
Dynamic Deployment of IIOP-Enabled

Components in the JBoss Server

Francisco Reverbel1, Bill Burke2, and Marc Fleury2

1 Department of Computer Science, University of São Paulo
reverbel@ime.usp.br

2 JBoss, Inc.
{bill,marc}@jboss.org

Abstract. JBoss is an extensible Java application server that affords re-
mote access to EJB components via multiple protocols. Its IIOP module
supports IIOP-enabled EJBs, which are accessible both to RMI/IIOP
clients written in Java and to CORBA clients written in various lan-
guages. While other systems use compilation-based approaches to gen-
erate IIOP stubs and skeletons, JBoss employs reflective techniques to
avoid extra compilation steps and support on-the-fly deployment.
CORBA/IIOP is a dynamic feature of JBoss in two senses: (i) the IIOP
module can be dynamically deployed into a running server, and (ii) IIOP-
enabled EJBs are dynamically deployable components themselves. This
paper presents the design of the IIOP module and describes the actions
that module takes at EJB deployment time, including the creation of
POAs, the instantiation of CORBA servants to implement IDL interfaces
not known in advance, and the dynamic generation of IIOP stub classes
made available to Java clients via HTTP.

1 Introduction

JBoss [10] is an extensible, reflective, and dynamically reconfigurable Java appli-
cation server that supports two general kinds of software components: application
components, which correspond to server-side parts of distributed applications,
and middleware components, which provide middleware services to application
components. Both kinds of components can be dynamically deployed into a run-
ning server. Users can deploy components either by interacting with the server
through a (possibly remote) management client or simply by dropping deploy-
ment units in a well known directory of the server machine.

Nearly all the “application server functionality” of JBoss is modularly pro-
vided by a set of middleware components deployed on a minimal server. While
middleware components employ a JBoss-specific extension of the JMX compo-
nent model [17], application components follow Java 2 Enterprise Edition (J2EE)
standards [19]. An important subset of application components is based on
the Enterprise JavaBeans (EJB) architecture [18], a model for business com-
ponents (“enterprise beans”) whose methods can be invoked either by remote
clients or by local clients.



EJB-compliant application servers may support various protocols, but they
must support IIOP as the interoperability protocol for remote method invoca-
tions on enterprise beans. RMI over IIOP affords interoperability between EJB
components deployed in application servers provided by different vendors. It
makes enterprise bean methods available both to RMI/IIOP clients written in
Java and to CORBA clients written in various languages, including Java and
C++. Even though IIOP-enabled EJBs are not equivalent to the CORBA com-
ponents [14] defined by the OMG, they can actually be regarded as another kind
of “CORBA component.”

JBoss supports IIOP in a dynamic way. Here the word “dynamic” means
two things: (i) IIOP support is a feature that can be dynamically added to a
running server, and (ii) IIOP-enabled EJBs are dynamically deployable com-
ponents themselves. At the root of the latter point there is a major difference
between our “CORBA components” and existing Java implementations of the
CORBA Component Model (CCM). In current CCM implementations [8, 15],
component deployment involves an additional compilation step, as these sys-
tems use compilation-based approaches to generate IIOP stubs and skeletons.
Our work, on the other hand, avoids extra compilation steps by employing re-
flective techniques. It allows IIOP-enabled EJBs to be deployed into a running
server simply by dropping EJB-JAR files in the server’s deployment directory. A
change to a JBoss-specific deployment descriptor is all that is needed to convert
a non-IIOP-enabled deployment unit (which contains neither IIOP stubs nor
skeletons) into an IIOP-enabled one. There are no additional steps for stub or
skeleton generation.

This paper is organized as follows: Section 2 contains background material,
mostly extracted from [10], Section 3 presents the middleware components that
support CORBA/IIOP, Section 4 describes the proxy factories that generate
remote references to EJBs, Section 5 discusses design and implementation issues,
Section 6 reviews related work, and Section 7 presents our concluding remarks.

2 JBoss Background

2.1 JMX

Java Management Extensions (JMX) [17] is an architecture for dynamic manage-
ment of resources (applications, systems, or network devices) distributed across
a network. It provides a lightweight environment in which components — as well
as their class definitions — can be dynamically loaded and updated.

JMX components (MBeans) are Java objects that conform to certain con-
ventions and expose a management interface to their clients. A Java virtual
machine that contains JMX components must contain also an MBean server,
which provides a local registry for MBeans and mediates any accesses to their
management interfaces. At registration time, each MBean is assigned an object

name that must be unique in the context of the MBean server. In-process clients
use object names (rather than Java references) to refer to MBeans.

