining schemes as function of the

distance ratio ζR assuming path-loss exponents κ = 2 and κ = 4, respectively, in Figure 7. The average SNR

γ̄SD = 0 dB is adjusted for the SD channel. Since the relay moves closer to the source as ζR increases, the

percentage of collaboration increases for larger ζR. It can be seen that MC consistently achieves the highest

rate. The gain of MC over IC is a function of both ζR and κ, and significant for not-too-large ζR, where often

γRD > γSD (see (12)). It disappears for ζR →∞, because MC converges towards IC as γRD → γSD. The gain

for pure IC over EC is monotonically increasing with the length of the collaboration phase. Note that the total

transmit energy is independent of the combining scheme, since the duration of the collaboration phase only

depends on the SR channel quality.

Figure 8 presents a 3-dimensional scatter plot of (i) Rmax from (3) and (ii) the rate predicted by DE multiplied

by the factor 1.1, at γ̄SD = 0. The three axes correspond to the different combining schemes. It can be seen

from the 2-dimensional projection of the points onto the (MC, IC)-plane that MC always achieves a higher or

the same rate as IC. Likewise, the projection onto the (IC, EC)-plane confirms the superiority of IC over EC.

Hence, MC is the scheme of choice not only on average, but for every realization of the relay channel. The

almost perfect overlap of capacity and scaled DE results demonstrates the suitability of Raptor codes to adapt

to the instantaneous channel conditions in DDF relaying.

2) Two-relay Network: We now turn to the two-relay case, for which we assume parameter sets (ζR1
=

3/4, ζR2
= 3, θR1

= 5π/6, θR2
= π/2) and (ζR1

= 4/3, ζR2
= 1/4, θR1

= 5π/6, θR2
= π/2). The

corresponding scenarios are illustrated in Figure 3 as Topology A and B, respectively.4 We assume the

asynchronous transmission protocol and path-loss exponent κ = 4.

Evaluating (6) and (7) for 3000 channel realizations, Figure 9 shows the average achievable rate R̄max

versus the average SNR of the SD link γ̄SD for the three combining methods. Similar to the single-relay case in

Figure 6, we observe a clear advantage of MC over EC and IC for both sample topologies. Topology A enables

an on average larger rate than Topology B, which is due to relay R2 being relatively close to the destination

node in Topology B, for which the DF protocol is known to be inefficient. But both topologies benefit from

4Note that the convention that Ri decodes before Rj for i < j has only been made in Section III for ease of exposition. For the

scenario considered in Figure 9, relay R2 decodes before R1 if γSR2 > γSR1 .
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the asynchronous transmission protocol, as both relays are located in between source and destination node.

Figure 10 presents the CDFs for the achievable rates at SNR γ̄SD =0 dB. As for the single-relay case in

Figure 5, the results from DE are also shown, where the obtained rates are multiplied with the factor of 1.1

to make the overlap with the capacity-based rates explicit. The results confirm the consistent advantages of

MC over EC and IC and that Raptor codes are able to realize these gains with an absolute performance close

to the pertinent capacity limit. The latter fact is further emphasized in Figure 11, in which average achievable

rates R̄max from Figure 9 for Topology B are plotted together with rates predicted from DE and simulated

rates using k = 9500. We observe that the DE curves for Raptor codes follow the capacity curves, and that an

additional rate overhead of about 5% occurs due to using finite-length codes as well as approximations made

in the DE analysis. Similar to Figure 6, the markers in Figure 11 refer to R̄max when the optimal vector ropt

is quantized using a size-2 codebook for each element of ropt obtained from mean-square error minimization

of ropt for 1000 channel realizations. The excellent match with the results for unquantized feedback of ropt

indicates the robustness of MC to the effect of imperfect power allocation between EC and IC for combining.

3) Optimized Degree Distributions: Finally, we consider DDF with Raptor codes employing an LT output

symbol edge degree distribution ωopt(x) optimized according to (39) for given instantaneous node-to-node

channel SNRs. The rationale for this per-channel optimization is the provable non-existence of universally

capacity-approaching Raptor codes for binary input AWGN channels [27], i.e., a Raptor code with a fixed

degree distribution cannot be optimal for all channel realizations in the considered relay transmission. Figure 12

shows the scatter plot of the DE predicted rates for Raptor codes with ωopt(x) and Raptor codes with the

degree distribution from [14, Table I, 2nd column]. The single-relay channel at γ̄SD = {−5, 0,+5} dB (again

