
Dynamic Detection of Access Errors and Illegal References in RTSJ

M. Teresa Higuera-Toledano1, Miguel A. de Miguel-Cabello 2, and Javier Resano-Ezcaray1
1 Facultad Informática , Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid Spain

2 Escuela Técnica Superiror de Telecomunicaciones, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid Spain
Email: mthiguer@dacya.ucm.es

Abstract
The memory model used in the Real-Time Specification

for Java (RTSJ) imposes strict assignment rules to or from
memory areas preventing the creation of dangling
pointers, and thus maintaining the pointer safety of Java.
This paper provides an implementation solution to
ensure the checking of this rules before each assignment
statement, where the check is performed dynamically by
using write barriers.

Keywords: Java, Garbage-collector, Memory-regions, Real-
time, Embedded, Write-barriers.

1. Introduction

Implicit garbage collection has always been
recognized as a beneficial support from the standpoint of
promoting the development of robust programs. However,
this comes along with overhead regarding both execution
time and memory consumption, which makes (implicit)
garbage collection poorly suited for small-sized embedded
real-time systems. However, there has been extensive
research work in the area of making garbage collection
compliant with real-time requirements. Proposed solutions
may roughly be classified into two categories:
1. Incremental garbage collection (e.g., [1]) allows the

application to execute while the Garbage Collector
(GC) has been launched, a mechanism (i.e., read or
write barriers) is used to coordinate the execution of
the GC and of the application.

2. Region-based memory allocation (e.g., [3]) enables
grouping related objects within a region. Commonly,
Memory Regions (MR) are used explicitly in the
program. This is an intermediate solution between
explicit memory allocation/deallocation and the GC.

Application of these two strategies has been studied in
the context of Java, which is in particular highlighted by
the RTSJ [1]. This specification allows the implementation
of real-time compliant GC without prescribing any specific
solution. The MemoryArea abstract class supports the
region paradigm in the RTSJ specification [11] through
the three following kinds of regions: (i) immortal memory,
supported by the ImmortalMemory and the
ImmortalPhysicalMemory classes, that contains
objects whose life ends only when the JVM terminates;

(ii) (nested) scoped memory, supported by the
ScopedMemory abstract class, that enables grouping
objects having well-defined lifetimes and that may either
offer temporal guarantees (i.e., supported by the
LTMemory and LTPhysicalMemory classes) or not (i.e.,
supported by the VTMemory and VTPhysicalMemory
classes) on the time taken to create objects; and (iii) the
conventional heap, supported by the HeapMemory
class. There is only one object instance of the
HeapMemory and the ImmortalMemory classes in the
system, which are resources shared among all threads in
the system and whose reference is given by calling the
instance() method. In contrast, for the
ImmortalPhysicalMemory, and ScopedMemory classes,
several instances can be created by the application.

Objects allocated within immortal MRs live until the
end of the application and are never subject to garbage
collection. Objects with limited lifetime can be allocated
into a scoped region or the heap. Garbage collection
within the application heap relies on the (real-time) GC of
the JVM. A scoped region gets collected as a whole once
it is no longer used. Since immortal and scoped MRs are
not garbage collected, they may be exploited by hard real-
time tasks, especially VTMemory objects, which guarantee
allocation time proportional to the object size 1.

 In this paper, we propose a GC strategy based on the tri-
color algorithm complying with the RTSJ specification
(Section 2). RTSJ imposes res tricted assignments rules
that keep longer-lived objects from referencing objects in
life-limited memory regions (scoped regions). The
proposed approach includes a new stack-based algorithm
detecting illegal references when both objects, the one
that makes the reference and the referenced one, are
within scoped regions (Section 3). In Section 5, we
implement a prototype within the KVM [13] by modifying
the original GC and introducing MRs. Finally, a summary
of our contribution concludes this paper (Section 5).

1The ImmortalPhysicalMemory,
VTPhysicalMemory, and LTPhysicalMemory classes
support regions with special memory attributes (e.g., dma,
shared , swaping).

