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ABSTRACT 
If applications were able to detect a user's expertise, then 
software could automatically adapt to better match exper-
tise. Detecting expertise is difficult because a user’s skill 
changes as the user interacts with an application and differs 
across applications. This means that expertise must be 
sensed dynamically, continuously, and unobtrusively so as 
not to burden the user. We present an approach to this 
problem that can operate without a task model based on 
low-level mouse and menu data which can typically be 
sensed across applications at the operating systems level. 
We have implemented and trained a classifier that can de-
tect “novice” or “skilled” use of an image editing program, 
the GNU Image Manipulation Program (GIMP), at 91% 
accuracy, and tested it against real use. In particular, we 
developed and tested a prototype application that gives the 
user dynamic application information that differs depend-
ing on her performance. 
Author Keywords: Statistical Models, Intelligent User 
Interfaces 
ACM Classification Keywords: H5.2 [Information inter-
faces and presentation]: User Interfaces - Graphical user 
interfaces, H1.2 [Models and Principles]: User/Machine 
Systems 

INTRODUCTION 
Not all users interact with computer systems in the same 
way, yet most applications act the same for all users. Ex-
pertise and skill in particular has a major impact on how a 
user interacts. For example, a novice must search for menu 
items while an skilled user typically remembers where they 
are located. Detection of skilled use can allow an applica-
tion to better adapt itself to a user’s needs. The work pre-
sented here seeks to support adaptive systems by (ap-
proximately) detecting skilled use in a dynamic and appli-
cation independent fashion.  

Specifically, we have built statistical models that are able 
to use input event stream data to classify actions as novice 
or skilled behavior with an accuracy of 91%. The statistical 
models were trained on data from a study where users per-
formed repetitive tasks (illustrated in Figure 1), resulting in 
their progression from novice to skilled behavior. Using 
the resulting classifier, we created a prototype application 
that adapts to expertise based on performance.  
Our statistical models can dynamically identify a user’s 
skill level with an application simply from observing 
mouse and menu data, without knowing a task model. Our 
prototype software could operate on any GTK application, 
and our overall approach is generic and could be integrated 
into operating systems such as Windows, OS X, or Linux 
and used across applications via simple monitoring of the 
event streams provided by those systems.  
We envision using knowledge about skilled use to help 
users by adapting the interface to meet the user’s needs [2] 
or providing tailored intelligent help [16]. For example, 
dialog boxes, help systems, or automatically generated pre-
views could be set to only appear when the user is likely to 
need them, and could also provide a level of detail appro-
priate to the user’s skill.  
Our approach to statistical machine learning, derived from 
that presented in [12], depends on a set of features, or met-
rics, that quantify an interaction based on raw data (such as 
mouse motion). Given a set of training data including la-
beled examples of both novice and skilled use, it is possible 
to (1) determine which features are most predictive of 
skilled use and (2) train a classifier that, given unlabeled 
test data, returns an estimate of whether the test data repre-
sents novice or skilled behavior. An effective strategy for 
making an accurate classifier is to generate a large set of 
potential features, and to use a feature selection algorithm 
to choose which features will best classify the data.  
Based on this approach, our contributions are: (1) knowl-
edge about what detailed features are predictive of skilled 
behavior, that complements what has been found in empiri-
cal studies of skilled use; (2) a classifier that can detect 
expertise by analyzing a single menu selection with 91% 
accuracy.  
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In the following sections we describe how novice and 
skilled use differs and describe quantitative features of 
each. Next we discuss how we collected a corpus of data to 
build our statistical models. Finally we present a prototype 
application we developed that adapts help information 
based on classifications of expertise from our statistical 
model. We describe the results of a study testing the appli-
cation in real use. We conclude with a summary of our 
findings and a discussion of how we envision deploying 
adaptations as future work. 

UNDERSTANDING DIFFERENCES IN EXPERTISE 
To successfully differentiate novice from skilled behavior 
it is important to isolate easily observable differences be-
tween typical actions of each. To do this we draw from 
research on Interaction Design and Human Factors to de-
velop a set of features that are likely to reflect these differ-
ences quantitatively. Statistical methods from machine 
learning can then be used to identify which features are 
most able to differentiate skilled from novice use and to 
create predictive models based on these features. 
In the literature, the terms expert behavior and skilled be-
havior are both terms used to describe expertise. For clar-
ity, we will use the word “expert” to refer to mastery of an 
activity (such as editing a document) and the word “skill” 
to refer to mastery of a task (such as selecting a menu 
item). Where past research is non-specific, we will use the 
word “expertise”. We make the assumption that experts are 
also skilled, an assumption supported by [16]. 

Qualitative differences 
Intuitively, expertise is a mixture of knowledge, speed, and 
comfort with a particular piece of software. Norman’s “The 
Design of Everyday Things” [22] provides a useful sum-
mary and conceptualization of the relevant human and 
cognitive factors. Following Norman, expertise can be seen 
as the difference between someone who knows key infor-
mation and can draw on existing plans of action versus 
someone with less detailed knowledge who must plan more 
dynamically based on information in the environment. 
More succinctly, given a situation where a user wants to 

accomplish something, experts, and skilled users, tend to 
use knowledge in the head, or recall, to achieve this goal, 
whereas, novice users tend to rely on knowledge in the 
world, or recognition.  
These differences in behavior should manifest themselves 
in measurable differences in user actions. It is these differ-
ences which will drive the predictive models developed 
here. Quantitative studies isolating these differences are 
one important source of ideas for developing features that 
can differentiate novice and skilled behavior. 