2



To invoke a management operation on an MBean, a local client (typically
another MBean) issues a generic invoke call on the MBean server, passing the
target MBean’s object name as an argument. The client needs no information
on the MBean’s Java class, nor does it need information on the Java interfaces
the MBean implements. This very simple arrangement favors adaptation: the
absence of references to an MBean scattered across its clients facilitates the
replacement of that MBean; the absence of client knowledge about its class and
its Java interfaces enables dynamic changes both to the implementation and to
the management interface of the MBean.

JBoss uses JMX as a realization of the microkernel architectural pattern [6],
to provide a minimal kernel (the MBean server) that serves as software bus for
extensions (MBeans), possibly developed by independent parties. The MBean
server decouples components from their clients, allowing MBeans to adapt, and
their management interfaces to evolve, while their clients are active.

2.2 Service Components

On top of JMX, JBoss introduces its own model for middleware components,
centered on the concept of service component. The JBoss service component
model extends and refines the JMX model to address some issues beyond the
scope of JMX: service lifecycle, dependencies between services, deployment and
redeployment of services, dynamic configuration and reconfiguration of services,
and component packaging.

Service MBeans (also called service components) are JMX MBeans whose
management interfaces include service lifecycle operations. Deployable MBeans

(also called deployable services), a JBoss-specific extension to JMX, are service
MBeans packaged according to EJB-like conventions, in deployment units called
service archives (SARs). A service archive contains class files for one or more de-
ployable services, plus a service descriptor, an XML file that conveys information
needed at deployment time.

Service components plugged into a JMX-based “server spine” provide most
of the “application server functionality” offered by JBoss. They implement every
key feature of J2EE: naming service, transaction management, security service,
servlet/JSP support, EJB support, asynchronous messaging, database connec-
tion pooling, and IIOP support. Service components also implement important
features not specified by J2EE, such as clustering and fail-over.

2.3 Meta-Level Architecture for Generalized EJBs

The conceptual definition of the EJB architecture [18] relies strongly on the
abstract notion of an EJB container. In JBoss, a set of meta-level components
works together to implement this conceptual abstraction. A generalized EJB

container is a set of pluggable aspects that can be selected and changed by
users. Extended EJB functionality is supported by a meta-level architecture
whose central features are:

3



• usage of MBeans as meta-level components that support and manage base-
level EJB components;

• a uniform model for reifying base-level method invocations;
• usage of dynamic proxies as the basis for a remote invocation model that

supports multiple protocols;
• a variant of the interceptor pattern [16], used as an aspect-oriented program-

ming [11] technique.

In this section we restrict ourselves to the case of EJB clients that do not
use IIOP to interact with remote EJB components. Fig. 1 shows (in a non-IIOP
scenario) the elements of the meta-level architecture implemented by JBoss. The
base level consists of EJB components and their clients. Accordingly, we refer to
EJB interfaces as base-level interfaces. From this perspective, MBeans belong to
the meta level, and their management interfaces are meta-level interfaces.

MBean
Server

Invoker
MBean

Invoker
Proxy

Invocation Handler

EJB Client

Client-Side
Interceptors

Dynamic
Proxy

Server-Side
Interceptors

Container
MBean

EJB
Component

Server Virtual MachineClient Virtual Machine

Meta Level

Base Level

Client-Side 
Proxy

EJB
Container

invocations to base-level interfaces

flow of reified invocations

type-independent call to invocation handler

Fig. 1. Meta-level architecture for EJB: the case of a non-IIOP client

Interactions between base-level components follow a variant of the message
reification model [9]. Inter-component method invocations performed at the base
level are reified by special Invocation objects. Dynamic proxies receive all EJB
invocations executed by non-IIOP clients (which may be EJBs themselves) and
shift those invocations up to the meta level, by transparently converting them
into Invocation objects.

The gray arrows in Fig. 1 show the flow of reified invocations. The invocation
handler creates a reified invocation whenever a method call is issued on the

4



client-side proxy. After traversing a chain of client-side interceptors, each reified
invocation is sent by an invoker proxy to an invoker MBean at the server-side,
where it is routed through the container MBean associated with the target EJB.