2. The Basic Collector Strategy
There are some important considerations when

choosing a real-time GC strategy. Among them are space
costs, barrier costs, and available compiler support.
Copying GCs require doubling the memory space, because
all the objects must be copied during GC execution. Non
copying GCs do not require this extra space, but are
subject to fragmentation. We specifically consider an
incremental non-copying GC based on the tri-color
algorithm [2], which the basic algorithm is as follows: an
object is colored white when not reached by the GC, black
when reached, and grey when it has been reached, but its
descendants may not be (i.e., they are white). Grey
objects make a wavefront, separating the white
(unreached) from the black (reached) objects, and the
application must preserve the invariant that no black
objects have a pointer to a white object, which is achieved
by using write barriers.

For each thread, we maintain a stack of root pointers.
We start the marking phase by coloring all objects
referenced by root pointers grey. Each root stack is
processed root by root, and each object referenced by a
root is inserted in a grey-list. If during this phase, the
application tries to make a reference from a black object to
a white one, the color of the referenced object is turned
grey and the object is moved from the white-list to the
grey-list (see Figure 2).

Figure 2. The GC strategy.

When all the descendants of a grey object are
processed (i.e., the grey object has no white descendant),
the grey object is turned black and moved from the grey-
lis t to the black-list. The collection is completed when
there are no more grey objects. During the sweeping
phase, all the white objects can be recycled and all the
black objects become white. In this process, objects that
must execute the finalize() method are moved to the

finalize-list, which are executed by a specialized thread
such as in [10]. Black objects are marked white and moved
to the white-list. Finally, for white objects that have
finalized, their memory is freed. Then, a compacting phase
can be added to move objects into a continuous block into
the heap.

2.1. Write Barrier Strategy

The code checking a reference violating the tri-color
invariant (i.e., from a black object to a white one) must be
executed when updating an object reference (i.e., when
executing the putfield, putstatic, aastore,
aputfield_quick, aputstatic_quick, or
aastore_quick bytecodes). In order to maintain the tri-
color invariant, we introduce in the interpretation of these
bytecodes, the write barrier pseudo-code shown in Figure
3, where we denote as X the object that makes the
reference, and as Y the referenced object, the color()
function gives the color of the object parameter, and the
greyObject(Y) procedure unlinks the Y object from the
white-list linking it to the grey-list [5].

Figure 3. Write barrier code for the tri -color invariant.

2.2. Dealing with Fragmentation

In general, memory fragmentation is not a severe
problem. Additionally, if the application only allocates
objects with small size, acceptable worst-case bounds on
fragmentation can be given. For objects with large size,
strategies such as fragmenting the object into smaller-size
chunks may be used. Another strategy relies on
occasionally running a compacting GC, which implies
some degradation of real-time guarantees.

Given the small average object size that Java
applications present (i.e., between 25 and 40 bytes [8]), it
appears imperative to keep the number of header words to
a minimum. Since objects outside the heap (i.e., objects
allocated within immortal or scoped MRs) are not moved,
we improve the performance by avoiding object handles
and hence use direct reference objects. Note that this
strategy is always possible; we can avoid handles for
objects outside the heap, even if we add a compactation
phase to our GC, requiring handles for objects within the
heap. When eliminating handles we improve also memory
consumption in a word per object, which means
approximately 11% of the total required object space,
given that the average size of Java objects is 32Bytes.

WriteBarrierGC:
 if ((color(X) = black) and (color(Y) = white)) greyObject(Y);
end_writeBarrierGC:

Hence, we found more interesting to not use a compacting
phase, and to avoid handles.
2.3. The GC and MR

 Since objects allocated within regions may contain
references to objects within the heap, the GC must take
into account these external references, adding them to its
reachability graph. To detect when an object outside the
heap references an object within the heap, we introduce a
fourth color (e.g., red) meaning that the object is allocated
outside the heap (See Figure 5). Hence, we introduce a
new invariant:
 Definition- Fourth-color invariant: there are no red
objects within the heap, and all outside the heap are red.

Figure 5. Objects outside the heap are allocated red.

