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Abstract 
The memory model used in the Real-Time Specification 

for Java (RTSJ) imposes strict assignment rules to or from 
memory areas preventing the creation of dangling 
pointers, and thus maintaining the pointer safety of Java. 
This paper provides an implementation solution to 
ensure the checking of this rules before each assignment 
statement, where the check is performed dynamically by 
using write barriers.  

Keywords: Java, Garbage-collector, Memory-regions, Real-
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1. Introduction 

Implicit garbage collection has always been 
recognized as a beneficial support from the standpoint of 
promoting the development of robust programs. However, 
this comes along with overhead regarding both execution 
time and memory consumption, which makes (implicit) 
garbage collection poorly suited for small-sized embedded 
real-time systems. However, there has been extensive 
research work in the area of making garbage collection 
compliant with real-time requirements. Proposed solutions 
may roughly be classified into two categories: 
1. Incremental garbage collection (e.g., [1]) allows the 

application to execute while the Garbage Collector 
(GC) has been launched, a mechanism (i.e., read or 
write barriers) is used to coordinate the execution of 
the GC and of the application.  

2. Region-based memory allocation (e.g., [3]) enables 
grouping related objects within a region. Commonly, 
Memory Regions (MR) are used explicitly in the 
program. This is an intermediate solution between 
explicit memory allocation/deallocation and the GC.  

 
Application of these two strategies has been studied in 
the context of Java, which is in particular highlighted by 
the RTSJ [1]. This specification allows the implementation 
of real-time compliant GC without prescribing any specific 
solution. The MemoryArea abstract class supports the 
region paradigm in the RTSJ specification   [11] through 
the three following kinds of regions: (i) immortal memory, 
supported by the ImmortalMemory and the 
ImmortalPhysicalMemory classes, that contains 
objects whose life ends only when the JVM terminates; 

(ii) (nested) scoped memory, supported by the 
ScopedMemory abstract class, that enables grouping 
objects having well-defined lifetimes and that may either 
offer temporal guarantees (i.e., supported  by the 
LTMemory and LTPhysicalMemory classes) or not (i.e., 
supported  by the  VTMemory  and VTPhysicalMemory 
classes) on the time taken to create objects; and (iii) the 
conventional heap, supported by the   HeapMemory 
class. There is only one object instance of the 
HeapMemory and the   ImmortalMemory classes in the 
system, which are resources shared among all threads in 
the system and whose reference is given by calling the 
instance() method. In contrast, for the 
ImmortalPhysicalMemory, and ScopedMemory  classes, 
several instances can be created by the application.  

Objects allocated within immortal MRs live until the 
end of the application and are never subject to garbage 
collection. Objects with limited lifetime can be allocated 
into a scoped region or the heap. Garbage collection 
within the application heap relies on the (real-time) GC of 
the JVM. A scoped region gets collected as a whole once 
it is no longer used. Since immortal and scoped MRs are 
not garbage collected, they may be exploited by hard real-
time tasks, especially VTMemory objects, which guarantee 
allocation time proportional to the object size 1. 

 
   In this paper, we propose a GC strategy based on the tri-
color algorithm complying with the RTSJ specification 
(Section 2). RTSJ imposes res tricted assignments rules 
that keep longer-lived objects from referencing objects in 
life-limited memory regions (scoped regions). The 
proposed approach includes a new stack-based algorithm 
detecting illegal references when both objects, the one 
that   makes the reference and the referenced one, are 
within scoped regions (Section 3).   In Section 5, we 
implement a prototype within the KVM [13] by modifying 
the original GC and introducing MRs. Finally, a summary 
of our contribution concludes this paper (Section 5). 

 

                                                 
1The ImmortalPhysicalMemory, 
VTPhysicalMemory, and LTPhysicalMemory classes 
support regions with special memory attributes (e.g., dma, 
shared , swaping). 



