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Abstract—Scientific workflows are increasingly being migrated
to the Cloud. However, workflow developers face the problem of
which Cloud to choose and, more importantly, how to avoid
vendor lock-in. This is because there are a range of Cloud
platforms, each with different functionality and interfaces. In this
paper we propose a solution – a system that allows workflows to
be portable across a range of Clouds.

This portability is achieved through a new framework for
building, dynamically deploying and enacting workflows. It
combines the TOSCA specification language and container-based
virtualization. TOSCA is used to build a reusable and portable
description of a workflow which can be automatically deployed
and enacted using Docker containers.

We describe a working implementation of our framework
and evaluate it using a set of existing scientific workflows that
illustrate the flexibility of the proposed approach.

I. INTRODUCTION

In recent years, Cloud Computing has gained remarkable

momentum in both academia and industry. An increasing range

of applications are now being developed in the cloud, and this

includes scientific workflow systems [1].

Workflows are frequently used in scientific research to or-

chestrate the execution of complex experiments on distributed

resources. A workflow can be considered as a model defining

the structure of the computational and/or data processing

tasks necessary for the management of a scientific process

[2]. One key reason for their adoption is that they offer

the opportunity to share, exchange and reuse services and

experimental methods [3].

The scalability and ability to acquire resources on-demand

offered by Cloud Computing makes it attractive for workflow

management [4]. However, efficiently meeting workflow re-

quirements in the cloud requires addressing key issues in the

provisioning of the execution environments, and subsequent

workflow execution [1]. Due to the rapid evolution of existing

cloud platforms, and the emergence of new providers, one

very important challenge is in making workflows portable and

reusable across different cloud platforms.

This is important for several reasons: it avoids Cloud vendor

lock-in, mitigates the risk of a cloud vendor failing and enables

users to switch to a cheaper cloud. Also, for a scientific method

to be effectively reused over time, and for experiments to

be reproduced, the repeatability of workflow deployment and

configuration steps is crucial. Experience has shown that if

workflow deployment and configuration steps cannot be easily

repeated, then the value of the workflow as a way to share and

reproduce scientific results is quickly lost [5].

This paper describes a new solution to this problem: a

method for automatic deployment of workflows on the Cloud.

We extended our modeling approach proposed earlier in [6]

and implemented the provision and deployment of workflows

in a way that significantly increases their portability.

A major advantage of scientific workflows is the abstract

way in which they can combine together a set of different

tasks to encode a single analysis. Often, however, these tasks

are heterogeneous components each with their own set of

dependencies. For example, different workflow’s tasks may

need the same library with different versions or each task to

be executed on a specific version of the operating system. This

poses a serious challenge in the description and deployment

of workflows. Thus, the workflow descriptor needs to include

not only the abstract graph of interconnected tasks but also,

so often ignored, details of component implementation and

deployment. Moreover, a robust deployment facility should

support the isolation of component execution to ensure mini-

mal interference between them.

To address these challenges we present a new framework

to describe, build, dynamically deploy and enact workflows

on the Cloud. The framework integrates the OASIS standard:

Topology and Orchestration Specification for Cloud Applica-

tions (TOSCA) [9] and container-based virtualization. TOSCA

supports the description of Cloud applications in a portable

way [10], which we exploit to allow heterogeneous workflows

to be deployed in the Cloud. Container-based virtualisation

offers the opportunity for rapid and efficient building and

deployment of lightweight workflow components [8]. In this

work, we use Docker1 containers to dynamically provision the

execution environment and construct the full software stack

required by a workflow component or group of components.

Both, TOSCA and Docker allow us to improve the reusability

and reproducibility of workflow-based applications.

To demonstrate our approach in practice we model a set of

scientific workflows using TOSCA, automate their deployment

and dynamically provision their execution environment using

containers implemented in Docker. Our examples involve

typical scientific workflows with data dependencies between

tasks creating a directed acyclic graph. We adopted TOSCA

1http://www.docker.com



to represent not just the workflow itself but also its compo-

nents, library dependencies and the configuration of the whole

workflow-based application including its hosting environment.