Figure 2 lists some of the fields of a reified invocation. The objectName field
identifies a container MBean. The method and args fields specify a method call
to be performed on the base-level component associated with that container.
The invocationContext conveys information that is common to all invocations
performed through the same (base-level) object reference. It always includes
information on whether the invocation target is an EJBHome or an EJBObject,
and may also specify the id of a particular EJBObject instance.

class Invocation {

Object objectName;

java.lang.reflect.Method method;

Object[] args;

InvocationContext invocationContext;

...

}

Fig. 2. Class that reifies method invocations

2.4 Remote Invocation Architecture for Non-IIOP Clients

Even though EJB clients expect typed and application-specific interfaces, EJB
containers expose the generic management operation invoke, which takes an In-
vocation parameter. This operation plays the role of meta-level gateway to the
EJBs deployed within a JBoss server. A flexible architecture supports remote in-
vocations to EJB components by exposing the invoke operation through various
protocols:

• An invoker makes the container’s invoke operation accessible to remote
clients through some request/response protocol, such as JRMP, HTTP or
SOAP.

• Client-side stubs (or client-side proxies) are dynamic proxy instances that
convert calls to the typed interfaces seen by clients into invoke calls on
remote invokers.

• Each client-side proxy has a serializable invocation handler that performs
remote calls on a given invoker, over the protocol supported by the invoker.

• Client-side proxies and their invocation handlers are instantiated by the
server and dynamically sent out to clients as serialized objects.

The pattern just outlined is independent of the request/response protocol sup-
ported by the invoker. Client-side knowledge of this protocol is confined within
the invocation handlers that clients dynamically retrieve from the server along
with serialized proxies.

5



Invokers. An invoker is a service MBean that acts as a protocol-specific gateway
to multiple EJB containers in the JBoss server. All invokers currently available
in JBoss are deployable services implemented as standard MBeans. Each non-
IIOP invoker exposes an invoke method to remote clients. This method takes
an Invocation parameter and forwards the reified invocation to the container
MBean specified by the invocation’s objectName field.

Fig. 3 shows the remote invocation interface exposed by the JRMP invoker,
which makes its invoke method available to RMI/JRMP clients. Other non-
IIOP invokers implement either this interface or very similar ones.

interface Invoker extends javax.rmi.Remote {

String getServerHostName();

Object invoke(Invocation invocation);

}

Fig. 3. Generic invocation interface

Client-Side Proxies. In order to access an EJB component deployed into a
JBoss server, a client must have a reference to a client-side proxy that represents
the component. Local calls to application-specific methods are translated by the
client-side proxy into invoke calls on a remote invoker object. To perform this
translation, the proxy — or, more precisely, its invocation handler — must know

the remote invoker. The exact meaning of “knowing the remote invoker” depends
on the protocol over which the proxy interacts with the remote invoker. In the
case of a client-side proxy associated with a JRMP invoker, that phrase means
“holding an RMI/JRMP reference to the JRMP invoker.” For client-side proxies
associated with other invokers, the same phrase takes other meanings, such as
“knowing the HTTP invoker’s URL,” or (in a clustered JBoss environment)
“holding a collection of references to target invokers distributed across cluster
nodes.”

Invoker Proxies. Everything that is protocol-specific within a client-side proxy
is encapsulated within an invoker proxy. Regardless of the protocol it supports,
each invocation handler holds a local reference to an invoker proxy that imple-
ments the Invoker interface shown in Fig. 3. The invoker proxy interacts with
a remote invoker, sending Invocations and receiving results over a given proto-
col. Invoker proxies are created at the server side (as protocol-specific singletons)
and sent out to clients along with serialized client-side proxies. They provide a
good level of homogeneity to all client-side proxies.

6



3 The IIOP Module

Three deployable MBeans support CORBA and IIOP as a dynamically deploy-
able feature: CorbaORBService, CorbaNamingService, and IIOPInvoker. They
are packaged together as an “IIOP module”, also known as JBoss/IIOP.

3.1 IIOP Engine

The CorbaORBService MBean is a thin wrapper around a third-party IIOP
engine, which can be any Java ORB compliant with CORBA 2.3 or later.
JacORB [4, 13], a free Java implementation of the CORBA standard, is the
default IIOP engine included in the JBoss distribution. The IIOP engine is
pluggable and may be replaced by users: attributes of the CorbaORBService

MBean determine which ORB will be used. The values of these attributes are
configurable via XML elements in the IIOP module’s service descriptor.