2. The Basic Collector Strategy 
There are some important considerations when 

choosing a real-time GC strategy. Among them are space 
costs, barrier costs, and available compiler support. 
Copying GCs require doubling the memory space, because 
all the objects must be copied during GC execution. Non 
copying GCs do not require this extra space, but are 
subject to fragmentation. We specifically consider an 
incremental non-copying  GC based on the  tri-color 
algorithm [2], which the basic algorithm is as follows: an 
object is colored white when not reached by the GC, black  
when reached, and grey  when it has been reached, but its 
descendants may not  be (i.e., they are white). Grey 
objects make a wavefront, separating the white 
(unreached) from the black (reached) objects, and the 
application must  preserve the invariant that no black 
objects have a pointer to a white object, which is achieved 
by using write barriers.  

For each thread, we maintain a stack of root pointers. 
We start the marking phase by coloring all objects 
referenced by root pointers grey. Each root stack is  
processed root by root, and each object referenced by a 
root is inserted in a grey-list. If during this phase, the 
application tries to make a reference from a black object to 
a white one, the color of the referenced object is turned 
grey and the object is moved from the white-list to the 
grey-list (see Figure 2).  
 

 
Figure 2. The GC strategy. 

When all the descendants of a grey object are 
processed (i.e., the grey object has no white descendant), 
the grey object is turned black and moved from the grey-
lis t to the black-list. The collection is completed when 
there are no more grey objects. During the sweeping 
phase, all the white objects can be recycled and all the 
black objects become white. In this process, objects that 
must execute the finalize() method are moved to the 

finalize-list, which are executed by a specialized thread 
such as in  [10]. Black objects are marked white and moved 
to the white-list. Finally, for white objects that have 
finalized, their memory is freed. Then, a compacting phase 
can be added to move objects into a continuous block into 
the heap.  

 
2.1. Write Barrier Strategy 

The code checking a reference violating the tri-color 
invariant (i.e., from a black object to a white one) must be 
executed when updating an object reference (i.e., when 
executing the putfield, putstatic, aastore, 
aputfield_quick, aputstatic_quick, or 
aastore_quick bytecodes). In order to maintain the tri-
color invariant, we introduce in the interpretation of these 
bytecodes, the write barrier pseudo-code shown in Figure 
3, where we denote as X the object that makes the 
reference, and as Y the referenced object, the color() 
function gives the color of the object parameter, and the 
greyObject(Y) procedure unlinks the Y object from the 
white-list linking it to the grey-list  [5]. 

 
 

 
 

 

Figure 3. Write barrier code for the tri -color invariant. 

 
2.2. Dealing with Fragmentation 

In general, memory fragmentation is not a severe 
problem. Additionally, if the application only allocates 
objects with small size, acceptable worst-case bounds on 
fragmentation can be given. For objects with large size, 
strategies such as fragmenting the object into smaller-size 
chunks may be used. Another strategy relies on 
occasionally running a compacting GC, which implies 
some degradation of real-time guarantees.  

Given the small average object size that Java 
applications present (i.e., between 25 and 40 bytes [8]), it 
appears imperative to keep the number of header words to 
a minimum. Since objects outside the heap (i.e., objects 
allocated within immortal or scoped MRs) are not moved, 
we improve the performance by avoiding object handles 
and hence use direct reference objects. Note that this 
strategy is always possible; we can avoid handles for   
objects outside the heap, even if we add a compactation 
phase to our GC, requiring handles for objects within the 
heap. When eliminating handles we improve also memory 
consumption in a word per object, which means 
approximately 11% of the total required object space, 
given that the average size of Java objects is 32Bytes. 

WriteBarrierGC: 
    if ((color(X) = black) and (color(Y) = white)) greyObject(Y);  
end_writeBarrierGC: 



Hence, we found more interesting to not use a compacting 
phase, and to avoid handles. 
2.3. The GC and MR 

    Since objects allocated within regions may contain 
references to objects within the heap, the GC must take 
into account these external references, adding them to its 
reachability graph. To detect when an object outside the 
heap references an object within the heap, we introduce a 
fourth color (e.g., red) meaning that the object is allocated 
outside the heap (See Figure 5). Hence, we introduce a 
new invariant: 
 Definition- Fourth-color invariant: there are no red 
objects within the heap, and all outside the heap are red. 

 
Figure 5. Objects outside the heap are allocated red.  

