
Dynamic Deflection Routing on Arrays

(Preliminary version)

Andrei Broder*

Abstract

We study the performance of a simple one-bend packet

routing algorithm on arrays with no buffering in the

routing switches, under a stochastic model in which

new packets are continuously generated at each node

at random times and with random destinations. We

prove that on the two dimension torus network our al-

gorithm is stable for an arrival rate that is within a con-

stant factor of the hardware bandwidth. Furthermore,

we show that in the steady state the expected time a

packet spends in the system is optimal (up to a constant

factor). Sharper results (in terms of the constants) are

obtained for the ring (dimension one torus).

1 Introduction

Most theoretical work on communication networks has
focused on batch, or static routing: A set of packets

is injected into the system at time O, and the routing

algorithm is measured by the time it takes to deliver all

these packets to their destinations, assuming that no

more packets are injected into the system in the mean-

time. This communication paradigm leads to a reach

and interesting theory (see Leighton [12] for an exten-

sive survey) but rarely reflects the practical reality of

communication net works. Most real-life net works oper-

ate in a dynamic mode whereby new packets are contin-

uously injected into the system. Each processor usually

*Digital Systems Research Center, 130 Lytton Avenue, Palo

Alto, CA 94301, USA. E-maik broder~a,dec. corn.
t IBM Almaden Research Center, San Jose, CA 95120, USA,

and Department of Applied Mathematics, The Wei5mann Insti-
tute of Science, Rehovot, Israel. Work at the Weizmann Imtitute
supported in part by the Norman D. Cohen Professorial Chair
of Computer Science, a MINERVA grant, and a grant from the
Israeli Academy of Science. E-mail, el~4v&d0rn. =eizmaun. aC. il

Permission to make digital/hard copies of all or part of MIS material for
peraomi or claasroom usc is granted without fee provided that the copies
are not made or dkibuted for profit or commercial advantage, the copy-
right notice, the title of the publication and ita date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to mpubliah, to post on servers or to redistribute to lists, requwea specific
permission andlor fee.
STOC’96, Philadelphia PA,USA
e 1996 ACM 0-89791-785-5/96105. .$3.50

Eli Upfalt

controls only the rate at which it injects its own packets

and has only a limited knowledge of the global state.

This situation is better modeled by a stochastic par-

adigm whereby packets are injected to the system ac-

cording to some distribution, and the routing algorithm

is evaluated according to its long term behavior. In

particular, quantities of interest are the maximum ar-

rival rate for which the system is stable (that is, arrival

rate that ensures that the expected number of packets

waiting in queues does not grow with time), and the ex-

pected time a packet spends in the system in the steady

state.

One might assume that queuing theory would pro-

vide ready answers, at least for the simplest topolo-

gies and algorithms, but this is not the case: most

of the work in queuing theory is baaed on indepen-

dence assumptions (such as between successive process-

ing times). These assumptions do not model accurately

the routing process on a communication networks where

there are complex and hard-to-analyze interactions be-

tween packets.

Several recent articles do address the dynamic rout-

ing problem, in the context of packet routing on ar-

rays [11, 6, 14], and on the hypercube and the butterfly

[16]. The analysis in all these works requires unbounded

queues in the routing switches (though some works give

high probability bound on the size of the queue used

[11, 6]). Unbounded queues allow the application of

some tools from queuing theory (see [4, 5]) and helps
bounding the correlation between events in the system,

thus simplifying the analysis at the cost of a less realistic

model.

Here we address the problem of dynamic routing

with bounded or no buffers in the routing switches.

This paradigm is a better model for current network
technologies in which routing switches are built with ei-

ther very small or no buffers at all, We are not aware of

any previous work that presents a rigorous analyzes of

a dynamic routing problem on a network with bounded

buffers.