The framework is generic enough to cover a variety of sce-

narios which we used for evaluation in the following sections.

In this paper we present a significant development of our

previous work described in [6]. We introduce the following

new contributions:

• we show how the modeling approach proposed in [6]

can be used to describe and implement the provisioning

and deployment of workflows across different Cloud

infrastructures, thereby ensuring application portability.

• we show that by using our framework we can construct

and dynamically deploy the full software stack required

by a workflow component or group of components.

• we exploit container-based virtualization to improve de-

ployment portability and isolate the execution of hetero-

geneous workflow components.

• we show how our framework supports a range of deploy-

ment options for efficiency and security isolation.

II. RELATED WORK

For over a decade, scientific workflows have been a suc-

cessful method to encode and repeat in-silico scientific exper-

iments and a vast number of platforms and languages exist

to model workflows [11]. However, most scientific Workflow

Management Systems (WfMS) focus on workflow expres-

siveness and ease of modeling. Only a few solutions such

as e-Science Central [12], Pegasus [13], Galaxy [14] and,

more recently, HyperFlow [15] tackle the problem of scientific

workflow deployment in a distributed environment.

e-Science Central (e-SC)2 is a cloud-based WfMS that

provides capabilities to store, analyse and share data among

scientists. It includes a workflow enactment engine to which

users can submit their workflows via a web browser or an

external application. The system implements a simple dataflow

model in which a workflow comprises a set of interconnected

blocks. Blocks can be of different types (Java, R, Octave,

etc.) and the definition of a block also contains software

dependencies that must be met to start it. Before running

a block, any unavailable libraries are downloaded from the

server on demand, and then the engine start executing the

block. That makes the e-SC workflow engine generic and

independent of the workflows it is to enact.

Pegasus is a well-established WfMS. It allows workflows

to be defined as abstract and resource-independent, and later,

before execution, they are mapped by the system into concrete,

platform-specific execution plans. The plans are enacted by

HTCondor DAGMan that tracks dependencies and releases

tasks as they become ready, whilst HTCondor Schedd runs

them on available resources. To look up user executable files

that implement workflow tasks Pegasus uses the Transforma-

tion Catalog. The catalog maps tasks into executables specific

2http://esciencecentral.co.uk

to the underlying execution environment whether it is HTCon-

dor pool, HPC or Cloud. However, automatic installation or

deployment of executable files is limited to Pegasus auxiliary

executables, whilst the Transformation Catalog supports only

the discovery of user executables.

Recently, the Galaxy WfMS has attracted attention, espe-

cially in the bioinformatics domain. Much like most other

WfMS, it relies on external tools and datasets, and to facilitate

their installation it uses Galaxy ToolShed and Data Managers.

But the execution of workflows in Galaxy is considered sepa-

rate from the installation of dependencies, making workflows

usable only if all the dependencies are available prior to

execution. To alleviate this issue the Galaxy team have offered

dedicated data and VM cloud images with a suite of the most

common bioinformatics tools and data [16].

Unfortunately, solutions like Galaxy, which are based on

VM images, require significant maintenance effort when users

need to add new, or update existing application tools over time.

This requires rebuilding the images, a task rarely supported by

the WfMS itself. Conversely, using our framework, updates

of any task or dependency library can be achieved easily

through updates in the TOSCA description, which then allows

our system to provide automated, on-demand provisioning of

the updated artifacts. Also, Docker enables images with the

updated contents to be captured during the deployment process

which gives the ability to create the images automatically.

Most of the existing WfMSes use a very specific workflow

definition language which limits their portability. An effort to

design a common language for scientific workflows (CWL)

has recently been started,3 yet it is at the early stage and

not mature enough for practical applications. Also, despite

its intention to provide a generic description for workflow

processes and their dependencies, CWL does not include the

description of the execution environment, nor the dependencies

required to execute tasks. Instead, it relies on Docker as a

mechanism to capture the installation and execution of tasks

and dependencies.