     The fourth color allows us to detect when the X object 
must be added to the root-set of the collector, where the 
root-list is updated (i.e., by using write barriers). A 
reference from a   red object (X) to another object (Y) 
allocated in the heap (i.e.,   white,   black, or   grey) causes 
the addition of the X object to the root-set of the collector, 
which is   achieved by using write barriers, as   shows the 
code of  Figure 6, where  the updateRootSet(X, Y)  
procedure links the X object to the root-list blackening it 
and greying the Y object if it   is white. When the collector 
explores an object outside the heap (i.e., a root), which has 
lost its references into the heap, it is eliminated from the 
root-set. When a scoped MR ends, all objects within the 
region having references to the objects within the heap are 
removed from the root-list of the collector.  
 
 
 
 
 
Figure 6. Allocating grey object outside the heap. 

RTSJ makes distinction between three main kinds of 
tasks: (i) low-priority that are tolerant with the GC, (ii) 
high-priority that cannot tolerate unbounded preemption 

latencies, and (iii) critical that cannot tolerate preemption 
latencies. Low-priority tasks, or threads, are instances  of 
the Thread class, high-priority tasks are instances  of the 
RealtimeThread class, which extend the Thread class 
to support real-time tasks, and  critical  tasks are instances 
of the NoHeapRealtimeThread class, which extend the 
RealtimeThread  class to avoid critical task have delays 
because the GC 2. 

 
2.4. Dealing with Critical Tasks 

Whereas high-priority tasks require a real-time GC, 
critical tasks must not be affected by the GC, and as a 
consequence cannot access any object within the heap 
[11]. A reference of a critical task to an object allocated in 
the heap causes the MemoryAccessError() exception, 
which can be  achieved by using read barriers. Note that 
read barriers occur upon all object accesses, which means 
upon executing both types of bytecodes: (i) Those 
causing a load reference (i.e., getfield, getstatic, 
agetfield_quick, agetstatic_quick, or aaload 
bytecodes). (ii) Those causing a store reference (i.e., 
those causing write barriers: putfield, putstatic, 
aputfield_quick, aputstatic_quick, aastore, or 
aastore_quick bytecodes).For bytecodes causing a 
load reference, we introduce the read barrier code given in 
Figure 7, where the type() function returns thread, 
task, and critical depending on the type of the 
parameter task, t  is the active task, and the code tagged   
memoryAccessError: throws the 
MemoryAccessError() exception. For bytecodes 
causing a store reference (i.e., those executing write 
barriers), we modify the writeBarrier pseudo-code to 
integrate the read barriers (see Figure 8). 

 
 

 

Figure 7.  Detecting accesses of critical tasks into the heap.  

 
 
 
 
 

Figure 8. Detecting illegal accesses from critical tasks.  

    Note that read barriers are not strictly necessary 
because read operations do not change the color of the 
object [4]. Here, we apply the same optimization as for the 
incremental Treadmill GC [1]which is to use write barriers 
instead of read barriers, and the restriction on critical tasks 

                                                 
2 In RTSJ, the NoHeapRealtimeThread class specializes 

RealtimeThread, that extends java.lang.Thread for real-time. 

writeBarrierGC: 
    if ((color(X) = red) and  (color(Y) <> red)) updateRootSet(X, Y) 
    else  if ((color(X) = black) and (color(Y) = white)) greyObject(Y); 
end_writeBarrierGC: 

readBarrier: 
    if ((type(t) = critical) and (color(X) <>  red)  goto 
memoryAccessError:; 

writeBarrier: 
  if ((type(t) = critical) and (color(Y) <> red))  goto 
memoryAccessError:; 
    if ((color(X) = red) and (color(Y) <>red)) updateRootSet(X, Y)  
    else if ((color(X) = black) and (color(Y) = white)) greyObject(Y); 



can be reduced to write barriers checks since reads does 
not interfere with the GC. In this way, we check that a 
critical task never modify the graph of the collector instead 
to check that a critical task never access an object within 
the heap. Since accesses to objects within the heap does 
not requires synchronization between the GC and the 
application (i.e., the synchronization is made only when 
modifying the graph of the collector), a critical task can 
preempt immediately the GC, even if accesses to objects 
within the heap are allowed. Then, we change the 
MemoryAccessError() exception which raises when a 
critical task attempts to access an object X within the heap 
by the IllegalAssignmentError() exception which 
raises when a critical task attempts to assign an object Y 
which belongs to the heap (see  Figure 9).  