 The fourth color allows us to detect when the X object
must be added to the root-set of the collector, where the
root-list is updated (i.e., by using write barriers). A
reference from a red object (X) to another object (Y)
allocated in the heap (i.e., white, black, or grey) causes
the addition of the X object to the root-set of the collector,
which is achieved by using write barriers, as shows the
code of Figure 6, where the updateRootSet(X, Y)
procedure links the X object to the root-list blackening it
and greying the Y object if it is white. When the collector
explores an object outside the heap (i.e., a root), which has
lost its references into the heap, it is eliminated from the
root-set. When a scoped MR ends, all objects within the
region having references to the objects within the heap are
removed from the root-list of the collector.

Figure 6. Allocating grey object outside the heap.

RTSJ makes distinction between three main kinds of
tasks: (i) low-priority that are tolerant with the GC, (ii)
high-priority that cannot tolerate unbounded preemption

latencies, and (iii) critical that cannot tolerate preemption
latencies. Low-priority tasks, or threads, are instances of
the Thread class, high-priority tasks are instances of the
RealtimeThread class, which extend the Thread class
to support real-time tasks, and critical tasks are instances
of the NoHeapRealtimeThread class, which extend the
RealtimeThread class to avoid critical task have delays
because the GC 2.

2.4. Dealing with Critical Tasks

Whereas high-priority tasks require a real-time GC,
critical tasks must not be affected by the GC, and as a
consequence cannot access any object within the heap
[11]. A reference of a critical task to an object allocated in
the heap causes the MemoryAccessError() exception,
which can be achieved by using read barriers. Note that
read barriers occur upon all object accesses, which means
upon executing both types of bytecodes: (i) Those
causing a load reference (i.e., getfield, getstatic,
agetfield_quick, agetstatic_quick, or aaload
bytecodes). (ii) Those causing a store reference (i.e.,
those causing write barriers: putfield, putstatic,
aputfield_quick, aputstatic_quick, aastore, or
aastore_quick bytecodes).For bytecodes causing a
load reference, we introduce the read barrier code given in
Figure 7, where the type() function returns thread,
task, and critical depending on the type of the
parameter task, t is the active task, and the code tagged
memoryAccessError: throws the
MemoryAccessError() exception. For bytecodes
causing a store reference (i.e., those executing write
barriers), we modify the writeBarrier pseudo-code to
integrate the read barriers (see Figure 8).

Figure 7. Detecting accesses of critical tasks into the heap.

Figure 8. Detecting illegal accesses from critical tasks.

 Note that read barriers are not strictly necessary
because read operations do not change the color of the
object [4]. Here, we apply the same optimization as for the
incremental Treadmill GC [1]which is to use write barriers
instead of read barriers, and the restriction on critical tasks

2 In RTSJ, the NoHeapRealtimeThread class specializes

RealtimeThread, that extends java.lang.Thread for real-time.

writeBarrierGC:
 if ((color(X) = red) and (color(Y) <> red)) updateRootSet(X, Y)
 else if ((color(X) = black) and (color(Y) = white)) greyObject(Y);
end_writeBarrierGC:

readBarrier:
 if ((type(t) = critical) and (color(X) <> red) goto
memoryAccessError:;

writeBarrier:
 if ((type(t) = critical) and (color(Y) <> red)) goto
memoryAccessError:;
 if ((color(X) = red) and (color(Y) <>red)) updateRootSet(X, Y)
 else if ((color(X) = black) and (color(Y) = white)) greyObject(Y);

can be reduced to write barriers checks since reads does
not interfere with the GC. In this way, we check that a
critical task never modify the graph of the collector instead
to check that a critical task never access an object within
the heap. Since accesses to objects within the heap does
not requires synchronization between the GC and the
application (i.e., the synchronization is made only when
modifying the graph of the collector), a critical task can
preempt immediately the GC, even if accesses to objects
within the heap are allowed. Then, we change the
MemoryAccessError() exception which raises when a
critical task attempts to access an object X within the heap
by the IllegalAssignmentError() exception which
raises when a critical task attempts to assign an object Y
which belongs to the heap (see Figure 9).

Figure 9. Detecting illegal assignments from critical tasks.