Our routing model resembles the deflection (hot-

potato) routing model that has been studied in a num-

ber of theory papers in the context of batch routing

[1, 9, 10, 3]. A node in that model consists of a pro-

348

cessor and a routing switch. The processor haa a queue

in which it stores the packets it generates. The routing

switches, have no buffers to store packets. All packets

that reach a routing switch at a given step must leave

the switch at the next step. If more than one packet

needs to leave the switch through the same edge, all

but one of the packets are deflected through other out-

going edges. Thus, packets are always moving, but some

packets may temporarily move further away from their

destinations. This model suffices for batch routing. To

accurately model dynamic routing we need to augment

the model with some ‘flow-control’ mechanism that ex-

ists in most routing networks. In ‘real-life’ routing al-

gorithms a processor keeps a copy of the packet it sent,

until it verifies that the packets was received. If no ac-

knowledgment is received within a reasonable amount

of time the packet is retransmitted. On the other hand,

packets not delivered during some pre-specified time in-

terval are removed. This feature helps the network re-

cover from overloading. We indirectly model this fea-

ture by allowing a packet that is not delivered within

a given number of steps to return to its sender. The

sending processor must send it again at a later time

(to the same destination). Parallel machines such as

the HEP multiprocessor [15], and high speed commu-

nication networks [17] use various forms of deflection

routing.

Our main results is an algorithm for routing on the

two dimensional torus. The routes chosen are the sim-

plest one-bend routes - the gist of the algorithm is in

the choices a processor makes regarding when to insert

a packet into the network, and what to do when the

packet fails to reach its intended destination.

Theorem 1 Consider an n x n 2-dimension tomw,

no buflem in the routing switches. Assume that at

step, at each node independently, a new packet

a random destination is inse7ted with p70babdzt~ .

with

each

with

I/n.

There is constant ~. > 0 such that &T algo7i~hrn is

stable fOT any constant J ~ ~., and the eqcted time a

packet spends in the system is O(n).

Since the expected minimum number of edges that a

packet with a random destination must traverse is Q(n),

our result is optimal up to constant factors with respect

to both parameters.

In section 7 we analyze the special case of routing

on a ring of n processors with no intermediate queues.

Packets already in the ring have priority over new pack-

ets. A node moves a new packet to its routing buffer

whenever it is empty, and the packet moves on the ring

until it reaches its destination, We prove that this pro-
cedure can sustain optimal injection rate.

2 Routing on a Two Dimension Torus

2.1 The Model

We consider an n x n torus network. Each node consists

of a processor and a communication switch, each edge

represents a bidirectional communication link between

communication switches. The network ia, synchronized.

In each step at most two packets can traverse a link, one

in each direction. At the beginning of each time step a

switch receives packets along its incoming links, at most

one packet per link. At the end of the time step the

switch sends every incoming packet along some outgoing

link, at most one packet per link. There are no buffers

at the communication switches: once a, packet enters

the communication network it continuously moves until

it reaches its destination or returns to its sender.

Packets are generated within the processors. A pro-

cessor can inject a packet into the communication switch

when the switch has a free outgoing link, that is only

in a step in which the switch did not receive a packet

through every one of its four incoming links. We as-

sume that the processor (not the switch !) has a queue

that stores packets generated within that processor.

We measure the performance of the network in a

stochastic model in which at each step, within each pro-

cessor, one new packet is generated with probability y p,

and the generation events at different times and differ-

ent processors are independent. We refer to p as the

arrival rate of the system. Let Zt denote the total num-

ber of packets at the system at time t. We say that the

system is stable if Zt has a limit distribution as t+ co.

For the analysis it is helpful the view the routing

system on the torus as a set of 4n2 containem. At each

time step there are four containers in each switch, the

UP, DOWN, LEFT, and RIGHT containers. In each rout-

ing step all the UP containers in the system move one

step up, all the the DOWN containers move one step

down, etc. At any time a container may be empty, or

it may contain one packet. Before each routing step

the switch can move packets between the four contain-

ers it currently has, as long as every packet ends up in

one container, and no container contains more than one

packet. To inject a new packet into the system the pro-

cessor needs to put the packet into an empty container

currently at its switch.

3 Notation

For simplicity we consider an algorithm whereby a packet

first goes into RIGHT container, then it goes into a DOWN

container. (Using all four links improves only the con-

stants .)