 
 
 
 
 
Figure 9. Detecting illegal assignments from critical tasks. 

3. Scoped Regions 
Several research have examined the possibility of 

replacing the Java garbage collection by an adequate 
stack-allocation scheme, which is more predictable [11]. 
Stack-allocation is desirable because execution time 
properties are easier to capture than heap allocation. To 
support scoped memory regions, we propose a mechanism 
based on a reference-counter collector and a scoped 
region-stack based algorithm. Then, every scoped region 
is associated with a reference counter that keeps track of 
the use of the region by tasks. And every task is 
associated with a stack that keeps track of the scoped 
region that can be accessed by the task. In this section, 
we describe the main principles of the proposed 
algorithms. 

 
3.1. Checking Illegal Assignments  
    The lifetime of objects allocated in scoped regions is 
governed by the control flow. Strict assignment rules 
placed on assignments to or from MRs prevent the 
creation of dangling pointers (see Table 1 [11]). 
 

 Reference 
to Heap 

Reference 
to Immortal 

Reference 
to Scoped 

Heap Yes  Yes No 
Immortal  Yes  Yes No 
Scoped Yes  Yes Same, outer, 

or shared 

Table 1. Assignment rules in RTSJ. 

     An implementation must ensure that the following 
conditions are checked before the assignment is executed: 

(i) objects within the heap  or within the immortal region 
cannot reference objects within a scoped region and (ii) 
objects in a scoped region cannot  reference objects 
within another  scoped region that is non-outer.  Then, a 
code checking illegal assignments and throwing the 
IllegalAssignmentError() exception when detecting  
an attempt of illegal assignment must be added when 
updating an object reference (see Figure 10). 
 
 
 
 
 
 

Figure 10. Write barrier code detecting illegal assignment. 

    The  algorithm to check illegal references from a scoped 
region to another scoped one (i.e., the 
nestedRegions(X, Y) function [7]) is following 
described, before which we  give an  algorithm supporting 
the region-stack  used when checking nested scoped 
regions.  
 
3.2. Region-Stack Algorithm 

In order to detect illegal assignments to scoped 
regions, every thread has associated a region-stack 
containing all scoped MRs which the thread can hold. The 
MR at the top of the stack is the active region for the task 
whereas the MR at the bottom of the stack is the 
outermost scoped region for the task. The default active 
region is the heap. When the  task does no use any 
scoped region, the region-stack is empty and the active 
region is the heap or an immortal MR. Both, the active 
region and the region-stack associated with the task 
change when executing the   enter() or executeInArea() 
methods.  

 
Region-Stack Algorithm: 
• When creating a new scoped region (i.e., a new 

LTMemory, VTMemory, LTPhysicalMemory, or 
VTPhysicalMemory object), a new region-stack is 
associated with the new region. The associated 
region stack is  composed of the region-stack of the 
outer scoped region, which can be empty (e.g., when 
the active region is the heap), and the identifier of the 
new scoped region which is added on the top of the 
stack. 

• When creating a new task (i.e., a RealtimeThread or 
NoHeapRealtimeThread object), a memory region is 
associated with it 3. Then, if the active region is a 

                                                 
3 The associated memory region is specified through the 

RealtimeThread and NoHeapRealtimeThread constructors. 

writeBarrier: 
    if ((type(t) = critical) and  (color(Y) <>  red)) goto 
illegalAssignment:; 
    if ((color(X) = red) and (color(Y) <> red)) updateRootSet(X, Y) 
    else if ((color(X) = black) and (color(Y) = white)) greyObject(Y); 

writeBarrierMR: 
    if ((region(X)<>scoped)and(region(Y)=scoped)) goto 
illegalAssignment:; 
    if ((region(X) = scoped)and(region(Y) = scoped)) nestedRegions(X, 
Y); 



scoped one, the region-stack of the memory region is 
associated with the task. Both the active region and 
the active region-stack are considered part of the part 
of the task's state, which must be saved/restored at 
context change time. Note that by only saving the old 
active region value, we can obtain both the active and 
the region-stack pointer.  