Quantitative indicators 
Features useful for driving statistical models can be drawn 
from a number of sources, but need to be predictive and 
easy to collect. In this work we have developed a set of 
features indicative of skilled behavior based on properties 
observable in low level user inputs (such as mouse velocity 
or detailed timing of common operations). This allows 
them to be employed dynamically and in an application 
independent way (i.e., without prior knowledge of a task 
model).  
One particularly fruitful area for development of these fea-
tures is in observable differences in the use of common 
interaction techniques. By developing features at the inter-
action technique level, we can leverage some basic infor-
mation about the nature of the user’s actions. However, by 
focusing on the application independent aspects of generic, 
common interaction techniques, we can still maintain our 
task independence. One of the most common interactions 
used across applications is menu selection.  
Skilled vs. Novice Use of Menus 
When an expert or skilled user wishes to accomplish a task 
with a menu, the main activity she has to accomplish is 
selecting the correct menu item. Because she can typically 
recall the location of the menu item, she does not need to 
search for it, which allows her to select it more quickly 
than she might otherwise. Alternatively, she may use an 
even faster keyboard shortcut to perform the action. 
The size and organization of a menu affects a user’s selec-
tion time. The time to select a menu location has been re-
ported as proportional to menu size, for both sorted and 
random menu items [23]. When a skilled user is interacting 
with a sorted menu, she is easily able to memorize the posi-
tional location of menu items, which allows her to select 
items more quickly. This is most evident with the first 
menu item in a sorted menu [23,26]. Hornhoff [11] ex-
tended this work by building user models to describe how a 
user makes a menu selection when she knows where the 
menu item is located.  
In contrast, novices do not typically know what menu item 
they want to select, or where it might be located, and usu-
ally have to search for it, using clues in their environment. 
This affects even low level processing of menu items: for 
example, novice users tend to rely on word recognition 
while searching in menus, while experts and skilled users 
extract global visual features from the display (such as the 

Figure 1. Our test application after several user  
trials. Menus in this application are similar to those 

appearing in many other applications. 



 

 

number of characters in the menu item name) when search-
ing for an item who’s location is not fully recalled [13]. 
There is much debate in the literature regarding the exact 
search strategies typical of different expertise levels 
[4,5,10]. However, the consensus of this research is that 
users perform a top-to-bottom search of a menu instead of 
a random one when looking for a menu item.  
This body of research suggests that skilled and expert users 
are able to remember the names of items, anticipate the 
location of items, and leverage visual features of items, all 
of which allows them to make faster selections with more 
skill. This suggests that features that measure speed could 
be predictive of expertise. It also suggests that features that 
can differentiate searching behavior from other types of 
motion may help to differentiate novice and skilled use. 
Example features that approximate searching including the 
number of submenus that are opened, and how often the 
cursor “dwells” over a menu item. 
Skilled Performance Modeling 
A source of information complementary to the empirical 
studies of interaction described above is the literature on 
human performance modeling such as Fitts’ Law [9], the 
Steering Law [1] and the Keystroke-Level Model (KLM) 
[16,6]. Fitts’ law describes skilled human performance in 
rapid aimed movements. This law applies when users are 
both individually clicking targets as well as dragging be-
tween targets (such as selecting a menu in the menu bar). 
The Steering Law is related to Fitts’ Law, but it describes 
skilled motion that is path constrained, such as horizontal 
motion through a menu item to reach a second level menu. 
All of these models assume pure motion such as that typi-
cal of a skilled user, rather than motion mixed with brows-
ing, searching, or other characteristics of novice interac-
tion. 
At a high level, both Fitts’ Law and the Steering Law tell 
us that both the distance to a target and the size of a target 
(or the path constraint in the case of the Steering Law) af-
fect the speed with which it is selected. Most operating 
systems do not report on the exact size of targets such as 
menus, so we were not able to directly use either law as a 
feature. Even so, the underlying ballistic properties of 
mouse motion (the velocity and acceleration curves) that 
result in Fitts’ law could be a source of useful features.  
Keystroke Level Modeling typically involves constructing 
a detailed, task specific model of expert behavior. Since we 
cannot be sure what task a user is performing, the use of 
typical Keystroke Level Models is problematical. However, 
it is still possible to employ the KLM technique for small 
subtasks that are easily identifiable and appear ubiquitously 
across applications (such as target acquisition, single or 
multi-level menu selection, or dragging tasks).  
For example, we can use KLM to create a model that pre-
dicts the amount of time it would take to make a multi level 
menu selection, using operators (in italics) and predicted 
times taken from [6,16]. Once a menu is visible, the user 