3.2 CORBA Naming Service

IIOP-enabled EJBs are registered with the naming service made available by
the CorbaNamingServiceMBean. Rather than allowing an external naming ser-
vice to be plugged in via MBean attributes, this MBean provides an in-process
CORBA naming service. It implements this service by reusing (through inher-
itance) code from the JacORB naming service. Users that want an external
CORBA naming service have the option of replacing the CorbaNamingService

MBean by a simpler one, which merely makes an external naming context avail-
able for EJB registration.

3.3 IIOP Invoker

The IIOPInvoker MBean differs from all other JBoss invokers in that it does
not follow the pattern outlined in Section 2.4. For interoperability with CORBA
clients written in other languages, IIOP is treated as a special case in JBoss.
Even though we have implemented and tested an experimental IIOP invoker
that strictly follows the “JBoss invoker pattern,” this is not the IIOPInvoker

included in JBoss distributions.
Non-Java clients expect application-specific interfaces to be exposed via IIOP,

because they use IDL-generated stubs. In other words, they send out IIOP re-
quests whose operation fields contain application-specific verbs. The invoker pat-
tern, however, leads to an IIOP invoker that implements an IDL interface similar
to the Java interface in Fig. 3. Such an invoker could not possibly interoperate
with CORBA clients written in other languages, as it would expect IIOP re-
quests with the verb invoke in their operation fields. Rather than implementing
the invoker pattern, the IIOPInvoker included in JBoss follows the standard
IIOP approach (albeit in a more dynamic way than most CORBA servers), and
hence it does not suffer from language interoperability problems.

7



The IIOPInvokermaintains a collection of Portable Object Adapters (POAs)
and a collection of CORBA servants. Fig. 4 shows how it fits into the JBoss meta-
level architecture. The EJB client can be either an RMI/IIOP client written in
Java, or a plain CORBA client, possibly written in another language. By per-
forming a method invocation on an IIOP stub, the client causes an IIOP request
to be sent out through the client-side ORB. The server-side ORB forwards the
request to a POA, which issues an up-call to a CORBA servant. (Both the POA
and the servant are logically contained in the IIOPInvoker.) The servant then
converts the request into an Invocation object and routes the reified invocation
through the container MBean associated with the target EJB.

Meta Level

Base Level

MBean
Server

Server-Side
Interceptors

Container
MBean

EJB
Component

Server Virtual Machine

EJB
Container

IIOP Invoker
MBean

POA

CORBA
Servant

EJB Client IIOP Stub
Client-Side

ORB
Server-Side

ORB

Client Process

flow of reified invocations

invocations to base-level interfaces

calls to ORB-specific interfaces

IIOP request

call to OMG-defined interface

Fig. 4. Meta-level architecture for EJB: the case of an IIOP client

Note that the client/server interaction appears at different levels in the non-
IIOP case (Fig. 1) and in the IIOP case (Fig. 4). The interaction takes place at
the meta level in non-IIOP case, because non-IIOP invokers expose a meta-level
interface (the Invoker interface) to remote clients. The IIOPInvoker, on the
other hand, affords remote access to base-level EJB interfaces. More precisely, it
gives remote clients access to IDL counterparts (per the Java to IDL mapping)
of application-specific EJB interfaces. This is a CORBA/IIOP interoperability
requirement.

4 Proxy Factories

An EJB reference is either a reference to an EJBObject or a reference to an
EJBHome. EJB containers have the responsibility of creating such references,
which in various situations they pass to EJB clients (e.g., when a client invokes
a finder method on an EJBHome) or to EJB implementations (e.g., when a bean
implementation invokes getEJBObject() on an EJBContext).

JBoss supports two general kinds of EJB references: (i) Java references to
client-side stubs implemented as dynamic proxy instances, which are sent out to

8



other virtual machines as serialized Java objects, and (ii) CORBA references,
passed across process boundaries in the IOR format standardized by the OMG.
In either case, a container MBean delegates to a proxy factory the task of creating
EJB references.

Proxy factories implement the interface partly shown in Fig. 5. Three proxy
factory classes currently implement that interface:

• ProxyFactory. Instances of this class create dynamic stubs (client-side stubs
implemented as dynamic proxies) that talk to remote invokers over various
protocols.

• ProxyFactoryHA. Instances of this class create dynamic stubs used in clus-
tered JBoss environments. (The suffix “HA” stands for “high availability.”)

• IORFactory. Instances of this class create CORBA references.

public interface EJBProxyFactory extends ContainerPlugin {

...