Instead, what we demonstrate, is a method to define scien-

tific workflows in a comprehensive and portable way. Firstly,

adopting the TOSCA standard ensured that a workflow def-

inition is portable and can be deployed and executed in a

TOSCA-compliant runtime environment such as Cloudify4,

and potentially OpenTOSCA [17]. Secondly, by using TOSCA

we can describe a workflow together with the complete

software stack necessary to run its components – including

virtual machines, containers and any dependency libraries.

Thirdly, we adopt Docker as an optimisation mechanism that

can improve deployment – our workflows and tasks can be

deployed and enacted using only the TOSCA description,

whilst Docker images, if exist, speed up the installation phase.

Currently, most of the efforts to use TOSCA, such as [18],

[19], [20], are focused on the exploration of possible applica-

tions of the standard to manage various types of distributed

3https://dx.doi.org/10.6084/m9.figshare.3115156.v1
4http://getcloudify.org



Fig. 1. Steps from the definition to enactment of a workflow.

systems on the cloud. None of these, however, has tried to use

TOSCA in scientific workflow enactment.

Virtualization techniques based on containers have emerged

in the last years as an alternative to hypervisor-based virtu-

alization [7]. The key reasons for their adoption in appli-

cation deployment [8] and also in the Cloud [21] are: the

reduction in resource usage, the rapid provisioning features

and good execution isolation features that prevent a single

container from consuming all available resources. Also a

number of authors have used Docker to package and provision

applications and middleware recently (cf. [21], [22]). As for

deploying scientific workflows using Docker, apart from the

CWL mentioned above another recent solution is Skyport [23].

In Skyport, however, all tasks images are created manually

and then used in the deployment process depending on the

system specific meta-data. Instead, we propose a framework

that combines TOSCA and Docker and can dynamically inject

into a container the full software stack required to execute the

complete workflow or each of the workflow tasks separately.

III. SCIENTIFIC WORKFLOW DEPLOYMENT FRAMEWORK

Our framework for the deployment and enactment of work-

flows is depicted in Fig. 1. It has been implemented as a set

of the reusable components and packages that reside in our

software repositories, so they can be used by the workflow

execution node and also shared between users.

First, to build a workflow, we follow the TOSCA-based

approach proposed in our previous work [6], and prepare basic

workflow components: Node and Relationship Types, and then

a Service Template which includes Node and Relationship

Templates. Types are used to describe workflow components

(tasks and their dependencies), whereas the Service Template

describes the overall structure of the workflow. It contains

Node and Relationship Templates to denote all the instances of

software components, library dependencies and the execution

environment together with the container and VM.

Next, in the template we also include the lifecycle manage-

ment scripts and references to software artifacts. The scripts

implement deployment actions of workflow tasks and are avail-

able in our lifecycle Scripts Repository. The software artifacts

include the actual code that implements workflow tasks; these

can be task-specific files and executables or Docker images

that encapsulate one or more tasks with their dependencies.

The artifacts are stored in our Task Code Repository to be

reused across different tasks and workflows.

Finally, to deploy and enact a workflow we submit the Ser-

vice Template together with scripts and artifacts to a TOSCA

runtime environment. Although in this paper we assume that

before the submission users have Cloudify and Docker in-

stalled, we have also developed a one-click deployment script

so that they can easily enact a workflow on a clean, pure-OS

VM in the Cloud. The script starts a multi-steps process that

installs and configures basic prerequisites, such as Docker and

Cloudify, and then initiates the execution of the workflow.

The following sections present details of the three steps

described and discuss the data exchange mechanism imple-

mented by the framework.