would perform a Look & Mental Operator (LM) action to 
decide where the menu item of interest is (1.35 seconds); 
Travel (T) to move the mouse to the target (1.1 seconds); 
and Click (C) by pressing and releasing the mouse button 
(0.2 seconds). A complete model including multiple sub-
menus is #submenus * (LM + T) + C, or 2.45*#submenus 
+ 0.2 seconds. A possible feature would compare the time 
it took a user to perform an action to the time this equation 
predicts for the same action, presuming that skilled users 
would perform at speeds closer to the predicted time than 
novices would.  
Mouse vs. Keyboard and Other Data 
In addition to mouse and menu based features we have also 
considered alternatives including monitoring use of on-
screen dialogs, help browsers, or keyboard logs. For exam-
ple, interesting features of a user’s interactions with on-
screen dialogs would be the use of help browsers, or fre-
quent canceling of dialogs. Possible features of keyboard 
logs include detecting actions that are performed and then 
immediately undone, or detecting the use of keyboard 
shortcuts.  
Features of this sort clearly offer some promise for differ-
entiating novice and skilled use. However we have not 
concentrated on their use because they present several 
drawbacks when compared to a variety of mouse-based 
features. Most importantly, they occur less frequently than 
mousing during typical interaction and hence would limit 
how dynamic our detection results could be. In addition, 
some of these actions, such as menu shortcuts, occur less 
ubiquitously (e.g., for only some menus) or are rarely used 
by some individuals [15]. Finally, in some cases these fea-
tures are invoked in mostly application specific ways (e.g. 
use of an application specific button or menu item to in-
voke help).  

CREATING A CLASSIFIER 
In this section we discuss the specifics of creating a classi-
fier (or predictive model) for detecting novice vs. skilled 
actions from mouse and menu data. As just described, we 
leveraged empirical knowledge and models of human per-
formance to create a number of promising candidate fea-
tures for differentiating novice and skilled behavior. How-
ever, rather than trying to directly engineer the very best set 
of such features a priori, we instead created a fairly large 
set of plausible features, then used machine learning based 
techniques to determine which features were actually most 
predictive when used in a statistical model. By using this 
scheme our design knowledge and intuition need not di-
rectly produce a highly predictive set of features, but in-
stead need only include high quality features along with 
any number of less useful features. This also allows us to 
speculatively try a range of features, many of which may 
not bear fruit, but some of which may prove unexpectedly 
useful. 
To employ this approach, we needed a large dataset of re-
corded user actions that had been accurately labeled as 



 

 

actions taken by skilled or novice users i.e., a body of la-
beled training data. In the remainder of this section we 
detail the collection of this data including experimental 
manipulations to work novice users through a learning 
curve so that both novice and skilled usage data could be 
collected. We then discuss several forms of validation of 
this manipulation. Following that, we turn to the generation 
and selection of features and the construction of a predic-
tive model. Finally, we consider validation of the resulting 
model. 

Application Setting for Data Collection 
To produce a predictive model that will reflect real world 
user behavior it is important to collect data from realistic 
user actions. At the same time, to collect large numbers of 
high quality labels, accurate and controlled knowledge of 
expertise level for each action is needed. This is informa-
tion that users may not have, and would find burdensome 
to report frequently (e.g. after every menu action). Our 
solution was to have users perform realistic activities in a 
real world application, but in a laboratory setting where we 
could ensure that users passed through a learning curve to 
provide both novice and skilled data for similar actions (at 
different points in time). 
To accomplish this we chose to use a slightly modified 
version of an image editing program. Specifically, we used 
the GNU Image Manipulation Program (GIMP) 2.2.8 
(http://www.gimp.org), which is built with GTK+ 2.6.10 
(http://www.gtk.org), for our data collection. Both the 
GIMP and GTK are open source, allowing us to easily 
make modifications to facilitate our data collection.  
First, menu items were added for the user to start each task 
or trial, and “close” and “quit” were removed so the par-
ticipant could not accidentally stop the study. In case a par-
ticipant made serious errors in completing an assigned task, 
we saved the participant’s work after each trial (each trial 
was dependent on the output of the previous one).  
All actions in the GIMP could be accomplished through 
popup menus, which are organized much like those of 
Adobe Photoshop. Menu bars and toolboxes were removed 
so participants could only use the GIMP’s popup menus, 
accessible with a right click. This allowed us to be assured 
of a high density of menu selections so that data collection 
would proceed quickly. 
All mouse events were logged using a modified version of 
XNEE 2.00 (http://www.gnu.org/software/xnee/), which 
received data directly from the X11 windowing system. 
Although menu information could also be gathered this 
way, for speed of implementation, we chose to insert code 
into the GTK to log the appearance and disappearance of 
all menus and submenus, all menu selections and deselec-
tions (mouse entered or left a menu item) and all mouse 
button interactions with the menus. We were careful not to 
record any information that is difficult to gather in an ap-
plication independent way from today’s operating systems 
(such as the specific width and height of a menu item).  