3. Scoped Regions
Several research have examined the possibility of

replacing the Java garbage collection by an adequate
stack-allocation scheme, which is more predictable [11].
Stack-allocation is desirable because execution time
properties are easier to capture than heap allocation. To
support scoped memory regions, we propose a mechanism
based on a reference-counter collector and a scoped
region-stack based algorithm. Then, every scoped region
is associated with a reference counter that keeps track of
the use of the region by tasks. And every task is
associated with a stack that keeps track of the scoped
region that can be accessed by the task. In this section,
we describe the main principles of the proposed
algorithms.

3.1. Checking Illegal Assignments
 The lifetime of objects allocated in scoped regions is
governed by the control flow. Strict assignment rules
placed on assignments to or from MRs prevent the
creation of dangling pointers (see Table 1 [11]).

 Reference
to Heap

Reference
to Immortal

Reference
to Scoped

Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Same, outer,

or shared

Table 1. Assignment rules in RTSJ.

 An implementation must ensure that the following
conditions are checked before the assignment is executed:

(i) objects within the heap or within the immortal region
cannot reference objects within a scoped region and (ii)
objects in a scoped region cannot reference objects
within another scoped region that is non-outer. Then, a
code checking illegal assignments and throwing the
IllegalAssignmentError() exception when detecting
an attempt of illegal assignment must be added when
updating an object reference (see Figure 10).

Figure 10. Write barrier code detecting illegal assignment.

 The algorithm to check illegal references from a scoped
region to another scoped one (i.e., the
nestedRegions(X, Y) function [7]) is following
described, before which we give an algorithm supporting
the region-stack used when checking nested scoped
regions.

3.2. Region-Stack Algorithm

In order to detect illegal assignments to scoped
regions, every thread has associated a region-stack
containing all scoped MRs which the thread can hold. The
MR at the top of the stack is the active region for the task
whereas the MR at the bottom of the stack is the
outermost scoped region for the task. The default active
region is the heap. When the task does no use any
scoped region, the region-stack is empty and the active
region is the heap or an immortal MR. Both, the active
region and the region-stack associated with the task
change when executing the enter() or executeInArea()
methods.

Region-Stack Algorithm:
• When creating a new scoped region (i.e., a new

LTMemory, VTMemory, LTPhysicalMemory, or
VTPhysicalMemory object), a new region-stack is
associated with the new region. The associated
region stack is composed of the region-stack of the
outer scoped region, which can be empty (e.g., when
the active region is the heap), and the identifier of the
new scoped region which is added on the top of the
stack.

• When creating a new task (i.e., a RealtimeThread or
NoHeapRealtimeThread object), a memory region is
associated with it 3. Then, if the active region is a

3 The associated memory region is specified through the

RealtimeThread and NoHeapRealtimeThread constructors.

writeBarrier:
 if ((type(t) = critical) and (color(Y) <> red)) goto
illegalAssignment:;
 if ((color(X) = red) and (color(Y) <> red)) updateRootSet(X, Y)
 else if ((color(X) = black) and (color(Y) = white)) greyObject(Y);

writeBarrierMR:
 if ((region(X)<>scoped)and(region(Y)=scoped)) goto
illegalAssignment:;
 if ((region(X) = scoped)and(region(Y) = scoped)) nestedRegions(X,
Y);

scoped one, the region-stack of the memory region is
associated with the task. Both the active region and
the active region-stack are considered part of the part
of the task's state, which must be saved/restored at
context change time. Note that by only saving the old
active region value, we can obtain both the active and
the region-stack pointer.

• When a task enters a region through the enter()
(executeInArea()) method, the active region is
changed to the entered region, and as consequence
the region-stack associated with the task. Then, the
old active region must be saved, before to change it.
Both, the old active region and the region-stack are
restored when returning from the enter()
(executeInArea()) method. Note that when this
happens the reference counter of the scoped region
which is at the top of the stack must be decremented.
We detail hereafter the main steps of the algorithm.

3.4. Checking Nested Regions

The basic idea to detect illegal assignments is to take
actions upon those instructions that cause one object to
reference another [4] (i.e., we must introduce write
barriers).
• The putfield (aputfield_quick) bytecode

causes a reference from an object (X) to another one
(Y), and the aastore (aastore_quick) bytecode
stores a reference (Y) into an array of references (X).
Then, the scope of X must be inner than the
scope of Y.