A. Building the Workflow Topology

Usually, modelling of scientific workflows focuses merely

on the horizontal dimension – the data dependencies between

tasks – whereas aspects related to the vertical dimension,

such as creating tasks’ runtime environment, remain ignored.

They are crucial, however, to improve workflow portability

and reproducibility. In our framework, we use TOSCA to

model the structure of a workflow in both dimensions that can

span both the horizontal space and vertical stack of software

components. In the horizontal dimension, components rely on

each other when they need to communicate and exchange data.

In the vertical dimension, they are dependent as in the host-

hosted relationship, where the host component provides an

execution environment for the hosted component.

Building a workflow using TOSCA starts by defining Node

and Relationship Types. A Node Type declares properties and

lifecycle interfaces of a workflow component (task, library and

container). These include the task name, version and a URL

to task artifacts, as well as task configuration parameters. A

Relationship Type can define a horizontal dependency between

tasks and vertical host-hosted relationship between workflow

components and their containers.

Given the types, the Service Template of the workflow is

constructed as a graph of Node and Relationship Templates

which represent specific instances of the types. If types declare

properties and interfaces, templates provide values for the

properties and implement lifecycle interface operations using

scripts. The structure of the workflow is included in the

topology part of the Service Template which the TOSCA

runtime can analyse to build a step-by-step sequence of

deployment operations. And although TOSCA was intended to

describe service-based systems, we impose data dependencies

and sequential enactment of tasks by using the dependency

relationship between components.

Importantly, the Service Template includes not only the

high-level structure of the workflow (i.e. task dependencies)

but also all library dependencies and the definitions of con-

tainer and virtual machine that are supposed to host the

workflow components. Thus, we can capture the complete

software stack required to deploy and enact the workflow.



Fig. 2. Isolated deployment of a workflow task.

More details about how we use TOSCA to define scientific

workflows can be found it our previous work [6].

B. Managing the Workflow Deployment Lifecycle

Types and templates consist of essential sub-elements that

cover their lifecycle – operations attached to nodes and rela-

tionships. These operations are used to create, configure and

start services and also to pre- and postconfigure relationships.

We implemented them as a set of generic scripts that can:

• initialize a shared space to exchange data between tasks,

• fetch the input data files required to run a task,

• provision the host environment (a container) using an

image specified in the workflow Service Template,

• configure the required library dependencies,

• download, configure and start a workflow task, and

• transfer data between tasks running either in a single or

multiple VMs.

As these scripts are reusable across a range of workflows and

tasks, we store them in our Lifecycle Script Repository,5 so

they can be easily included in any newly designed workflows.

We refer to this repository in all our example workflows that

we used to evaluate the framework.

C. Task Deployment

Once the workflow Service Template, lifecycle management

scripts and all task artifacts are prepared, we can submit our

workflow to a TOSCA runtime environment for deployment

and enactment. Given the Service Template, a TOSCA runtime

environment can deploy and execute tasks one by one in

the order implied by the relationships between nodes. Each

workflow task follows the deployment process shown in Fig. 2.

First, a Docker container is created using a task image

indicated in the Service Template. The image may be generic,

available from the Docker Hub6 or it may be generated by the

user and may include libraries and software required by the

task(s). If more than one task is designated to run in a specific

container, the container is created once and then reused by all

of the tasks; this is possible regardless of the task order. For

example, a sequence of workflow tasks: T1 → T2 → T3 can

be deployed such that T1 and T3 are hosted in one container,

whereas T2 is hosted in another one according to tasks’

dependencies and isolation requirements. Then, the framework

will maintain the appropriate order of execution while reusing

the first container to run task T3. That gives the workflow

5https://github.com/WorkflowCenter-Repositories/Core-LifecycleScripts
6https://hub.docker.com

designer freedom in planning how tasks are distributed across

containers without affecting runtime effectivness.

Once the task container is running, the installation of

dependency libraries takes place according to their order in

the Service Template. Depending on the initial contents of the

selected Docker image, this may involve the installation of

some software required to run the task. In the next step task

artifacts are installed in the container and that is followed by

copying input data required to run the task.