The n2 locations on the grid are denoted hf~,j for

349

i,j G [0,.. ..1] l]. We make the conventions that
operations involving these i, j indices are always done

mod n.

The RIGHT (resp. DOWN) containers are denoted Hi,j

(resp. ~,j). These notations are fixed, that is, at time
t the container Hi,j is in position Mi,j+t and K,j is in

position Mi~t, j.

We further define a subset of the RIGHT containers

as diagonal Aj, via

Aj,i = Hi,j-i,

that is, Aj consists of {Ho,j, Hl,j-l} Hn-l,j-n+l =

H~_ I,j+l}. The reason for defining diagonals is as fol-

lows: consider ~,j. At time t itwill be in position

Mi+t,j where it will meet the RIGHT container Hi+t,j-t =
Ai+.j,j-t. SO K,j only meets the RIGHT containers that
belong to A~+j, these are the only containers that “feed”
it.

4 Description of the algorithm

Our algorithm tries to deliver a packet by a one-bend

path, first along the row within which it was generated,

then along the column of its destination. The algorithm

consists of three stages:

1.

2.

3.

Packets generated at Mi,j are stored in a FIFO

queue. Once a packet is at the top of the queue

it waits for an indicator flag, fit j, h become O.

When this happens, the packet becomes current

and the flag is set back to 1. Eventually the flag

will be reset to O by the processor at Mi,j after the

current packet is certainly delivered. This ensures

that for every (i, j) there is at most one current

packet at time t,denoted ~,j(t).

Once current, the packet waits for a random amount

of time, geometrically distributed with parameter

81, until it becomes active.

Once active, the packet repeatedly waits n steps,

waits for a random H-container, tosses a coin with

probability of success 192,boards the H-container,

and transfers to the corresponding V-container,

given its column destination. If the toss is un-

successful or’ if either container is full, this stage

is repeated until successful. (If the V-container is

full, the packet returns to its start point in the

H-container it came.)

The precise description of the algorithm is given in
Figure 1. Note that system time “flows” only during

the execution of wait statements.

1. begin
2. wait until at head of the queue.
3. wait until fi,j = O.

4. Set fijj e 1 and become current.

5. while not active do

6. wait 1 step.

7. With probability 01/n

become active.

8. od

9. Pick a random destination Mi,,j,.
10. A: wait n steps.

11. Choose k uniformly at random in

[O, n - 1].

12. wait for the container Hith to

arrive at M;,j.
13. With probability 1 – (?z goto A.
14. if Hi,k is not empty then goto A.
15. else

16. Board &.

17. wait until H,,k arrives in
column j’. (There it meets

u_,l+k,,/.)

18. if V,-,f+k,, ~ is empty then

19. !fkS2Mfer tO ~.-l~+k,r~.

20. wait ~til v8_jl+k,jf

arrives in row i’, then
leave.

21. After H,,k arrives back

to M~,2 (empty or

with another packet)

wait n steps and set

fi,j + O.

22. done
23. else

24. wait untfl Hi,k rctums

to M%,j.
25. Leave H,,k.

26. goto A.
27. fl

28. a

29. end

Figure 1: Algorithm for packets at Mi,j with destins

tion Mi(,j,.

5 Analysis of the algorithm

Specific constants have been chosen for convenience, we

made no attempt to optimize them, and, in general, we

only claim that inequalities dependent on n hold for n

sufficiently large. For the purpose of the analysis we
take 61 = 1/2000 and 62 = 1/5.

To simplify the analysis we shall initially assume that

at all times all queues are not empty. We shall see that

350

even under this pessimistic scenario, every packet, once

at the top of its queue, is “usually” (the meaning of this

will be made precise later) delivered within O(n) time.

We say that the system is in a normal state at time

t if for all j no more than n/8 active packets at time

t have destination in column j. Otherwise we say that

the system is in an abnormal state.

We say that an event & occurs with extremely high

probability (wehp) if there exists a constant a >0 such

that Pr(-#) < e-an.