• When a task enters a region through the enter() 
(executeInArea()) method, the active region is 
changed to the entered region, and as consequence 
the region-stack associated with the task. Then, the 
old active region must be saved, before to change it. 
Both, the old active region and the region-stack are 
restored when returning from the enter() 
(executeInArea()) method. Note that when this 
happens the reference counter of the scoped region 
which is at the top of the stack must be decremented. 
We detail hereafter the main steps of the algorithm. 

 
3.4. Checking Nested Regions  

The basic idea to detect illegal assignments is to take 
actions upon those instructions that cause one object to 
reference another [4] (i.e., we must introduce write 
barriers). 
• The putfield (aputfield_quick) bytecode 

causes a reference from an object (X) to another one 
(Y), and the aastore (aastore_quick) bytecode 
stores a reference (Y) into an array of references (X). 
Then, the scope of  X  must be inner than the 
scope of Y.  

• The putstatic (aputstatic_quick) bytecode 
causes a reference from the outermost region (i.e., the 
heap) to an object Y.  

• The region to which an object belong must be 
specified in the header of the object. Then, when an 
object/array is created by executing the new 
(new_quick) or newarray (newarray_quick) 
bytecode, it is associated with the scope of the active 
region. Following we describe the 
nestedRegions(X, Y) function. 

 
Nested MR Algorithm: nestedRegions(X, Y) 

Checking nested regions requires two steps. In a first 
step, the region-stack of the active task is explored, from 
the top to the bottom, to find the MR to which the X 
object belongs (see Figure 11.a). If it is not found (see 
Figure 11.b), this is notified by throwing a 
MemoryAccessError() exception4. 

                                                 
4 This exception is thrown upon any attempt to refer to an object 

in an inaccessible  MemoryArea.  

 
a. The region of X is found.           b. The region of X is not 
found. 
         Figure 11. First exploration of the region-stack. 

In a second step, the region-stack is again explored, but 
this time we take the MR found in the previous step as the 
top of the stack (see Figure 12.a). Then, we start the 
search from the region to which the X object belongs, and 
the objective is to find the MR to which the Y object 
belongs (i.e., the region to which the object Y belongs 
must be outer to the region to which the object X 
belongs). If the scoped region of Y is not found in the new 
region-stack (see Figure 12.b), (i.e., the heap that is the 
outest region and hence at the bottom of the stack is 
reached),  this is notified by throwing a 
IllegalAssignmentError() exception. If it is found, 
the nestedRegions(X, Y) returns true. 

 

  
a. Y  is outer to X .   b. Y  is inner to X. 

Figure 12. Second exploration of the region-stack. 

     Since   the nestedRegions(X, Y) function, which 
executes the region stack algorithm detects illegal 
assignments from objects within non-scoped regions to 
objects within scoped regions raising the 
IllegalAssignmentError(), we use the code given in 
Figure 13 as a final solution. 
 
 
 
 
 
 
 
 
Figure 13. Write barrier code for both the GC and MRs. 

3.5. Scoped Region Collection 
A safe region implementation requires that a scoped 

MR gets deleted only if there is no external  reference to it. 

writeBarrier: 
       if (region(Y) = scoped) 
             if (region(X) =  scoped)  nestedRegions(X,Y)  
             else goto illegalAssignment:; 
       if ((type(t) = critical) and (region(Y) = heap))  goto 
illegalAssignment:;  
       if ((color(X) = red) and (color(Y) <> red))  updateRootSet(X, Y) 



The problem presented by nested regions can be   solved 
by using a reference-counter for each region, and a simple 
reference-counting GC collects scoped MRs when their 
counter reaches zero [1]. Note that by collecting regions, 
problems associated with reference counting collectors are 
solved: the space and time to maintain a reference counter 
per scoped MR is minimal, and there is no cyclic MR 
reference. The reference-counter is increased when 
associating the region to a task (i.e., when a thread enters 
a new scoped region through the enter() 
(executeInArea()) method or when  creating   a real-
time thread  with a scoped region through the 
RealtimeThread or NoHeapRealtimeThread 
constructors), or when  opening an inner scoped region. 