Note that if the image already includes all required de-

pendencies and artifacts, no installation or copy operation is

needed. Usually, however, the task artifacts will need to be

downloaded from our Task Code Repository. This allows us

to freely update tasks and minimize the number of specific

Docker images held in the repository.

Finally, with all prerequisites in place the task execution

is initiated, and upon its completion the output data are

transferred out of the container. If the completed task is the

last task to be executed in that container, the container is also

terminated and deleted.

D. Data Transfer

Before the submission of the Service Template, the user

needs to identify the input data that the workflow is going to

process. Input data could be fetched from external repositories

if needed but, in this paper, we use the host VM disk as a

space to store input/output data. We also use the host disk as a

shared space to exchange data files between tasks. In that way

we can minimise overheads related to transferring inputoutput

files and data between tasks deployed on the same machine.

This is only one possible method to exchange data – another

is via a direct network connection between tasks, which we

use in the case of tasks deployed over multiple VMs. Finally,

the system can use Cloud-based data repositories such as

Amazon S3 and Azure Blob Store, for the case of multi-VM

deployments across different Clouds.

Importantly, the process of transferring data between tasks

is performed automatically by the lifecycle script that imple-

ments inter-task dependency relationship and it remains hidden

from the workflow designer.

IV. EXPERIMENTS AND EVALUATION

To validate our approach, we conducted a set of experiments

in which we deployed selected workflows, originally created in

e-Science Central. The aim was to investigate and analyze sev-

eral aspects concerned with the performance of the proposed

design and deployment method. First, we wanted to measure

time required to deploy workflows in local and public Cloud

environment. We also wanted to see the overheads related to

the deployment of workflows using single- and multi-container

strategies. Additionally, we compared the impact of the use

of generic and prepackaged Docker images on the overall

workflow execution time.

All the experiments presented here are based on workflows

and tasks that are publicly available in our GitHub reposito-



ries.7 Although in this paper we focus our discussion on a

single VM host with multiple containers, our framework can

be also used to deploy workflow tasks on different VMs.

A. Experimental Setup

To illustrate that the approach is generic, the workflows we

used for the performance evaluation vary in terms of structure,

the number of tasks and their dependency libraries. Table I

summarizes the basic properties of the workflows.

TABLE I
WORKFLOWS SELECTED TO TEST OUR DEPLOYMENT APPROACH.

Workflow Name No. of tasks Dependency libraries

Neighbor Joining (NJ) 11 ClustalW, MegaCC, Wine

Java, Core-lib

Sequence Cleaning (SC) 8 SAMTools, Java, Core-lib

Random A (RA) 7 Java, Core-lib

Random B (RB) 3 Java, Core-lib

The Neighbor Joining workflow (NJ) is a pipeline used

in the EUBrazil Cloud Connect project8 to perform species

identification of Leishmania parasite and sandflies using the

neighbor-joining method. It consists of 11 tasks of which nine

are Java-based and two other (Clustal and MEGA-NJ) wrap

existing executable tools. The MEGA-NJ task is a Windows

executable and to be executed in Linux it requires the Wine

library. The Sequence Cleaning workflow (SC) is one of the

steps in the Next Generation Sequencing pipeline implemented

in the Cloud-e-Genome project [24]. It consists of eight tasks

of which seven are Java-based and one is a wrapper around

the SAMTools executable. Finally, Random A and B are simple

workflows that consist of only Java tasks to inverse matrix and

compress/decompress files, respectively.

To provision the execution environment for workflow tasks

we used different Docker images to run the containers (Ta-

ble II). The Ubuntu:14.04 and CentOS images are pure OS

images pulled from the Docker Hub and do not contain any

tools used by the workflows. The Basic image contains a set of

common tools used by our solution, such as Java and wget. For

two selected workflows: NJ and SC we also prepared two spe-

cialized images: CompleteNJ and CompleteSC, respectively.