GSR = 15 dB, GRD = 10 dB) and MC at the destination are considered. As expected, the optimized Raptor

code consistently improves the achievable rate. At the same time, the gains compared to using a fixed degree

distribution are fairly small. This in turn is not overly surprising since possible gains are bounded by the

capacity limit, which we have found to be on the order of only 10%. More specifically, notable gains are only

seen for relatively high rates close to one, which is consistent with recent work on on-the-fly adaptation of

the degree distribution of rateless codes in [33]. In summary, from the results we conclude that Raptor codes

with a fixed degree distribution, in particular the degree distribution presented in [14], are already well suited

to implement DDF and that their performance can only slightly further be improved by optimization.
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VI. CONCLUSION

In this paper, we have elaborated on the use of rateless codes to implement dynamic decode-and-forward

relaying for cooperative communications. We have proposed and optimized a new method for combining signals

sent from source and relay nodes at the destination, which is a hybrid of energy and information combining

and has been named mixed combining. To analyze achievable data rates using different signal combining

methods and practical rateless codes, namely Raptor codes, we have derived the constrained-capacity limits

and a density-evolution approximation, respectively. Our main findings are that mixed combining offers a

notable increase in achievable data rate compared to energy and information combining and that Raptor codes

with a fixed degree distribution enable us to approach these rates fairly closely, e.g. within about 15% for the

experiments shown in this paper.
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Fig. 1. Cooperative communications systems with source node S, destination node D, and NR relays. The node-to-node channels are

frequency flat fading AWGN channels with instantaneous signal-to-noise power ratios γXY between nodes X and Y.
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Fig. 2. Decoding graph for Raptor codes over single-relay channel for EC (top), IC (center), and MC (bottom) methods. Circles

represent variable nodes and squares represent parity-check nodes. In case of LT output variables, solid white circles represent variables

associated with samples received from the source in the listening phase, white dashed circles represent variables associated with the

energy combined samples received from source and relay, black circles represent variables associated with samples received from the

relay used for joint decoding (information combining). The top graph also includes the information content variables used for density

evolution.
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v of check and variable nodes, respectively, for Raptor codes with different a

posteriori rates versus iteration number ℓ. AWGN channel with the capacity C = 0.48 bit/(channel use).
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Fig. 5. CDF of achievable rate Rmax from (3) (lines) and CDF for 1.1 × (achievable rate with Raptor codes) determined with DE

(markers). Single-relay case, γ̄SD = 0 dB, GSR = 15 dB, GRD = 10 dB.
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Fig. 6. Average achievable rate R̄max with Rmax from (3), predicted rate for Raptor codes using DE, and simulated rate using a

Raptor code with k = 9500 information symbols versus the average SD SNR γ̄SD. Markers represent R̄max when ropt from (19) is

quantized. Single-relay case, GSR = 15 dB, GRD = 10 dB.
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Fig. 7. Average achievable rate R̄max with Rmax from (3) as function of the ratio ζR (43) and for path-loss exponent κ = 4 and

κ = 2. Single-relay case, γ̄SD = 0 dB.
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Fig. 9. Average achievable rate R̄max with Rmax from (6) and (7) versus the average SD SNR γ̄SD. Network with two-relays and

Topologies A and B from Figure 3.
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Fig. 10. CDF of achievable rate Rmax from (6) and (7) (lines) and CDF for 1.1 × (achievable rate with Raptor codes) determined

with the DE (markers). Network with two-relays and Topologies A and B from Figure 3. γ̄SD = 0 dB.

February 1, 2011 DRAFT



31

−15 −10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Achievable rate

DE rate

Simulated rate

MC, quantized r

γ̄SD [dB] −→

A
v
er

ag
e

ra
te
−
→

Within each group of curves

from top to bottom:

MC, IC, EC

Fig. 11. Average achievable rate R̄max with Rmax from (6) and (7), predicted rate for Raptor codes using DE, and simulated rate

using a Raptor code with k = 9500 information symbols versus the average SD SNR γ̄SD. Markers represent R̄max when ropt from

(19) is quantized. Network with two-relays and Topology B from Figure 3.
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Fig. 12. Scatter plot of the DE predicted rate for Raptor codes with optimized degree distribution ωopt(x) and degree distribution

ω(x) from [14, Table I, 2nd column]. Single-relay case, γ̄SD = −5 dB (top), γ̄SD = 0 dB (middle), and γ̄SD = 5 dB (bottom),

GSR = 15 dB, GRD = 10 dB, and mixed combining method.
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