• The putstatic (aputstatic_quick) bytecode
causes a reference from the outermost region (i.e., the
heap) to an object Y.

• The region to which an object belong must be
specified in the header of the object. Then, when an
object/array is created by executing the new
(new_quick) or newarray (newarray_quick)
bytecode, it is associated with the scope of the active
region. Following we describe the
nestedRegions(X, Y) function.

Nested MR Algorithm: nestedRegions(X, Y)

Checking nested regions requires two steps. In a first
step, the region-stack of the active task is explored, from
the top to the bottom, to find the MR to which the X
object belongs (see Figure 11.a). If it is not found (see
Figure 11.b), this is notified by throwing a
MemoryAccessError() exception4.

4 This exception is thrown upon any attempt to refer to an object

in an inaccessible MemoryArea.

a. The region of X is found. b. The region of X is not
found.
 Figure 11. First exploration of the region-stack.

In a second step, the region-stack is again explored, but
this time we take the MR found in the previous step as the
top of the stack (see Figure 12.a). Then, we start the
search from the region to which the X object belongs, and
the objective is to find the MR to which the Y object
belongs (i.e., the region to which the object Y belongs
must be outer to the region to which the object X
belongs). If the scoped region of Y is not found in the new
region-stack (see Figure 12.b), (i.e., the heap that is the
outest region and hence at the bottom of the stack is
reached), this is notified by throwing a
IllegalAssignmentError() exception. If it is found,
the nestedRegions(X, Y) returns true.

a. Y is outer to X . b. Y is inner to X.

Figure 12. Second exploration of the region-stack.

 Since the nestedRegions(X, Y) function, which
executes the region stack algorithm detects illegal
assignments from objects within non-scoped regions to
objects within scoped regions raising the
IllegalAssignmentError(), we use the code given in
Figure 13 as a final solution.

Figure 13. Write barrier code for both the GC and MRs.

3.5. Scoped Region Collection
A safe region implementation requires that a scoped

MR gets deleted only if there is no external reference to it.

writeBarrier:
 if (region(Y) = scoped)
 if (region(X) = scoped) nestedRegions(X,Y)
 else goto illegalAssignment:;
 if ((type(t) = critical) and (region(Y) = heap)) goto
illegalAssignment:;
 if ((color(X) = red) and (color(Y) <> red)) updateRootSet(X, Y)

The problem presented by nested regions can be solved
by using a reference-counter for each region, and a simple
reference-counting GC collects scoped MRs when their
counter reaches zero [1]. Note that by collecting regions,
problems associated with reference counting collectors are
solved: the space and time to maintain a reference counter
per scoped MR is minimal, and there is no cyclic MR
reference. The reference-counter is increased when
associating the region to a task (i.e., when a thread enters
a new scoped region through the enter()
(executeInArea()) method or when creating a real-
time thread with a scoped region through the
RealtimeThread or NoHeapRealtimeThread
constructors), or when opening an inner scoped region.

It is decreased when a task leaves the region (i.e., when
returning from the enter() (executeInArea()) method
or when the task which uses the scoped region exits), or
when an inner scope ends. Note that for the heap and
immortal MRs, there is no need to maintain a reference
counter because these regions exist outside the scope of
the application, that creates the objects. Recall also, that
references from objects within the heap, an immortal MR,
or a scoped MR, to objects within the heap or immortal
memory are allowed.

Scoped Region Collector Algorithm:
• When creating a new scoped region, its reference-

counter is initialized to zero.
• When assigning a scoped region to a variable or to a

field object:
1. If the variable or the field object references a

scoped region, the reference-counter of the
scoped region that lost the reference is
decremented.

2. The reference-counter of the scoped region is
incremented.

• When starting the execution of a task using a scoped
region or when a task enters a scoped region, the
reference-counter of the region is incremented.

• When a task exit or when the enter()
(executeInArea()) method returns, if the exited
region is a scoped one, the reference-counter of the
region is decremented.

• When collecting a scope region because its reference
counter reaches zero:
1. The root-list of the GC is update to remove all the

objects in the region that are external roots for
the GC.

2. All the objects in the region are moved to the
finalize-list, where their finalize() method is
executed.

3. If the scoped MR belongs to another scoped
MR, the reference counter of the outer region is
decremented.

Then, when removing a region, it is sure that there is no
object dependent on an older scoped region.