These images extended the Basic image with all additional

tools, libraries and task artifacts required to run each task in

the workflow.

Although our framework allows us to provision containers

on different VMs, all containers used throughout the exper-

iments were deployed in a single virtual machine. We used

Cloudify version 3.1 and its CLI to run the workflow blueprint

file (the Service Template). To manage containers we used

Docker version 1.5.0.

B. Experiment 1: Deployment and Enactment Time

In the first experiment we compared the deployment and

enactment time of the test workflows on different execution

7https://github.com/WorkflowCenter-Repositories
8http://www.eubrazilcloudconnect.eu

TABLE II
DOCKER IMAGES USED IN THE EXPERIMENTS.

Image name Contents Image size [MB]

Ubuntu:14.04 as in the Docker Hub 188

CentOS as in the Docker Hub 178

Basic Ubuntu:14.04 + Java + wget 561

CompleteNJ Basic + all NJ deps. + blocks 1536

CompleteSC Basic + all SC deps. + blocks 850

environments. Each workflow task was running in a separate

container with the ability to use a different image. We used the

Basic and CentOS images for Neighbor Joining and the Basic

image for the other three workflows. We also used a local VM

and two public Cloud providers to host the Cloudify runtime,

as presented in Table III.

TABLE III
EXECUTION ENVIRONMENTS.

VM Environment RAM [GB] Disk space [GB] OS

Local VM 3 12 Ubuntu 12.04
Amazon EC2 1 8 Ubuntu 14.04
Google Cloud 3.5 10 Ubuntu 14.04

In the experiment, each of the four test workflows was

deployed ten times. Figure 3 shows the average Execution

Time (ET) needed to deploy and enact workflows, and the

Standard Error of the Mean (SEM) as the error bars. The time

includes provision of Docker containers, installation of the

required dependency libraries, and deployment and execution

of the tasks. ET was calculated as the average time starting

from the submission of the blueprint until the completion of

workflow execution.

Fig. 3. Execution time for workflows enacted in different environments; the
NJ workflow used the Basic and CentOS images, other three workflows used
the Basic image only.

This experiment shows that our proposed approach is able

to support workflow deployment on several Cloud platforms

successfully. We used the same Service Template in each

environment and the same scripts for all workflows. ET was

significantly impacted by the structure, dependency libraries,

and number of tasks in the workflow. In addition, the differ-

ences in the execution time for the same workflow deployed

on different platforms was purely because of the variation in

the time required to download the tasks and install different

dependency libraries such as Java.



Fig. 4. Average execution time of single- and multi-container workflow
deployments; all workflows used the Basic image.

C. Experiment 2: Single- and Multi-Container Deployments

With the ability to rapidly provision containers using Docker

we wanted to investigate the overheads related to single- and

multi-container workflow deployments. By using a separate

container for each workflow task we can improve security and

provide very good isolation properties for tasks. Therefore, un-

derstanding the related performance costs of such deployment

strategies is important.

In this experiment we ran tests in two scenarios: (i) multi-

container – each workflow task running in a separate con-

tainer, (ii) single-container – one container used to run all

tasks in the workflow. For both scenarios we used our local

VM to deploy all four test workflows, and repeated each test

10 times. This time, however, we used only the Basic image

to run tasks, thus ET included the provisioning of Docker

container(s), installation of task specific dependency libraries

and the actual execution time of all workflow tasks.

Fig. 4 presents the average execution time for the four

workflows. As shown, there is little difference between the

two scenarios: 14.9, 33.4, 13.9 and 3.2 seconds; or only about

2 seconds overhead per task. It reveals that the overhead of

provisioning one container per task, which also involves the

installation of dependency libraries, is not significant when

compared to the deployment of the entire workflow in a single

container where all tasks share the same container and most

of the required libraries.