Detecting Informative Moments  
We define informative moments as user actions (or portions 
of user actions) which can be readily isolated, are indica-
tive of the phenomena we wish to study, model or predict, 
and can be easily and accurately labeled. Detecting infor-
mative moments can be difficult because accurately detect-
ing their start and end points may require knowledge about 
the user’s goals. However, there are some goal-
independent informative moments that can be easily identi-
fied. For our problem a very common interaction technique 
– specifically menu selection – serves these needs.  
To this end we segmented the data that we gathered into 
informative moments consisting of menu operations (start-
ing from the right click to open a pop-up menu and ending 
with the left click to select a menu item or dismiss the 
menu without a selection). Note that as a part of our devel-
opment process we also considered feature extraction from 
other potential informative moments and from more gen-
eral and undifferentiated input data. However, menu use is 
one of the most ubiquitous interactions in current inter-
faces, and use of these other features did not improve our 
classifier’s performance, so we do not discuss them further. 

Method and Participants 
Participants were very briefly introduced to the GIMP and 
shown how to access menus with the right mouse button. 
They were then asked to complete two separate tasks in a 
fixed order. Each task consisted of seven identical trials. 
Ten menu selections were required for each trial. This ex-
periment was designed to be repetitive so that participants 
would progress from novice to skilled behavior. As con-
firmed by the validation presented later, at the end of the 
study, the novices had learned the details of their tasks and 
we were able to label their actions as skilled performance. 
Participants were given specific sequential instructions for 
each task on paper, which they could write on to keep track 
of their progress. These instructions were formatted so the 
goal of each step would be clear (Figure 2). In the first task 
participants drew transparent shapes and changed the 
background pattern on the canvas for each trial. Figure 1 
illustrates the typical state of the interface after the 7th trial 
for this task. In the second task they drew letters and 
shapes and colored them with solid colors or gradients.  
Participants were paid $15 for their participation in the 
study, which usually lasted about 90 minutes. The experi-
menter observed participants as they worked on the tasks, 

Figure 2. Instructions for one of the two tasks users 
completed. Note that the names of menu items and im-

portant actions are visibly salient. 



 

 

 
Figure 3. Plot of average of participant’s sub-
jective responses to questions asked after 
each trial: #1 “I had no problem locating the 
menu items in this trial” #2 “It was easy for me 
to complete this trial without external help.”  

and only intervened if the participant spent two minutes 
searching for a menu item or if they skipped a step. The 
experimenter then told the participant where to find the 
menu item.  
We collected data from 44 participants (19 female) whose 
average age was 25.3 years (SD = 8.37, Min = 19, Max = 
59). All but two used Windows as their primary operating 
system. The majority of these participants reported that 
they were novice users of image editing and drawing ma-
nipulation programs. For example, the average participant 
used Microsoft Paint 2-3 times per month. None had used 
the GIMP before.  
To help verify the novice status of each participant, they 
each completed a questionnaire about their experience us-
ing image editing and drawing manipulation applications 
before completing the tasks. Participants also answered 
specific questions about the location of menu items with 
fill in the blank questions. For example: To open a new 
file, I need to select the “______” menu option in the 
“_______” menu (where the first blank is “new” and the 
second blank is “file”). We instructed users to leave a ques-
tion blank if they did not know the answer. 
We found that most participants did not know the location 
of most menu items, particularly those located in sub 
menus of multi-level menus However, all but four partici-
pants knew that to undo an action, they should select 
“undo” from the “edit” submenu. Nearly all users knew the 
location of menu items like “undo,” and would likely act at 
a high level of skill when selecting such items. To simplify 
labeling, we removed all “undo” menu selections from our 
analysis. No other menu items that we tested users’ knowl-
edge of had this problem, and our tasks did not include 
other commonly used menu items such as copy or paste. 
We also omitted menu selections that started a trial as de-
tailed timing on these actions may have been confounded 
with task startup effects. 

To confirm that poor reading speed would not confound 
results, participants were asked to read a 153 word passage 
and reading speed was recorded. Participant’s reading 
speed ranged from 230 words per minute (wpm) to 612 
wpm (M = 349, SD = 91). All but 2 were above the adult 
average of 250-300 wpm [2].  
We also systematically removed extreme outliers from our 
training data set. Specifically we calculated the Mahalano-
bis Distance [19] for all participants using all 46 features 
that we developed, and omitted training data from four 
participants whose average Mahalanobis distance was more 
than two standard deviations away from the mean. Possible 
reasons these participants were outliers included that one of 
them normally wears glasses but didn’t bring them to the 
study, and that one was a very inexperienced computer 
user. The other two participants had difficultly staying on 
task and would often skip sections of the trials even when 
the experimenter encouraged them not to. In addition, we 
were also forced to eliminate data from three participants 
whose data logs were incomplete due to technical failures. 
This left us with data from 37 participants. 