The analysis has three main components:

●

●

●

In an interval of length -% the number of newly ac-

tive packets with destination in column j is wehp

bound by a constant times in where the constant

can be made aa small as desired by choosing 131

appropriately (Theorem 2).

If the system is in a normal state then every ac-

tive packet haa a constant probability of being de-

livered within 6n steps (Theorem 3) and thus if

the system is in a normal state at time t it will

be wehp in a normal state at time t + 6n (Corol-

lary 1) since the number of newly active packets is

bounded aa above.

If the system is in an abnormal state then the num-

ber of packets that compete for a popular destina-

tion wehp decrease every 5n steps by at least a

constant times n. Thus wehp within 0(n2) the

system returns to a normal state (Theorem 4).

In section 6 we show how the facts above imply Theorem
1
1.

Theorem 2 For every time t, the number of newly ac-

tive packets in interval [t,t+ l),with destination in col-

umn j denoted Nj (t, t + 4) satisfies

01 1
E(Nj(t, t+l)) <n2, —. – .h=O1h,

nn

and wehD

Proof: There are n2 locations. At every step the prob-

ability that a new packet becomes active at a particular

location is less than 61/n, and the probability that it

chooses j as a destination is I/n independently of all
other events. ❑

Before considering the next theorem we need to es-
tablish a series of facts and lemmas about the algorithm

depicted in Figure 1.

Fact 1 There is an interval of at least 2n between the

time a packet leaves an H-container and another packet
~m the same node enters an H-container (line 21 +

line 4 + line 10 in the algorithm).

Fact 2 There is an interval of at least n between the

time a packet leaves a H-container and the same packet

enters again an H-container (line 10 in the algorithm)

and thus the number of H-containers a packet can enter

in an interval of length in is [4/21.

Lemma 1 Let &i,j (t) be the event that there mist a

time T with t +n ~ T < t+ 2n such that ~,j (T) occupies

some H-container. FOT every t

Pr(&~,~(t)) ~ Pr(X~,j (t) = 1;),

where Xi,j (t) are independent Bernoulli variables, with

Proof: In view of facts 1 and 2, between i+n and t +2n

there is at most one packet from Mi,j that might occupy

an H-container. Furthermore this packet must succeed

(that is, not return to A) at line 13 in the algorithm at

some time r with t < r < t + 2n and it has at most two

opportunities to try. •l

Lemma 2 The probability that Hi,k is full when it ar-

rives at Mi,j (line 11) is less than 1/2.

Proof Let t be the time when ~,j is at A (start of

line 10) in the algorithm. By Lemma 1 the probability

that a packet from (i, j’) occupies an H-container at

any time between t + n and t + 2n is independently less

than 2/5. Therefore wehp no more than, say, 9n/20

H-containers in row i are occupied at any time between

t+ n and t+ 2n, Since k is chosen uniformly at random,

the probability that H;,k is full when it arrives at Mi,j

is less that 9/20+ an exponentially small amount. •l

Fact 3 If a packet is active at time t by time t + 3n is

either delivered or has to execute line 19 at least once.

Theorem 3 If a packet ~,j is active at time t and the

system is in a normal state then the probability that it

is delivered by time t + 6n is at least 03 ;? 1/20.

Proof sketch: The packet ~,j will be either delivered

or has to execute line 13 before t + 3n. (By fact 3.)

Assume that it succeeds (that is, does not return to A)

the first time it executes line 13 after t. (This happens

with probability 6’2.) Let k be its random choice in line

11. Assume that Hi,k at line 13 is empty. By Lemma

2 this happens unconditionally with probability greater

than 1/2, We now need to evaluate the probability that
~_j,+k,jl is empty at line 16.

Let s(k) be the time when Hi,h meets K-j<+k,j, un-
der the scenario above. Observe that if U- jl+k,jf is not

empty then the diagonal Di+h contains a packet with

351

column destination j’ at time s(k) (call such a diagonal

busy) and thus plainly if Di+k did not contain a packet

with column destination j’ at any time between t and
s(k) (call such a diagonal free) then container Vi-j ~+~,jl

will be empty when needed.