Object getEJBHome();

Object getStatelessSessionEJBObject();

Object getStatefulSessionEJBObject(Object sessionId);

Object getEntityEJBObject(Object primaryKey);

Collection getEntityCollection(Collection prymaryKeys);

}

Fig. 5. Proxy factory interface

4.1 Relationship between Proxy Factories and Invokers

Each proxy factory is associated with an invoker MBean. Distinct ProxyFactory
instances (or ProxyFactoryHA instances) may be bound to different invokers,
e.g.:

• A ProxyFactory associated with the JRMPInvoker creates dynamic stubs
that interact with the JBoss server via JRMP.

• A ProxyFactory associated with the HTTPInvoker creates dynamic stubs
that interact with the JBoss server via HTTP.

IORFactory instances can only be bound to the IIOPInvoker; they are currently
the only kind of proxy factory that can be associated with the IIOPInvoker.

4.2 Relationship between Proxy Factories and Containers

An EJB component deployed in JBoss has its own container, i.e., there is an one-
to-one relationship between deployed EJB components and container MBeans.

9



Each container MBean owns a collection of proxy factories: it has a proxy factory
instance for every protocol supported by its EJB component. Since these proxy
factories are also associated with invoker MBeans, they define a many-to-many
relationship between container MBeans and invoker MBeans.

Invoker MBeans are shared among containers (there is one invoker per proto-
col), but proxy factories are not. A proxy factory instance knows how to create
dynamic stubs or IORs that correspond to the EJBHome or to an EJBObject

implemented by a given container. Information on the identity of that container
is included in every dynamic stub created by a ProxyFactory. The JNDI name
of the EJB deployed into that container is embedded within the object key of
every IOR created by an IORFactory.

4.3 Proxy Factory Configurations

At deployment time, the EJB deployer (an MBean that handles the deployment
of EJB components) reads container configurations from XML files and creates
containers. A container configuration has all the information the EJB deployer
needs to create a container MBean, its plug-ins, and its interceptors. This in-
cludes information on the container’s proxy factories, which are a special case of
container plug-in. For each kind of client-side proxy that a container will export
to EJB clients, the container configuration specifies a proxy factory configura-

tion. XML elements in the proxy factory configuration specify the proxy factory
class (a Java class) and the invoker MBean (that is, the protocol) to be used
by the exported proxies, as well as additional parameters, which depend on the
proxy factory class.

In the case of non-IIOP access to EJBs, XML elements in the proxy fac-
tory configuration fully specify the chain of client-side interceptors (see Fig. 1)
to be included in every dynamic stub created by that factory. No similar el-
ements exist in the configuration of a proxy factory for IIOP access to EJBs
(an IORFactory), because interceptors instantiated at the server side would not
make sense to non-Java clients. Serialized Java objects received from the server
would be meaningless to CORBA clients written in other languages.

Global Configuration. JBoss has a global configuration file that includes
default container configurations for the standard kinds of EJBs: stateless ses-
sion beans, stateful session beans, entity beans, and message-driven beans. The
global configuration file also contains alternative configurations for these kinds
of EJBs. The default container configurations support remote access to EJBs
by RMI/JRMP clients; alternative configurations support all other scenarios:
remote access to EJBs by RMI/IIOP and CORBA clients, clustered session
beans, etc. For each such scenario, the global configuration file has a proxy fac-
tory configuration, which container configurations may reference by name.

Local Configurations. A JBoss-specific deployment descriptor, optionally in-
cluded with a given EJB, may refer to an alternative container configuration

10



by its name, either to specify other protocol such as IIOP, or to use some non-
standard feature such as clustering. Moreover, those deployment descriptors are
not constrained to use container configurations defined in the global configura-
tion file. A JBoss-specific descriptor may fully define a new container configura-
tion, possibly specifying plug-in and interceptor classes included within the EJB
deployment unit. More frequently, however, it will refer to a predefined container
configuration and override some elements of that configuration.

The JBoss-specific deployment descriptor in an EJB may use a predefined
container configuration and enhance it with additional proxy factory configura-
tions, possibly also taken from the global configuration file. This way one can
easily specify that an EJB should be simultaneously accessible via multiple pro-
tocols (e.g., RMI/JRMP, HTTP and IIOP).