Labeling and Validating Novice vs. Skilled Behavior 
Learning happened quickly and followed the power law of 
practice (Figure 4). Participants confirmed their subjective 
feelings of expertise level in a short questionnaire after 
each trial.  
We labeled actions in a user’s first trial of the first task as 
“novice.” We labeled actions from a user’s final trial in 
both tasks as “skilled.” However, because our investiga-
tions showed that the first trial of the second task was not 
consistently similar to either novice or skilled behavior 
(performance was close to novice, but fell between these 
extremes) we did not label the first task of the second trial 
as “novice” 
We collected roughly 600 examples of menu searches that 
were labeled as novice, and 700 that were labeled as skilled 
use. While perfect execution of the tasks would have re-
sulted in twice as many examples for skilled cases com-
pared to novice, our sample is closer to balanced because 
the novice examples included notably more false steps 
(e.g., menu selections that were subsequently undone). 
After completing each trial, participants were asked two 
questions that related to their performance to gauge their 
subjective impression of their own expertise on a scale of 1 
to 7: “I had no problem locating the menu items in this 
trial” and “It was easy for me to complete this trial without 
external help.” Figure 3 shows mean responses for these 
questions and clearly shows the perception of a learning 
effect. 
As a more objective measure we can also compare per-
formance times for menu selections within various trials 
with those predicted by a Keystroke Level Model (which 
should approximate the performance expected of a skilled 
user). We divided this analysis into groups defined by the 
submenu depth of the menu item selected (since KLM pre-



 

 

 
Figure 4. Plot of a promising menu feature’s 
mean for each trial number. Note the rise in the 
learning curve between the first and second 
tasks. 

dictions differ with changes in submenu depth). Expertise 
develops more quickly for top level menus than 2nd level 
submenus, and more quickly for 2nd level submenus than 
3rd level and so on, because the frequency with which users 
encounter deeper submenus is lower. Additionally, our 
tasks depended most often on 2nd level submenu items.  
Our analysis showed that users progressed through a learn-
ing curve. We found that, on average, when visiting 2nd 
level submenus users were performing at or better than the 
KLM predicted time by the fourth trial in the first task, and 
by the first trial in the second task. Users reached the KLM 
predicted time for 3rd level submenus by the end of the sec-
ond task. This indicates that the performance reached by 
the end of the study was equivalent to that of skilled users.  
To further explore the details of the learning curve we se-
lected one of our most promising quantitative features – the 
ratio of time to make a menu selection vs. the depth of the 
selection (see the detailed discussion of this feature in the 
next section) – and considered how it varied across trials. 
The mean of this value across trails is displayed in Figure 
4. Here we can again see a curve characteristic of a learn-
ing effect. In addition, it would appear that learning con-
tinues across tasks with the beginning of the second task 
picking up near the end of the first. 
As illustrated in Figure 4 and verified by a two-way RM-
ANOVA participant performance improved significantly 
over time, with main effects for Task and Trial (Wilks 
Λ=.379, F(1, 27) = 44.303, p<.001, multivariate η2 = .621 
and Wilks Λ=.071, F(1, 22) = 47.757, p<.001, multivariate 
η2 = .929, respectively). Follow-up contrasts were signifi-
cant, F(1, 27) = 233.416, p<.001. Pairwise comparisons 
showed significant differences between all trials but 3 and 
4, and 5, 6, and 7, with means increasing over time. This 
suggests that learning began to tail off towards the end of 
each task. To confirm this, we fitted the mean values over 
each trial to the log of both axes to check if the curve con-
formed to the power law of practice [21]. The correlation 

was .99 for task one, t(6) = 350.87, p=.0001, and the corre-
lation was .96 for task two, t(6) = 128.38, p=.0001. It fol-
lows that the learning curve for the second task would be 
less steep than that for the first task because learning oc-
curs across tasks as well as within tasks.  

Candidate Features 
For each extracted informative moment we computed a set 
of 46 potentially predictive features. These features ranged 
from the amount of time spent in different parts of the 
menu system to characteristics of the underlying movement 
of the pointing device. As described previously, we gener-
ated this set of features from an understanding of human 
motion as described in the literature. In addition, we added 
candidate features based on our observations of partici-
pants as they completed the tasks. Below are the definitions 
of some of our more important features, organized by cate-
gory. 
Features derived from low-level motion characteristics 
Total Time (seconds) Elapsed time within the action (start-
ing when the menu opened and ending when it closed). 
(Range: 0.504 – 143) 
X and Y Mouse Velocity (pixels/second) Average velocity 
of the mouse during a menu operation in the X and Y di-
rections. (Range: X: 24756 – 35745; Y: 30116 – 37789) 
X and Y Mouse Acceleration (change in velocity/second) 
Average unsigned acceleration of the mouse during a menu 
operation in the X and Y directions. (Range: X:0 – 
242041107; Y: 0 – 1770018051.8) 
Dwell Time (seconds) Time spent dwelling (not moving) 
during the interaction sequence. (Range: 0 – 112)  
Features related to the interaction technique 

Average Dwell Time (seconds/count) Time spent dwelling 
divided by the number of menu items visited. (Range: 0 – 
3.581) 

Number of Opened Submenus (count) Total number of 
submenus that the user opened while searching. (Range: 0 
– 59)  
Selection Depth (count) Depth of the selection (Range: 0 – 
3) Note that this feature would not likely be predictive by 
itself. However, it may be useful when combined condi-
tionally with other features. 
Menu Item Visits (count) Total number of menu items that 
were visited or passed through during menu action. 
(Range: 0 – 160) 
Unique Item Visits (count) Number of unique menu items 
visited. (Range: 1 – 57) 
Selected Item Dwell Time (seconds) Time spent dwelling 
within the menu item that was ultimately selected. This 
feature sums all times spent in that item. (Range: 0 – 22) 



 

 

Figure 5. Screenshot of prototype application that 
gives user tailored help information about the cur-
rently highlighted menu, based on automatic classifi-
cation of user expertise.