4. Experiment
 We have modified the KVM [13] garbage collector5
making it incremental byusing the tri-color algorithm. We
have implemented the MyIncrementalGC class within
the KVM by modifying some files6. This class supports
the method related with parameters characterizing the
collector behavior (e.g., getPreemtionLatency(),
getMinimumReclamationRate(), getOverhead(),
and getWriteBarrierOverhead() methods). We
have only implemented three types of memory regions:
(i) the heap that is collected by an incremental GC, (ii)
immortal that are never collected and can not be nested,
and (iii) scoped that have limited live-time and can be
nested. These regions are supported by the HeapMemory,
the ImmortalMemory, and the ScopedMemory classes.
Unlike RTSJ, in our prototype the ScopedMemory class is
a non-abstract class, and the MemoryArea abstract class
has not been implemented7. The
getWriteBarrierOverhead() method has been
implemented for the four classes, to give the percentage of
the execution cost introduced by the write barrier code for
the original execution cost of each assignment.
 We have limited to 256 the number of regions and the
number of scoped nexted levels to 8, which allows us to
support the region stack of each task in 4 words. The
original header format of KVM objects (i.e., SIZE <31:8>,
TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT <0>) has
been modify to support the color and region of the object
(i.e., SIZE <31:15>, REGION <14:8>, TYPE <7:2>, COLOR
<1:0>). Note that size of the object header has not been
incremented, instead the maximum object size has been
reduced from 32 Mbytes to 64 KBytes. The MARK_BIT
that is used by the original mark-and-sweep collector of
the KVM to mark the object is not longer used because
objects are market by color, also the STATIC_BIT is not
used because it came from an old collector based on the
copying algorithm that have been changed in order to
make the KVM suitable to small devices. The maximum
heap size supported by the KVM is 32 Mbytes, as in the
original version.

5 Version 1.0.1
6 We have modified the garbage.c file to implement the
collector algorithm and the interpreter.c file to implement
the write barriers, as well as the native.h and the
nativeCore.c files, which support the interface for the native
methods.
7 This due to the limitations of heritage in the KVM.

 We use an artificial collector benchmark which is an
adaptation made by Hans Boehm from the John Ellis and
Pete Kovac benchmark8. This benchmark executes 262*106
bytecodes and allocates 408 MBytes. Then, the allocation
rate is about 1.6 Bytes per executed bytecode. The
maximum latency to preempt the incremental collector has
been measured as 1 micro-second. The number of garbage
collection pas, the seconds spent in garbage collection,
the seconds spent in execute de application, and the
percentage overhead introduced by our collector is given
in Table 2.

Table 2. Assignment rules in RTSJ.

4.1 Write Barrier Overhead
 In RTSJ, the getWriteBarrierOverhead() method of
the IncrementalGarbageCollectorclass gives the
write barrier cost per assignment, i.e.,
writeBarrierCost/assignmentCost where the writeBarrierCost is the
execution time of the introduced write barriers, and the
assignmentCost is the execution time of an object assignment.
Thus, we compute writeBarrierCost for an incremental GC, as
the cost to detect when to take actions preserving the tri-
color invariant, i.e., the execution time taken to detect
when to execute the greyObject(Y) function:

if ((color(X) = black) and (color(Y) = white)) greyObject(Y);
Note that the execution time taken by the greyObject(Y)
function is considered as part of the GC overhead rather
than as part of the write barrier overhead. The
GarbageCollector abstract class of RTSJ does not
support the getWriteBarrierOverhead() method12.
Since the heap coexists with other MRs, we consider that
this method must also be implemented for all collectors to
give the overhead caused by detecting illegal assignments
of critical task to objects within the heap. For mark-and-
sweep collectors, this method further gives the overhead
caused by the write barriers introduced to detect when to
update the collector’s root-set:
 If ((color(X) = red) and (color(Y)<>red)) updateRootSet(X, Y);

Minimizing the Write Barrier Overhead.
The most common approach to implement write barriers is
by inline code, consisting in generating the instructions
executing write barrier events for every store operation.
This solution requires compiler cooperation (e.g., JIT), and
presents a serious drawback because it nearly doubles the
application’s size. Regarding systems with limited memory
such as PDAs, this code expansion overhead is
considered prohibitive. Alternatively, we can instrument
the bytecode interpreter, avoiding space problems, but

8http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.ht

ml

this still requires a complementary solution to handle
native code. A solution minimizing the write barrier
overhead consists in improving the write barrier
performance by using hardware support such as the
picoJava-II microprocessor [15], which allows performing
write barrier checks in parallel with the store operation.
This alternative solution has been the subject of [8].