It is decreased when a task leaves the region (i.e., when 
returning from the enter() (executeInArea()) method 
or when the task which  uses  the scoped region exits), or 
when an inner scope ends. Note that for the heap and 
immortal MRs, there is no need to maintain a reference 
counter because these regions exist outside the scope of 
the application, that creates the objects. Recall also, that 
references from objects within the heap, an immortal MR, 
or a scoped MR, to objects within the heap or immortal 
memory are allowed. 

 
Scoped Region Collector Algorithm: 
• When creating a new scoped region, its reference-

counter is initialized to zero. 
• When assigning a scoped region to a variable or to a 

field object: 
1. If the variable or the field object references a 

scoped region, the reference-counter of the   
scoped region that lost the reference is 
decremented. 

2. The reference-counter of the scoped region is 
incremented. 

• When starting the execution of a task using a scoped 
region or when a task enters a scoped region, the 
reference-counter of the region is incremented. 

• When a task exit or when the enter() 
(executeInArea()) method returns, if the exited 
region is a scoped one, the reference-counter of the 
region is decremented. 

• When  collecting a scope region because its reference 
counter reaches zero: 
1. The root-list of the GC is update to remove all the 

objects in the region that are external roots for 
the GC. 

2. All the objects in the region are moved to the 
finalize-list, where their finalize() method is 
executed. 

3. If the scoped MR belongs to another scoped 
MR, the reference counter of the outer region is 
decremented. 

Then, when removing a region, it is sure that there is no 
object dependent on an older scoped region. 
 
4. Experiment 
    We have modified the KVM [13] garbage collector5 
making it incremental byusing the tri-color algorithm. We 
have implemented the MyIncrementalGC class within 
the KVM by modifying some files6. This class supports 
the method related with parameters characterizing  the 
collector behavior (e.g., getPreemtionLatency(), 
getMinimumReclamationRate(), getOverhead(),  
and getWriteBarrierOverhead() methods ). We 
have only  implemented three types of memory  regions: 
(i) the heap that  is collected by an incremental GC, (ii)  
immortal that are never collected and can not be nested, 
and (iii) scoped that  have limited live-time and can be 
nested. These regions are supported by the HeapMemory, 
the ImmortalMemory, and the ScopedMemory classes. 
Unlike RTSJ, in our prototype the ScopedMemory class is 
a non-abstract class, and the MemoryArea abstract class 
has not been implemented7. The 
getWriteBarrierOverhead() method has been  
implemented for the four classes, to give the percentage of 
the execution cost  introduced by the write barrier code for 
the original execution cost of each assignment. 
   We have limited to 256 the number of regions and the 
number of scoped nexted levels to 8, which allows us to 
support the region stack of each task in 4 words. The 
original header format of KVM objects (i.e., SIZE <31:8>, 
TYPE <7:2>, MARK_BIT <1>, and STATIC_BIT <0>) has 
been modify to support the color and region of the object 
(i.e., SIZE <31:15>, REGION <14:8>, TYPE <7:2>, COLOR 
<1:0>). Note that size of the object header has not been 
incremented, instead the maximum object size has been 
reduced from 32 Mbytes to 64 KBytes. The MARK_BIT 
that is used by the original mark-and-sweep collector of 
the KVM to mark the object is not longer used because 
objects are market by color, also the STATIC_BIT is not 
used because it came from an old collector based on the 
copying algorithm that have been changed in order to 
make the KVM suitable to small devices. The maximum 
heap size supported by the KVM is 32 Mbytes, as in the 
original version. 
 

                                                 
5 Version 1.0.1 
6 We have modified the garbage.c file to implement the 
collector algorithm  and  the interpreter.c file to implement 
the write barriers, as well  as the native.h and the 
nativeCore.c files, which support the interface for the  native 
methods. 
7 This due to the limitations of heritage in the KVM. 