Features related to performance models 
KLM Diff (seconds) Difference between KLM predicted 
time and actual time for the action. (Range: 0.54 – 
143.196)  
KLM Ratio (dimensionless) KLM predicted time divided 
by the actual time for the action. (Range: 0.003 – 3.488) 
Time Depth Ratio (seconds/depth) Time to make a menu 
selection divided by the depth of that selection. (Range: 0 – 
1.368)  
Feature Selection 
Not all features necessarily contribute to creating a good 
classifier. Rather than trying to predict which features 
would work best (which is very hard to do), an analysis of 
information gain [20] can be used to rank the information 
content of each feature (in isolation). This represents an 
objective estimation of how valuable each feature may be 
in constructing a classifier.  
The following are the top 10 features ordered by the infor-
mation gain ranking: (1) Average Y Acceleration, (2) KLM 
Diff, (3) Time Depth Ratio, (4) KLM Ratio, (5) Total 
Time, (6) Dwell Time, (7) Average Dwell Time, (8) Se-
lected Item Dwell Time, (9) Menu Item Visits, (10) Num-
ber of Opened Submenus. 
Note that the information gain statistic treats each feature 
in isolation. However, two features may contain much of 
the same information and so using both of them in the same 
classifier may not be very useful. For example, since KLM 
Diff and KLM Ratio are computed from the same underly-
ing data, it is unlikely that one of them provides informa-
tion that the other lacks, hence it is unlikely that using both 
of them would perform significantly better than just one of 
them. In addition, the information gain statistic does not 
take into account the particular properties of a particular 
learning algorithm. 
To select features that are finely tuned to a particular learn-
ing algorithm, while taking into account any information 
overlap, we employ a wrapper-based feature selection ap-
proach [18]. This approach performs a combinatoric opti-
mization which seeks to find the subset of possible features 
which produces the best accuracy result for a given learn-
ing algorithm. This technique is called wrapper-based be-
cause it can be “wrapped around” any existing learning 
algorithm. Although this technique is typically computa-
tionally expensive – it creates and evaluates a very large 
number of different classifiers – it tends to do a very good 
job of feature selection. 
As described in the next section we eventually settled on 
using a decision tree classifier. A feature selection wrapper 
employing a genetic search optimization approach was 
used with this learning algorithm to select the following 
features: Average Y Acceleration, Menu Item Visits, Selec-
tion Depth, Time Depth Ratio, and Number of Unique Vis-
its. These five features were used to build the statistical 
model described next. 

Building and Validation of a Classifier 
Using the features described above, a classifier was built 
using the C4.5 Decision Tree learning algorithm [24] as 
implemented in the WEKA machine learning environment 
[27]. Note that we also considered several other learning 
algorithms including Bayesian Networks, Naïve Bayes, 
Support Vector Machines, and Linear Discriminant Analy-
sis (along with the corresponding feature selection wrap-
pers). However, Decision Trees consistently gave us the 
best results.  
To test the effectiveness of our classifier we employed a 
traditional 10 fold cross-validation test. In this test a ran-
dom 10% of the data is removed (or held-out) to form a test 
set. A classifier is built using the remaining 90% of the 
data. The accuracy of the classifier is the tested on predict-
ing the 10% hold-out set. This process is performed 10 
times with 10 disjoint hold-out test sets and the average 
accuracy across these 10 trials is reported. Using this vali-
dation measure our classifier achieved an accuracy of 91%.  
Since the decision tree was generated automatically, it is 
not easily readable.  However it can be described qualita-
tively in terms of the trends it looked for to make a classifi-
cation. Characteristics of menu selections that were labeled 
as “novice” generally had a low average Y acceleration 
(meaning the mouse moved slowly, stopped, or changed 
direction) took longer to make the selection for a given 
submenu depth, and had large total number of menu selec-
tions and unique menu selections (indicating exploration of 
submenus). Characteristics of menu selections the classifier 
labeled as “skilled” had a high average Y acceleration (in-
dicating an increase in velocity and overall speed), faster 
navigation of deeper menu items, and low total numbers of 
menu selections (indicating little exploration of additional 
submenus). 
The result of the study, feature analysis, and training de-
scribed above was a working classifier that had been both 



 

 

tested and trained on data from our controlled study. To 
close the loop, we next implemented an adaptive system 
that could leverage that classifier to provide tailored sup-
port to users and tested it with both a scripted and free-
form task. 