Now we need to estimate how many busy diagonals

could be. First observe that s(k) < t + 5n. By hypoth-

esis the number of packets with column destination j’

at time t is at most n/8 and by Theorem 2 the number

of newly active packets in interval [t, t + 5n), with des-
60Oln. By facttination in column j’ is wehp less than ~

2 each such packet can affect at most 3 diagonals in the

interval of interest, therefore the total number of busy

diagonals is wehp less than

50tJ1n <~
:+T

– 16”

Hence the probability that a randomly chosen diagonal

is free is at least 1/2.

Now since k is picked uniformly at random, D~~k

is uniformly distributed over the diagonals. Hence we

claim that the probability y that vi– jj+k,jl is empty at

line 16 is at least 1/2. (Observe that the fact that ~i,k

was empty and the fact that D~+k is free are positively

correlated.) We conclude that the probability of the

entire scenario at least ~ = ~. •l

Corollary 1 There exists a constant a >0 such that

if the system is in a normal state at time t, then with

probability at ieast 1 – e-am the system will be in a nor-

mal state at time t + 6n.

Proofi First observe that by Theorem 2 wehp

Let Aj (t) be the number of active packets at time t

with destination in column j. There are two cases to

consider: If Aj (t) < n/9 then clearly wehp Aj will

be less than n/8 during the entire interval. If n/9 ~

Aj (t) ~ n/8, then by Theorem 3 wehp n/200 of these

packets will be delivered by time t + 6n. ❑

Theorem 4 There are constants/3 >0 and ~ >1 such

that if the system is in a abnormal state at time t, then
with probability at least 1 — e‘fin the system will be in

a normal state at time t + -ynz.

Proof sketch: Suppose that Aj (t) > n/9. Then it can

be shown that wehp at least n/100 of these packets

will attempt to board a V-container before t + 4n. since
each packet attempts to board a random diagonal, the

number of “busy” diagonals (see proof of Theorem 3)

will be wehp at least n/120. From each such busy

diagonal at least one packet will be delivered before
t + 5n. On the other hand wehp Nj (t, t + 5n) < ~.

Therefore wehp for every j

Since Aj(t) ~ n2, we conclude that wehp

Aj(t + 1200n2) ~ ~

for allj. ❑

Theorem 5 Assume that the system is in a normal

state at time t. The probability that the system is in

abnormal state at any jized time t’ > t+ 6n is bounded

by e-~”, for a constant p >0.

Proof sketch: First assume that tl s t +7n2. Then the

result follows from Corollary 1. Otherwise condition on

the situation at t’ – 7n2. If normal then apply again

Corollary 1; if abnormal then apply first Theorem 4.
D

6 Analysis of the actual queues

In this section we consider a single queue and view

the rest of the network as a “black box” server S. We

view the service time of a particular message as the

interval between the time f~,j becomes 1 in line 4 and

the time fi,j becomes O again in line 21.

We use the series of theorems proven above to bound

the behavior of this server. The serving time of S is

not independent of the past; hence, in order to apply

standard queuing theorems we shall construct a server

S’ such that for every request S haa a longer service
time than the original S but the service times for S’ are

i.i.d. variables.

This new server S’ is best represented by a state

diagram as depicted in figure 2. The meaning of a label

p, t on an arrow is that the corresponding transition

happens with probability p and the elapsed time due to

it is t.

Theorem 6 The ecpected length of a given queue at a
giwm time 2s O(l). The eapected time that a packet

spends in the system is O(n).

Proof sketch: Define the following random variables:

1. YI is a random variable geometrically distributed

with parameter L91/n; it counts the number of steps

server S stays in the Start state, which stochasti-

cally dominates the number of steps from the time

a packet becomes current until it becomes active.

352

l-0s,6n

OS - e-anF6n <3Delivered
‘s: N6rmal state

1- e-@,.yn2
1- %,1

2.

3.

4.

5.

6.

Figure 2: State diagram for server S’.

Y2 is geometrically distributed with parameter @3–

e‘an. It counts the number of times server S’

enters the state S1.