    We use an artificial collector benchmark which is an 
adaptation made by Hans Boehm from the John Ellis and 
Pete Kovac benchmark8. This benchmark executes 262*106 
bytecodes and allocates 408 MBytes. Then, the allocation 
rate is about 1.6 Bytes per executed bytecode. The 
maximum latency to preempt the incremental collector has 
been measured as 1 micro-second. The number of garbage 
collection pas, the seconds spent in garbage collection, 
the seconds spent in execute de application, and the 
percentage overhead introduced by our collector is given 
in Table 2. 
 
 

Table 2. Assignment rules in RTSJ.  

4.1 Write Barrier Overhead 
   In RTSJ, the getWriteBarrierOverhead() method of 
the IncrementalGarbageCollectorclass gives the 
write barrier cost per assignment, i.e., 
writeBarrierCost/assignmentCost where the writeBarrierCost is the 
execution time of the introduced write barriers, and the 
assignmentCost is the execution time of an object assignment. 
Thus, we compute writeBarrierCost for an incremental GC, as 
the cost to detect when to take actions preserving the tri-
color invariant, i.e., the execution time taken to detect 
when to execute the greyObject(Y) function:  

if ((color(X) = black) and (color(Y) = white)) greyObject(Y);  
Note that the execution time taken by the greyObject(Y) 
function is considered as part of the GC overhead rather 
than as part of the  write barrier overhead. The 
GarbageCollector abstract class of RTSJ does not 
support the getWriteBarrierOverhead() method12. 
Since the heap coexists with other MRs, we consider that 
this method must also be implemented for all collectors to 
give the overhead caused by detecting illegal assignments 
of critical task to objects within the heap. For mark-and-
sweep collectors, this method further gives the overhead 
caused by the write barriers introduced to detect when to 
update the collector’s root-set:  
          If ((color(X) = red) and (color(Y)<>red))  updateRootSet(X, Y);  
 
Minimizing the Write Barrier Overhead.  
The most common approach to implement write barriers is 
by inline code, consisting in generating the instructions 
executing write barrier events for every store operation. 
This solution requires compiler cooperation (e.g., JIT), and 
presents a serious drawback because it nearly doubles the 
application’s size. Regarding systems with limited memory 
such as PDAs, this code expansion overhead is 
considered prohibitive. Alternatively, we can instrument 
the bytecode interpreter, avoiding space problems, but 

                                                 
8http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.ht

ml 

this still requires a complementary solution to handle 
native code. A solution minimizing the write barrier 
overhead consists in improving the write barrier 
performance by using hardware support such as the 
picoJava-II microprocessor [15], which allows performing 
write barrier checks in parallel with the store operation. 
This alternative solution has been the subject of [8]. 
 
The number of executed bytecodes performing write 
barrier test is 15*106 (i.e., aastore: 1*106, putfield: 
6*106, putfield_fast: 7*106, putstatic: 19*106, and 

putstatic_fast: 0) for a total of 262*106 executed 
bytecodes. This means that 5% of executed bytecodes 
perform a write barrier test, as already obtained in [6], and 
the overhead introduced by the software write barrier test 
in each assignment is: 

• 45% to maintain the root-set. 
• 31% to preserve the tri-color invariant. 
• 31% to detect illegal references. 
• 16% to check a nested scoped level. 

Then, the RTSJ-instrumented KVM runs slowdown as 
minimum 5,35% and as maximum 11,75% than the original 
KVM (i.e., 5,35,+0,80*n; where n is the maximum number of 
allowed nexted levels) . 

5. Conclusions  
The current RTSJ specification imposes restricted 

assignments rules that keep longer-lived objects from 
referencing object in scoped memory, which are possibly 
shorter live. This requires run-time checks for each 
assignment, which introduces a high overhead. In the 
RTSJ model, the way to offer real-time guarantees is by 
turning off the GC during the execution of critical tasks, 
which only allocates objects in memory regions and 
cannot reference objects within the heap. Some real-time 
tasks can allocate and reference objects within the heap, 
whereas others (critical) are no allowed to allocate nor 
reference objects within the heap. This requires run-time 
checks for all the object accessed by all the application 
tasks, which introduces a high overhead.  