GOING LIVE: AUTOMATICALLY DETECTING AND 
CLASSIFYING EXPERTISE 
Interfaces that can automatically sense and/or adapt to user 
expertise offer many potential benefits including just in 
time information, personalized help, and performance op-
timizations. Past work in this domain can be characterized 
by one of three goals: support for novice use, helping nov-
ices become skilled users, and adaptations to support 
skilled use.  
Applications that focus strictly on support for novice be-
havior are designed for users who interact with an applica-
tion so infrequently that they have little interest or opportu-
nity to become a skilled user. Supporting novice use tends 
to focus on visual information such as intelligent previews, 
roadmaps showing application organization, or information 
about historic interactions. Novices may be willing to trade 
small sacrifices in task performance for substantially better 
affordances, feedback, and other forms of visible informa-
tion.  
One successful way to increase expertise is to give answers 
about why something didn’t work [14], or more generally 
to increase their knowledge by explaining system behavior. 
The path to expertise could also be enhanced with addi-
tional information about advanced features of the interface 
or performance optimizations such as keyboard shortcuts. 
Skilled users are likely to benefit most from support that 
optimizes performance aspects of an application. Split 
Menus [25], which move the most frequently used menu 
items to the top of a menu, are an example of this ap-
proach. Skilled users could also benefit from information 
about advanced features of the interface or performance 
optimizations such as keyboard shortcuts. 

Prototype Application to Adapt to Expertise 
To begin to explore the use of our classifier in real applica-
tions we developed a simple adaptive tool that can function 
across any GTK application. Our tool, which consists of a 
single on-screen window (top, Figure 5), displays the name 
of, and an expertise-tailored description of, the menu item 
that is currently highlighted, depending on the classifica-
tion provided by our trained statistical models.  
Descriptions for novices include examples of what would 
happen if the menu item were selected and attempt to 
minimize the use of domain specific knowledge, informa-
tion shown to improve novice performance [7]. . Descrip-
tions for users displaying skilled behavior include alterna-
tive names for different functions, and also include the 
keyboard shortcuts for different menu items. For example a 
description of the freehand selection tool for a novice said 

“Use this tool to draw the shape of the area that you want 
to select” compared to a more complicated description 
“Lasso: use this tool to make a free-hand selection. Either 
close a selection by ending in the point you started from, or 
let the tool automatically close an open shape.” The set of 
descriptions can be configured by providing a data file with 
alternate text for each classification associated with each 
menu item.  
We implemented a real-time “live” classifier in Java for 
parsing data about mouse and menu interactions and re-
trieving a prediction about whether an action was skilled or 
novice. Data was gathered using the same tools developed 
for our study (GTK and XNEE). To reduce "jitter", we 
aggregated the predictions using an exponentially decaying 
average (with a decay factor of 0.5). Our classifier reports 
the aggregate prediction to the adaptive tool, which moni-
tors the currently highlighted menu item and selects the 
appropriate description of that menu item to display. 

Validating Ability to Detect Expertise 
A preliminary evaluation of the “live” classifier and its use 
for adaptation was conducted with 4 participants (2 female, 
ages = 21, 24, 32, 34). Participants were paid $15 for a 90 
minute study where they performed a scripted repetitive 
task as well as a free-form one using our modified GIMP 
application. To familiarize themselves with the GIMP, par-
ticipants first completed the scripted task, which was the 
same task used in the data collection study, and were given 
45 minutes to work on it. Next participants completed a 
free-form task where they were told to draw a scene, and 
were given 30 minutes to complete this task. They worked 
on this free-form task for 30 minutes, of which they used 
the adaptation for the last 15.  
Figure 6 illustrates the moving average (window size = 10) 
for the reported expertise predictions. Each participant’s 
transition between the two tasks is marked with a vertical 
line. The classifier correctly identified that all participants 
started as novices (although only briefly for participant 3), 
and exhibited skilled behavior during the study. However, 
the four participants had different learning curves and 
chose different strategies for the free-form task. Partici-
pants 1 and 2 mostly used menu items from the scripted 
task in the free-from section. However, participants 3 and 4 
chose to explore the menus at the start of the free-form 
task. As a result, they returned to a novice state and then 
worked back up to skilled performance.  
Observationally we noted that participant 4 had significant 
difficulties with the scripted task and in fact this person 
only completed two trials of the task. This is reflected in 
the fluctuations in performance leading to participant 4’s 
moving average rising and falling multiple times. Also, the 
maximum of the moving average for participant 4 stayed 
well below the expertise level achieved by other partici-
pants for almost the entire time.  



 

 

In a post study interview, all participants said that they 
found the example descriptions in the adaptive help system 
extremely useful. They all responded positively towards 
applications being more aware of their activities and needs, 
and had no reservations about automatic evaluations of 
their performance. However, they expressed concern about 
having the ability to control the adaptation if it was based 
on an incorrect classification or if it hindered their activity. 
In summary, although our sample was small, this study 
provides proof-of-concept support for our ability to close 
the loop and provide live adaptations based on classifica-
tions of expertise. Additionally, although we cannot draw 
quantitative conclusions about real world accuracy, our 
participants represent a range of usage styles and abilities, 
and our live classifier appropriately reflected this range.  

CONCLUSIONS AND FUTURE WORK 
Novices and skilled users differ, and these differences are 
often ignored by applications. Our work shows that these 
differences can be easily sensed with high accuracy (91%) 
using only a few key features. We argue that this informa-
tion could be used to better adapt to user needs.  
Although we have not validated the technique across mul-
tiple applications, the features we developed could be used 
in any application because they are not application specific. 
We are currently working to extend our software so it will 
work with more commonly used applications and the Win-
dows Operating System. We also plan to explore how our 
models perform in a wider range of real world situations. 
This work is a key step towards a larger goal of being able 
to detect and understand user needs so that user interfaces 
can be automatically adapted to fit those needs.  