Y3 is a Bernoulli variable: if S’ eventually moves

from the state SO to state S2 then Y3 = 1; other-

wise (that is, S’ eventually moves to S1) Y3 = O.

YA is geometrically distributed with parameter 1 –

e-@’. Assume that Y3 = 1, then Ye counts the

number of time S’ visits state S2 before reaching

state S1.

The variables Y5,i are i.i.d. Bernoulli variables:

Y5,i = 1 if S’ moves to state S2 after the ith time

it entered state S1, else Y5,i = O.

The variables YG,i are i.i.d. variables, geometri-

cally distributed with parameter 1—e-~”. Assume

that S’ moved to state S2 after the ith time it en-

tered states S1. YG,; counts the number of times

the server returns to state S2 before moving back

to state S1.

The number of steps server S’ spends from the Start

state to the Delivered state is given by

Y2

X = YI + 7n2Y3Y4 + ~(6n + ~n2Ys,iYG,i))

i=l

and X stochastically bounds the number of steps from

the time a packet reaches the head of the queue to the

time it is delivered.

We define an M/G/l queue that always contains

more packets than the queue of a given node v. The

inter-arrival time of the M/G/1 queue is the same as

that of the queue of node v, that is, it is distributed

geometrically with parameter A/n. The service time of

the queue has the distribution of the random variable

x.
It is easy to verify that

E(Y1) = :, var(Yl) = (;)2,

1 1
E(Y2) = 83 _ e-am ~ var(y’) = (T3 _ e_an)21

E(Y3YQ) = E@%,ib,i) = &~>~

and

2e-an
V~(y3y4) = V=(ys,iye,j) $ ‘—.

(1 - e-Pn)2

Since the random variables YI, Yz, Ys, Y4, y6,i and

Ye,i are independent we compute:

E(X) = E(Yl)+~n2 E(y3y4)+E(y2)(6~+7n2 E(Y5,1Y6,1))

353

= ~(n).

If Zi are i.i.d. random variables, independent of T,

then

T

=(x Zi) = E(T) var(zI) + (@’1))2 VW(T).

icl

Thus,

var(X) = var(YI) + -y2n4 Val’(Y3Y4)+

var(Y2)(6n + -pz2 E(Y511Y6,1))2+

E(Yz)72n4 Var(Y5,1Ye,l) = 0(?22).

Let p = ~ E(X). Applying the Pollaczek-Khinchin

mean-value formula [8, page 187] we conclude that the

expected number of packets in the queue is

E(N)=P+P
z 1 + var(X)/E(X)2

2(1 – p)
= o(l),

for any A such that ~ E(X) < 1. Applying Little’s

principle the expected number of steps a packet spends

in the system is given by

•1

7 Deflection Routing on the Ring

Consider an n-node directed ring. Each node has one

incoming link and one outgoing link. There are n con-

tainers moving over the ring from node to next node

such that at each time step each node has one con-

tainer. A node can move a packet from its queue to a

container if the container it currently holds is empty.

Since the expected distance a packet needs to travel on

the ring is n/2, the process cannot be stable for an in-

jection rate higher than 2/n. The following theorem

proves that this bound is tight.

Theorem 7 Routing with no intermediate buffers on
an n node directed ring is stable for any injection rute

:, A<2.

Proof Consider the queue at a given node v. We ana-

lyze the performance of the queue as an M/G/n queuing

process. The arrival rate to the queue is Poisson with an
average of $ arrivals per step. View every container as

a server of the queue at v. Clearly, it services the queue

whenever it delivers a packet to v or arrives empty to

v. The expected time a packet occupies a container is
n/2. Every time a container becomes empty it either

gets a packet that with probability ~ has destination

v, or it continues empty to the next node. Thus, the

expected service time of each container with respect to

the queue of node v is bounded by $. Le-t 5 denote

the average arrival time to queue v, and let t be the av-

erage service time of a server, It was shown in [7] that

p = $<1 is a sufficient condition for stability for any

G/G/m queue. Thus, the queue of v is stable for any

A<2. ❑

General methods for analyzing M/G/n queues give

only an 0(n2) bound for the expected time a packet

spends in the system, for ~ <2. The following theorem

proves an O(n) bound for A <1, that is, injection rate

up to l/n.