The number of executed bytecodes performing write
barrier test is 15*106 (i.e., aastore: 1*106, putfield:
6*106, putfield_fast: 7*106, putstatic: 19*106, and

putstatic_fast: 0) for a total of 262*106 executed
bytecodes. This means that 5% of executed bytecodes
perform a write barrier test, as already obtained in [6], and
the overhead introduced by the software write barrier test
in each assignment is:

• 45% to maintain the root-set.
• 31% to preserve the tri-color invariant.
• 31% to detect illegal references.
• 16% to check a nested scoped level.

Then, the RTSJ-instrumented KVM runs slowdown as
minimum 5,35% and as maximum 11,75% than the original
KVM (i.e., 5,35,+0,80*n; where n is the maximum number of
allowed nexted levels) .

5. Conclusions
The current RTSJ specification imposes restricted

assignments rules that keep longer-lived objects from
referencing object in scoped memory, which are possibly
shorter live. This requires run-time checks for each
assignment, which introduces a high overhead. In the
RTSJ model, the way to offer real-time guarantees is by
turning off the GC during the execution of critical tasks,
which only allocates objects in memory regions and
cannot reference objects within the heap. Some real-time
tasks can allocate and reference objects within the heap,
whereas others (critical) are no allowed to allocate nor
reference objects within the heap. This requires run-time
checks for all the object accessed by all the application
tasks, which introduces a high overhead.

We have proposed a solution to the realization of the
abstract memory model introduced by the RTSJ
specification. In particular, garbage collection in the heap
complies with real-time constraints by using write barriers
to maintain both the root-set and the tri-color invariant. In
our solution, the detection of illegal assignments related
with memory regions and access errors related with critical

Memory
Heap

GC
pass

Collecting
Time

Execution
Time

%
Overhea

d
8 MB 51 13.54 72.87 18.85
16 MB 27 13.17 72.72 18.11
24 MB 17 12.80 71.99 17.80
32 MB 13 11.82 70.50 16.50

tasks, is made dynamically by introducing a write barrier
mechanism based on a region-stack associated to the
active task.
Related Work
 The JVM must check for illegal references and throw an
exception if they occur. In order to do that, we introduce
extra code that must be executed when updating an object
reference (i.e., write barriers), which introduces high
overhead. A similar approach is given in [], which uses
also a stack-based memory management that operates
dynamically. This solution proposes a contami nated GC
based on the idea each object in the heap is alive due to
references that begin in the runtime stack. But this
solution collects memory within the heap, and does not
treat another memory region. A safe implementation
requires that a region can be deleted only if there is no
external reference to it. The Tofte-Talpin calculus [tt] uses
a lexically scoped expression to delimit the lifetime of a
region. Memory for the region is allocated when the
control enters the scope of the region constructor, and is
de-alocated when the control leaves the scope. This
mechanism is implemented by a stack of regions where
regions are ordered by lifetimes. The allocation and de-
allocation of regions is determined at compile time by a
type-based analysis, consisting to annotate in the source
program every expression creating a value with a region
variable []. An intermediate la nguage allows checking the
safety of arbitrarily ordered regions, where region
allocation and de-allocation are explicit.
As in [tt], our solution is based on a stack of scoped
regions, where regions are ordered by life-times. But given
that in RTSJ, a region can be shred by several threads, this
solution requires more complex mechanisms because the
region will remain active until the last thread has exited.
Then, the de-allocation of regions can-not be determined
at compile time. As in [], this problem has been resolved in
RTSJ by using a reference counter for each region. The
counter is incremented (decremented) when creating
(collecting) an inner scoped region, and in our solution
also when the region is associated to (de-associated from)
a task.
 Since in RTSJ the collector coexist with memory regions,
objects within the heap having references from objects
outside the heap must be considered as roots by tracing-
based collectors (i.e., mark-and-sweep, incremental, or
generational). In order to detect new roots of the collector,
we introduce a color indicating whether the object is
outside the heap, and use write barriers [RT -systems
journal]. In order to characterize the write barrier overhead
introduced by both critical tasks and the collectors roots,
we add the getWritebarrierOverhead() method to
the RTSJ GarbageCollector abstract class. For
subclasses of this abstract class