5 IIOP Invoker and IOR Factory Internals

Recall that the EJB deployer creates an IORFactory whenever it deploys an
IIOP-enabled EJB. All IIOP-related actions taken at EJB deployment time are
performed within the initialization of the IORFactory. These actions include the
instantiation of home and bean servants, the creation of POAs, the registration
of the EJBHome in a JNDI context, and the creation of a specialized class loader
that lazily generates class definitions for RMI/IIOP stub classes.

5.1 CORBA Servants

The IIOPInvoker has two CORBA servants per IIOP-enabled EJB deployed
in JBoss: a home servant, which handles invocations on the EJBHome, and a
bean servant, which handles invocations on all EJBObject instances of the IIOP-
enabled EJB. What makes these servants interesting is that they must imple-
ment IDL interfaces not know in advance. A possible approach would instantiate
EJB servants from classes created at deployment time. Another approach would
rely on a dynamic (generic) server-side interface. To make deployment lighter,
JBoss/IIOP follows the second approach.

CORBA standardizes two dynamic interfaces for server-side request dispatch-
ing: the dynamic skeleton interface (DSI), defined in IDL and mapped to various
implementation languages, and the stream-based ORB API, specified only for
the Java case. Both are equally powerful, but the DSI requires all operation pa-
rameters and results to be wrapped into CORBA Anys. To avoid this extra cost,
JBoss/IIOP uses the stream-based API.

The CORBA servants depicted in Fig. 4 are stream-based dynamic skele-
tons that receive generic (type-independent) requests from POAs and convert
these requests into Invocation objects, which they forward (through the MBean
server) to container MBeans. Every servant knows the object name of the con-
tainer MBean to which it should forward reified invocations. Moreover, each
servant has marshalling knowledge specific to the IDL interface it implements.

11



Within a servant, marshalling knowledge takes the form of a map from IDL
operation names to SkeletonStrategy objects. The SkeletonStrategy for a
given operation knows how to read the sequence of operation parameters from
an input stream, how to write into an output stream the return value of the
operation, and how to write into an output stream any exception raised by
the operation. It has an array of reader objects (instances of auxiliary classes
such as LongReader, StringReader, CorbaObjectReader, . . . ) for the operation
parameters, an instance of a writer class (e.g, a LongWriter) for the operation
result, and an ExceptionWriter for each exception that the operation may raise.

As a side note: dynamic deployment of IIOP-enabled components appears to
be a new use case for dynamic server-side interfaces. The DSI was introduced in
CORBA to allow the construction of interdomain bridges3. When Java ORBs
started to use the DSI as a portability layer for IDL-generated skeletons, a more
efficient portability layer — the stream-based ORB API — was defined. To
the best of our knowledge, previous usage of dynamic server-side interfaces was
restricted to these two scenarios (interdomain bridges and portability layer for
IDL-generated skeletons).

5.2 POA Usage

JBoss/IIOP generates CORBA references with the following lifetimes: references
to session bean instances are transient, references to entity bean instances and
to EJBHomes are persistent. (This choice of reference lifetimes is quite natural,
albeit not mandated by EJB specification. Moreover, it allows EJB handles and
home handles to be implemented as thin wrappers around IORs.) Accordingly,
JBoss/IIOP registers session bean servants with POAs that have the TRANSIENT
liefespan policy, while it registers entity bean and home servants with POAs that
have the PERSISTENT lifespan policy.

An XML element in the configuration of an IIOP proxy factory (IORFactory)
specifies either per-servant or shared POAs. In the per-servant case, there are
two POAs per deployed EJB: one for the home servant (a PERSISTENT POA),
the other for the bean servant (either a TRANSIENT POA or a PERSISTENT POA,
depending on the kind of EJB). This pair of POAs is created at deployment
time. In the shared case, no POAs are created at deployment time. All deployed
EJBs share a pair of POAs: a PERSISTENT POA dispatches requests to home
and entity bean servants, a TRANSIENT POA dispatches requests to session bean
servants.

The default IORFactory configuration specifies per-servant POAs, which are
preferred because they make it possible to specify tagged components (such as
codebase components for stub downloading) that should be added to specific
IORs. The tagged components included in the IORs created by a given POA
are determined by policy objects associated with that POA. The per-servant

3 Such a bridge must implement CORBA objects that act as proxies for objects in
another domain, with no compile-time knowledge of the interfaces of those CORBA
objects.

12



configuration thus allows the specification of IOR components on a per-EJB
basis.