Theorem 8 The expected time a packet spends in the

system in routing with no intermediate queues on an

n node ring is O(n) for any injection mte A/n, with

A<l.

Proof A packet never occupies a container for more

than n – 1 steps, thus when a container reaches node v

it is either empty, or it holds a packet that it received in

the last n – 1 steps. That packet has destination v with

probability y at least l/n, therefore the queue is serviced

in each step with probability y at least l/n. Viewed as

an M/M/1 queue, the expected number of packets in

the queue is ~, the expected service time is n, and

applying Little’s theorem we get that the expected time

a packet spends in the system is ~ + ~. ❑

References

[1] A. Bar-Noy, P. Raghavan, B. Schuster, and

H. Tamaki. Fast deflection routing for packets and

worms. Proceedings of 12th ACM Symposium on

Principles of Distributed Computing, 1993.

[2] H. Chernoff. A measure for asymptotic efficiency

of a hypothesis based on the sum of observations.

Ann. Math. Statist., 23:493–507, 1952.

[3] U. Feige and P. Raghavan. Exact analysis of hot
potato routing, Proceedings of the 33rd Annual

Symposium on Foundations of Computer Science,

pp. 553-562, 1992.

[4] M. Harcol-Baiter and P. Black. Queuing analysis

of oblivious packet routing networks. Proceedings

of the 5th Annual ACM-SIAM Symp. on Discrete

Algorithms. Pages 583-592, 1994.

354

[5] M. Harcol-Baiter and D. Wolf. Bounding de-

lays in packet-routing networks. Proceedings of the

27th Annual ACM Symp. on Theory of Computing,

1995, pp. 248-257.

[6] N. Kahale and T. Leighton. Greedy dynamic rout-

ing on arrays. Proceedings of the 6th Annual ACM-

SIAM Symp. on Discrete Algorithms. Pages 558-

566, 1995.

[7] J. Keifer and J. Wolfowitz. On the theory of queues

with many servers. Transaction of the American

Math. Society, 78:1-18, 1955.

[8] L. Kleinrock. Queuing Systems Volume I: Theory,

John Wiley, New York, NY, 1975.

[9] A.G. Greenberg and B. Hajek. Deflection rout-

ing in hypercube networks. IEEE Transaction on

Communications, 1992.

[10] B. Hajek. Bounds on evacuation time for deflection

routing. Distributed Computing, 5:1-6, 1991.

[11] T. Leighton. Average case analysis of greedy rout-

ing algorithms on arrays. Proceedings of the Second

Annual ACM Symp. on Pamllel Algorithms and

Architectures. Pages 2-10, 1990.

[12] F.T. Leighton. introduction to Parallel Algorithms

and Architectures. Morgan-Kaufmann, San Mateo,

CA 1992.

[13] N.F. Maxemchuk. Comparisons of deflection and

store and forward techniques in the Manhattan

street and shuffle exchange networks. Proceedings

of IEEE INFOCOM, pages 800-809, 1989.

[14] M. Mitzenmacher. Bounds on the greedy algo-

rithms for array networks. Proceedings of the 6th

Annual ACM Symp. on Parallel Algorithms and

Architectures. Pages 346-353, 1994.

[15] B. Smith. Architecture and applications of the

HEP multiprocessor computer system. Proceedings

of Real Time Signal Processing IV, pages 241–248,

1981.

[16] G.D. Stamoulis and J.N. Tsitsiklis. The efficiency

of greedy routing in hypercubes and butterflies.

Proceedings of the 6th Annual ACM Symp. on Par-

allel Algorithms and Architectures. Pages 346–353,

1994.

[17] T. Tzymanski. An analysis of “Hot Potato” routing
in a fiber optic packet switches hypercube. Proceed-

ings IEEE INFOCOM, pages 9 18–925, 1990.

355