Again, the experiment shows variation in the execution time

related to the network throughput. This time the execution

of the SC, Random A and B workflows was faster than in

previous experiment and the difference stems from the faster

download time for task and library artifacts.

D. Experiment 3: The Influence of On-demand Deployment

In the previous experiment we showed the impact of the use

of multiple Docker containers on the runtime of a workflow.

Although the impact was relatively low, for all the workflows

we noticed that the runtime was much higher than what we

would expect running only workflow tasks. Therefore, we

conducted an experiment to observe the influence of the on-

demand installation and configuration of dependency libraries

on the overall workflow runtime.

For this experiment we prepared two specialized images:

CompleteNJ and CompleteSC, and used them to run the NJ

and SC workflows in the multi-container mode. By using

Fig. 5. Execution time for the steps in deployment the NJ workflow.

Fig. 6. Execution time for steps in deployment of the SC workflow.

these specialized images we avoided the download and instal-

lation of any libraries and task dependencies during workflow

execution. Fig. 5 shows that this part consumed over 280

seconds, the majority of the runtime of the NJ workflow if

using only the Basic and CentOS images. Instead, when the

task dependencies where preloaded in the CompleteNJ image,

the installation time became negligible.

In Fig. 6 we show similar comparison for the SC workflow.

In this case we used only the Basic image but none of the

workflow tasks needed the time-consuming installation of the

Wine library. The figure shows that the dominating part of

the execution was the blueprint processing step calculated by

subtracting from the total execution time the time taken by all

tasks implemented by our lifecycle management scripts.

For the Sequence Cleaning workflow (8 tasks) the ‘blueprint

processing’ time was about 38 seconds, and about 10 seconds

shorter than for the other Neighbor Joining workflow (11

tasks). It shows the impact of the size of the workflow on

the time required by Cloudify to process it.

It is important to note, however, that in our experiments the

task execution times were relatively low. For longer-running

tasks, the overheads introduced by our solution would play

only a marginal role even if we use a generic image from the

Docker Hub and decide to use the on-demand installation of

the libraries. Although the on-demand deployment increases

runtime of workflow execution, it reduces the burden related

to image maintenance.

E. Experiment 4: Deployment with Different Docker Images

In most of the previous experiments we used the same image

to deploy all tasks in a workflow. However, our framework is

flexible enough to adopt other options to task and workflow

deployment. The flexibility can help to address common



Fig. 7. Execution time of the Neighbor Joining workflow using three possible
workflow deployment options.

challenges faced by the designers during the workflow de-

velopment phase – frequent and irregular changes in task

implementation. Therefore, in this experiment we investigate

how various deployment options enabled by our framework

can support workflow development. We look at them from

two angles: the workflow and task level.

First, at the workflow level the designer can choose one

of the three ways in which they may develop and deploy

their workflow: using a pure-OS image, using a specific

image for each task or using a workflow-specific image that

encapsulates all workflow components and dependencies. We

ran the Neighbour Joining workflow following these three

ways: first one used the pure-OS Ubuntu:14.04 image from

DockerHub, second one used seven task-specific images (note

that the NJ workflow includes 11 tasks but some of them were

instances of the same task type and so used the same image),

third one used the CompleteNJ image with all dependencies

and artifacts preinstalled. Fig. 7 shows the execution time in

all three cases.

Clearly, the fastest execution was observed for the case

which used the single, workflow-specific image. It was the

fastest for most of the deployment steps and only the image

download step ran noticeably longer than for the pure-OS case.

That is because the CompleteNJ image is much bigger than

the pure-OS Ubuntu:14.04 (c.f. Table II). On the other hand,

it is smaller that the total size of the seven images required

in the second case. The main drawback of the workflow-

specific option is, however, increased effort needed for image

maintenance. Every time a designer wants to update the code

of any single workflow task they need to prepare a new

workflow-specific image. Additionally, that option sacrifice

isolation properties and is not available if any two workflow

tasks have a conflicting set of dependencies.