5.3 Registration of EJBHomes

At deployment time, the EJBHome of an IIOP-enabled EJB is registered with
the in-process CORBA naming service. It may also be optionally registered with
JNP (Java Naming Provider), a JBoss-specific naming service that implements
the JNDI APIs.

5.4 Lazy Generation of RMI/IIOP Stub Classes

An IORFactory can be optionally4 associated with a web class loader that gener-
ates RMI/IIOP stub classes in a lazy way. The web class loader is an instance of
WebCL, a subclass of URLClassLoader. Besides performing on-the-fly generation
of stub classes, WebCL has a method getBytes, which returns a byte code array
given a Class instance.

Recall that RMI/IIOP stub classes are named by appending the suffix “ Stub”
to names of remote Java interfaces. When a WebCL instance is asked to load the
class Foo Stub, it performs Java introspection on interface Foo, applies the Java
to IDL mapping on Foo, and uses code generation techniques to generate a byte
code array with the class file for Foo Stub, from which it obtains a Class in-
stance. The WebCL instance keeps the byte code array in a hash map and returns
this array whenever it is asked (via getBytes) for the byte code definition of the
Foo Stub class.

JBoss includes an in-process web server that allows remote clients to dynam-
ically download class files via HTTP. A client downloads a class file by issuing
an HTTP request for a resource whose name has two parts: (i) the id of a
WebCL instance that can load the class, and (ii) the full name of the requested
class file. When the web server receives such a request, it uses the WebCL both
to obtain a Class object and to retrieve the class file given the Class object.
RMI/IIOP stubs are therefore generated in a lazy way, as the web server receives
requests from RMI/IIOP clients. If the server receives no download requests for
the stub class associated with some EJB interface (perhaps because the EJB
does not have any RMI/IIOP clients, but only CORBA clients), then no byte
code generation is ever performed for that stub class.

In the default IORFactory configuration, every IORFactory has its own
WebCL instance. (In other words, there is a web class loader per IIOP-enabled
EJB.) Moreover, an IORFactory includes information on its web class loader
in each IOR it creates. Such an IOR has a tagged component that specifies a
codebase URL for RMI/IIOP stub downloading. The path component in this
URL identifies the web class loader of the IORFactory that created the IOR.

4 The usage of a web class loader is specified by an XML element in the proxy factory
configuration.

13



6 Related Work

The JBoss meta-level architecture resembles FlexiNet [12], a Java middleware
system that exploits reflective techniques in order to support flexible remote
method invocation paths and multiple protocols, including IIOP. However, Flexi-
Net does not define an application component model, nor does it address com-
ponent deployment issues.

OpenCOM [7] is a lightweight component model upon which an adaptive
ORB has been implemented. As an in-process model built atop a subset of
Microsoft’s COM, OpenCOM appears more suitable for very fine-grained com-
ponents than the JBoss service component model. It supports dependence man-
agement, reconfiguration, and method call interception. Nevertheless, OpenCOM
does not address deployment issues, nor does it support dynamic loading of com-
ponent classes from remote locations.

Research prototypes have recently made significant advances at addressing
dynamic deployment issues and supporting multiple protocols in component-
based systems [1, 3, 5]. Unlike JBoss, these systems generally employ non-
standard architectures and support component models not as well-established
as EJB.

Very little has been published about the internal architecture of commer-
cial J2EE servers. While JBoss employs reflective techniques, most commercial
servers use compilation-based approaches. Nonetheless, the JBoss meta-level ar-
chitecture appears to have important features in common with IONA’s ART
(Adaptive Runtime Technology) framework, which relies on the chain of respon-
sibility pattern in order to support different transports, protocols, and intercep-
tors, as well as different kinds of containers [20]. IONA uses ART as the basis
for various middleware products, including a J2EE server.

Facilities for agile deployment of EJBs were absent from commercial J2EE
servers until recently. In early J2EE products, the EJB deployment process even
included a server restart. After JBoss introduced hot deployment of EJB com-
ponents, this feature found its way into commercial servers, albeit with some re-
strictions. For example, BEA’s WebLogic 8.1 supports hot deployment of EJBs,
but does not recommend its usage in production environments [2]. Nearly all
commercial offerings require vendor-specific EJB container or CORBA servant
classes to be statically generated as part of the deployment process. In the case
of IIOP-enabled EJBs, all other servers still require extra compilation steps
for stub and skeleton generation. JBoss supports dynamic deployment of IIOP-
enabled EJBs in a much stronger sense: a running server accepts IIOP-enabled
deployment units that contain no JBoss-specific classes (such as EJB container
or CORBA servant classes), no IIOP skeletons, and no IIOP stubs.