supporting write barrier-based collectors (i.e., incremental
or generational), the getWritebarrierOverhead()
method gives the overhead to maintain the tri-color
invariant or inter-generational pointers. In order to
characterize the write barrier cost to detect inter-region
assignements from objects within non-scoped regions to
objects within scoped scoped regions, we add the
getWritebarrierOverhead() method to the
MemoryArea abstract class. This method must be
rewritten on the Scoped Memory abstract class (subclass
of MemoryArea) to give the cost to detect assignments
from objects within scoped regions to objects within a
non-outer scoped region. Several ways to improve the
performance write barriers has been proposed in [] and [].
The performance of the software-based solution presented
in this paper have improved in [] by (a) using existing
hardware support, and (b) modifying existing hardware.
The performance of these three solutions, the software-
based and the two hardware based solutions, have been
compared in []. At different that [], [], and [], which
address the performance of write barriers and ways to
improve it, this paper describe with detailed the software-
based solution more precisely .

References

[1] H.G. Baker. "The Treadmill: Real-Time Garbage Collection

without Motion Sickness" .In Proc. of the Workshop on
Garbage Collection in Object-Oriented Systems.
OOPSLA'91. ACM 1991.Also appears as SIGPLAN
Notices Vol. 27, no. 3, pages 66-70, March 1992.

[2] G. Bollella and J. Gosling."The Real-Time Specification for
Java". IEEE Computer, June 2000.

[3] E.W. Dijstra, L. Lamport, A.J. Martín, C.S. Scholtenand,
and E.F.M. Steffens. “On-the-fly Garbage Collection: An
Exercise in Cooperation”. Communications of the ACM,
21(11):965-975, November 1978.

[4] D. Gay and A. Aiken. "Memory Management with Explicit
Regions". In Proc. of the Conference of Programming
Language Design and Implementation (PLDI). ACM
SIGPLAN 199

[5] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Memory Management for Real-time
Java: an Efficient Solution using Hardware Support". Real-
Time Systems journal. Kluber Academic Publishers, to be
published.

[6] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Region-based Memory Management
for Real-time Java". In Proc. of the 4th International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). IEEE 2001.

[7] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. “Analyzing the Performance of

Memory Management in RTSJ”. In Proc. of the 5th
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC). IEEE 2002.

[8] M.T. Higuera. "Memory Management Solutions for Real-
time Java". PHD Thesis. INRIA-Rocquencourt, March
2002.

[9] J.S. Kim and Y. Hsu. "Memory System Behavior of Java
Programs: Methodology and Analysis". In Proc. of the
ACM Java Grande 2000 Conference.

[10] A. Miyoshi, H. Tokuda, and T. Kitayama.
"Implementation and Evaluation of Real-Time Java
Threads". In Proc. of the Real-Time Systems Symposium.
IEEE December 1997.

[11] A. Petit-Bianco and T. Tromey. "Garbage Collection for
Java in Embedded Systems". In Proc. of IEEE Workshop
on Programming Languages for Real-Time Industrial
Applications. December 1998.

[12] The Real-Time for Java Expert Group. "Real-Time
Specification for Java". RTJEG 2002 . http://www.rtj.org

[13] A. Reid, J. McCorquodale and J. Baker. "The Need for
Predictable Garbage Collection". In Proc. of Workshop on
Compiler Support for System Software, WCSSS'99. ACM
SIGPLAN 1999. http://www.cs.utah.edu/projects/flux.

[14] Sun Microsystems. “KVM Technical Specification". Java
Community Process, May 2000. http://java.sun.com.