At the other end of the execution performance was the

slowest option which used the pure-OS image. It saved some

runtime in the image download step as it needs only one,

relatively small image for all the tasks but that was completely

wiped out by very long time required to install on-demand all

dependency libraries including Wine and Java (c.f. ‘tools &

libs inst.’ in the figure, which took over half of hour). Despite

having the longest execution time, this option may still be

very useful during early stages of workflow development as it

does not require any image maintenance. It is also particularly

Fig. 8. Execution time of the CSVExport task deployed using three task
deployment options.

suitable for workflows built from scratch, in which case the

designer may not yet realise whether there are any major costs

related to dependency installation.

In between the two extremes is the option in which work-

flow tasks used specialized task images. It offers a good

balance as the execution time is close to the fastest, workflow-

specific case, yet it offers a good level of isolation and

flexibility. The designer can combine tasks with conflicting

dependencies and a change in one task requires update of only

one, usually small image.

Looking at the same deployment options from the task level,

the workflow designer has also a few options to choose from.

First, they can decide to use the on-demand installation and

embed a task that uses a pure-OS image. Second, they can

prepare a Docker image that comprises the entire software

stack needed by the task. Finally, they can decide to mix

these two options and prepare an image with the software

stack that includes all the dependencies, yet use on-demand

installation for the task artifacts only. The last approach may

be useful during the intensive task development phase when

the developer frequently updates the task code while the core

set of dependencies remains the same.

We prepared an experiment in which a workflow was

configured with three tasks each realising different task de-

ployment option. Fig. 8 depicts the task execution time for

each deployment step. Again, there is clear trade-off between

using a rigid approach with a specialized task image that

gives the best performance, and the least efficient but most

flexible approach which used the pure-OS image and relied on

the on-demand installation of task and dependency artifacts.

Yet, using the image with preinstalled dependencies only is

an option that allows for flexibility required when task code

changes frequently and which ran almost as fast the option

that used a specific task image.

Importantly, the deployment options presented here can be

mixed within a single workflow and also can change whilst

the workflow and tasks undergo changes in their development

phase. We expect that, initially, for a newly created work-

flow the designer would use specialized task images for the

common, mature blocks such as I/O transfer because they

rarely change. Whereas they would use on-demand installation

for tasks specific to the workflow that are often created

only for the purpose of a certain application. Then, once the



development of these tasks becomes less intense, the natural

step is to build task specific images and focus on workflow

design. Finally, at the point when the development phase

of the workflow application becomes less intensive and/or

the workflow is ready for the production use, the designer

can capture a workflow-specific docker image with all tasks

and dependencies preinstalled, which would offer the best

performance for the users.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new framework to build, deploy

and enact scientific workflows. It integrates a TOSCA-based

workflow definition with container-based virtualization. The

most important benefits of using TOSCA to model workflows

is the standard description language, improved portability and

reuse of code. We used a small set of common lifecycle

management scripts to deploy workflows and tasks irrespective

of the workflow and Cloud platform they were running on.

And by defining reusable Node Types for tasks and Service

Templates for workflows, we enable new workflows to be built.

Using container-based virtualization, our framework can

support execution isolation for heterogeneous workflow com-

ponents and allows the underlying execution environment

to be dynamically built and provisioned. Importantly, the

combination of TOSCA and Docker adds greatly to the design-

time flexibility. Given the low performance overheads related

to container provisioning, designers can decide to run each

task in complete isolation or in a shared container. Our

framework allows task deployment to be easily split and

merged across containers. Similarly, it enables image creation

to be customised to best fit the actual implementation needs

of task and workflow developers.

Overall, the proposed approach facilitates the reuse of task

and workflow descriptions, and their artifacts, both at the level

of the TOSCA definition and code distribution using Docker

images. In the future we plan to investigate to what extent

our approach can improve the reproducibility of scientific

workflows and model a broader range of workflow structures

including parallel enactment of sub-workflows.
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