We have proposed a solution to the realization of the 
abstract memory model introduced by the RTSJ 
specification. In particular, garbage collection in the heap 
complies with real-time constraints by using write barriers 
to maintain both the root-set and the tri-color invariant. In 
our solution, the detection of illegal assignments related 
with memory regions and access errors related with critical 

Memory 
Heap 

GC 
pass  

Collecting 
Time 

Execution 
Time 

% 
Overhea

d 
8 MB 51 13.54 72.87 18.85 
16 MB 27 13.17 72.72 18.11 
24 MB 17 12.80 71.99 17.80 
32 MB 13 11.82 70.50 16.50 



tasks, is made dynamically by introducing a write barrier 
mechanism based on a region-stack associated to the 
active task. 
Related Work 
   The JVM must check for illegal references and throw an 
exception if they occur. In order to do that, we introduce 
extra code that must be executed when updating an object 
reference (i.e., write barriers), which introduces high 
overhead. A similar approach is given in [], which uses 
also a stack-based memory management that operates 
dynamically. This solution proposes a contami nated GC 
based on the idea each object in the heap is alive due to 
references that begin in the runtime stack. But this 
solution collects memory within the heap, and does not 
treat another memory region. A safe implementation 
requires that a region can be deleted only if there is no 
external reference to it. The Tofte-Talpin calculus [tt] uses 
a lexically scoped expression to delimit the lifetime of a 
region. Memory for the region is allocated when the 
control enters the scope of the region constructor, and is 
de-alocated when the control leaves the scope. This 
mechanism is implemented by a stack of regions where 
regions are ordered by lifetimes. The allocation and de-
allocation of regions is determined at compile time by a 
type-based analysis, consisting to annotate in the source 
program every expression creating a value with a region 
variable []. An intermediate la nguage allows checking the 
safety of arbitrarily ordered regions, where region 
allocation and de-allocation are explicit. 
As in [tt], our solution is based on a stack of scoped 
regions, where regions are ordered by life-times. But given 
that in RTSJ, a region can be shred by several threads, this 
solution requires more complex mechanisms because the 
region will remain active until the last thread has exited. 
Then, the de-allocation of regions can-not be determined 
at compile time. As in [], this problem has been resolved in 
RTSJ by using a reference counter for each region. The 
counter is incremented (decremented) when creating 
(collecting) an inner scoped region, and in our solution 
also when the region is associated to (de-associated from) 
a task. 
    Since in RTSJ the collector coexist with memory regions, 
objects within the heap having references from objects 
outside the heap must be considered as roots by tracing-
based collectors (i.e., mark-and-sweep, incremental, or 
generational). In order to detect new roots of the collector, 
we introduce a color indicating whether the object is 
outside the heap, and use write barriers [RT -systems 
journal]. In order to characterize the write barrier overhead 
introduced by both critical tasks and the collectors roots, 
we add the getWritebarrierOverhead() method to 
the RTSJ GarbageCollector abstract class. For 
subclasses of this abstract class  

supporting write barrier-based collectors (i.e., incremental 
or generational), the getWritebarrierOverhead() 
method gives the overhead to maintain the tri-color 
invariant or inter-generational pointers. In order to 
characterize the write barrier cost to detect inter-region 
assignements from objects within non-scoped regions to 
objects within scoped scoped regions, we add the 
getWritebarrierOverhead() method to the 
MemoryArea abstract class. This method must be 
rewritten on the Scoped Memory abstract class (subclass 
of MemoryArea) to give the cost to detect assignments 
from objects within scoped regions to objects within a 
non-outer scoped region. Several ways to improve the 
performance write barriers has been proposed in  [] and []. 
The performance of the software-based solution presented 
in this paper have improved in [] by (a) using existing 
hardware support, and (b) modifying existing hardware. 
The performance of these three solutions, the software-
based and the two hardware based solutions, have been 
compared in []. At different that [], [], and [], which 
address the performance of write barriers and ways to 
improve it, this paper describe with detailed the software-
based solution more precisely . 
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