7 Concluding Remarks

Flexibility, developer friendliness, and ease of use are crucially important qual-
ities in an application server. In fact, they have been frequently mentioned as

14



reasons for the popularity of JBoss. The ability of deploying components on-
the-fly has a very strong influence on those qualities. The absence of additional
compilation steps, such as IDL translation, is also a significant positive factor
for developer friendliness.

One of the main design goals of JBoss/IIOP was to support IIOP-enabled
components without sacrificing the levels of flexibility, developer friendliness and
ease of use that JBoss had already reached in the non-IIOP case. Toward this
end, we have taken a reflective approach to CORBA/IIOP, and particularly to
IIOP-enabled EJB components. This paper presented in detail the design and
the implementation of a set of middleware components that strongly relies on
reflection to meet the goal of making EJB deployment easy. Emphasis was placed
on dynamic deployment issues, including the instantiation of CORBA servants
for IDL interfaces not known in advance, the creation of POAs, and the lazy
generation of RMI/IIOP stubs. Those issues were discussed in the context of a
J2EE application server, but we believe that our techniques are equally appli-
cable to CCM servers and to other highly dynamic component environments, in
areas such as mobile computing and grid computing.

Acknowledgments

We thank Ole Husgaard, who implemented the mapping from RMI types to IIOP
types used in JBoss/IIOP. We also thank Gerald Brose, for creating JacORB,
and André Spiegel, for his work on valuetype support in JacORB.

The JBoss open-source server was designed and implemented by an interna-
tional team led by Marc Fleury. At the time of this writing, the team has 95
members geographically dispersed across five continents. An up-to-date listing
of team members is available at http://sf.net/projects/jboss.

References

[1] D. Balek and F. Plasil. Software connectors and their role in component deploy-
ment. In Proceedings of DAIS’01, Krakow, September 2001. Kluwer.

[2] BEA Systems. WebLogic Server 8.1 Documentation, 2003.
[3] I. Ben-Shaul, O. Holder, and B. Lavva. Dynamic adaptation and deployment of

distributed components in Hadas. IEEE Transactions on Software Engineering,
27(9):769–787, 2001.

[4] G. Brose. JacORB: Implementation and design of a Java ORB. In Proceedings of
DAIS’97, pages 143–154. Chapman & Hall, 1997.

[5] E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic software compo-
sition with sharing. In Seventh International Workshop on Component-Oriented
Programming (WCOP02), 2002.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[7] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An efficient compo-
nent model for the construction of adaptive middleware. In Middleware 2001 —
IFIP/ACM International Conference on Distributed Systems Platforms, volume
2218 of LNCS, pages 160–178. Springer-Verlag, 2001.

15



[8] EJCCM web site, 2003. http://www.cpi.com/ejccm/.
[9] J. Ferber. Computational reflection in class-based object-oriented languages. In

Proceedings of OOPSLA’89, pages 317–326, 1989.
[10] M. Fleury and F. Reverbel. The JBoss extensible server. In Middleware 2003

— ACM/IFIP/USENIX International Middleware Conference, volume 2672 of
LNCS, pages 344–373. Springer-Verlag, 2003.

[11] G. Kiczales et al . Aspect-oriented programming. In Proceedings of ECOOP’97,
volume 1241 of LNCS, pages 220–242. Springer-Verlag, 1997.

[12] R. Hayton and ANSA Team. FlexiNet Architecture. ANSA Architecture Report,
Citrix Systems Ltd., Cambridge, UK, February 1999. http://www.ansa.co.uk.

[13] JacORB Team. JacORB 2.1 Programming Guide, 2004. http://www.jacorb.org.
[14] Object Management Group. CORBA Components, Version 3.0, Jun 2002. OMG

document formal/02-06-65.
[15] OpenCCM web site, 2003. http://www.objectweb.org/openccm/.
[16] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects. Wiley, 2000.
[17] Sun Microsystems. Java Management Extensions — Instrumentation and Agent

Specification, v1.1, 2002.
[18] Sun Microsystems. Enterprise JavaBeans Specification, Version 2.1, 2003.
[19] Sun Microsystems. Java 2 Platform Enterprise Edition Spec., v1.4, 2003.
[20] S. Vinoski. Toward integration: Chain of responsibility. IEEE Internet Computing,

6(6):80–83, 2002.

16