ACKNOWLEDGMENTS  
The authors would like to acknowledge the contributions of 
Jenny Hwang, Jim Lin, Aubrey Shick, and Daniel Zinzow 
for their work on this project. This work was supported by 
NSF IIS-0511895, IIS 0121560, IIS 0325351, and the first 
author’s NSF Graduate Research Fellowship. 

REFERENCES 
1. Accot, J., Zhai, S. (1997). Beyond Fitts' law: models for 

trajectory-based HCI tasks. Proc. CHI 1997, ACM 
Press: 295-302.  

2. Akoumianakis, D., Savidis, A.,, Stephanidis, C. (2000). 
Encapsulating intelligent interactive behavior in unified 
user interface artifacts. Interacting with Computers, 12: 
383-408.  

3. Bailey, B., (2000). UI Design Newsletter - Insights from 
Human Factors International: 
http://www.humanfactors.com/downloads/aug00.asp 

4. Byrne, M. D., Anderson, J. R., Douglass, S., Matessa, 
M. (1999). Eye tracking the visual search of click-down 
menus. Proc. CHI 1999, ACM Press: 402-409. 

5. Card, S. K. (1982). User perceptual mechanisms in the 
search of computer command menus. Proc. Human Fac-
tors 1982, ACM Press: 190-196. 

6. Card, S. K., Moran, T. P., Newell A. (1983). The Psy-
chology of Human-Computer Interaction. Lawrence 
Erlbaum Associates, Inc. 

7. Dumas, S., Landauer, T. K., (1983). Using Examples to 
Describe Categories. Proc CHI 1983,ACM Press: 112-
115. 

8. Everett, S. P., Byrne, M. D. (2004). Unintended effects: 
Varying icon spacing changes users' visual search strat-
egy. Proc. CHI 2004, ACM Press: 695-702. 

9. Fitts, P. (1954). The information capacity of the human 
motor system in controlling the amplitude of movement. 
Journal of Experimental Psychology, 47(6): 381-391. 

10. Hendrickson, J. J. (1989). Performance, preference, and 
visual scan patterns on a menu-based system: implica-
tions for interface design. Proc. CHI 1989, ACM Press: 
217-222. 

11. Hornof, A.J., Kieras, D.E., (1999). Cognitive modeling 
demonstrates how people use anticipated location 
knowledge of menu items. Proc. CHI 1999, ACM Press: 
410-417.  

12. Hudson, S.E., Fogarty, J., Atkeson, C.G., Avrahami, D., 
Forlizzi, J., Kiesler, S., Lee, J.C., and Yang, J (2000). 
Predicting human interruptibility with sensors: A Wiz-
ard of Oz feasibility study. Proc. CHI 2000, ACM Press: 
257-264. 

13. Kaptelinin, V. (1993). Item recognition in menu selec-
tion: the effect of practice. Proc. Interact 1993 and CHI 
1993, ACM Press: 183-184.  

14. Ko, A.J. and Myers, B.A. (2004). Designing the 
Whyline: A debugging interface for asking questions 
about program failures. Proc. CHI 2004, ACM Press: 
151-158. 

15. Lane, D., Napier, H., Peres, C., and Sandor, A. (2005). 
The hidden costs of graphical user interfaces: The fail-
ure to make the transition from menus and icon tool bars 
to keyboard shortcuts. International Journal of Human-
Computer Interaction, 18: 133-144. 

16. Lieberman, H. (1998). Integrating User Interface Agents 
with Conventional Applications. Knowledge-Based Sys-
tems. 11(1: 15-23. 

 
Figure 6. Moving average of live classifier predictions for 
repetitive and free-form tasks. The vertical bars indicate 
the transition between tasks. 



 

 

17. John, B. E., Kieras, D. E. (1996). The GOMS family of 
user interface analysis techniques: comparison and con-
trast. ACM Transactions on Computer Human Interac-
tion. 3(4): 320-351. 

18. Kohavi, R., John, G. H. (1997). Wrappers for feature 
subset selection. Artificial Intelligence, 1-2, 273-324. 

19. Mahalanobis, P.C., (1930). On tests and measures of 
groups divergence. Journal of the Asiatic Society of 
Benagal, 26. 

20. Mitchell, T.M. (1997). Machine Learning. McGraw-
Hill. 

21. Newell, A., Rosenbloom, P.S. (1981). Mechanisms of 
skill acquisition and the law of practice, in Cognitive 
skills and their acquisition, J.R. Anderson, Editor. Law-
rence Erlbaum Associates: Hillsdale, NJ. p. 1-56.  

22. Norman, D. (1988). Design of Everyday Things, Dou-
bleday. 

23. Perlman, G. (1984). Making the right choices with 
menus. Proc. Interact 1984, Elsevier Science Publish-
ers: 317-321. 

24. Quinlan, J.R. (1993). C4.5: Programs for Machine 
Learning, Morgan Kaufmann. 

25. Sears, A., Shneiderman, B. (1994). Split menus: effec-
tively using selection frequency to organize menus. 
ACM Transactions on Computer Human Interaction. 
1(1): 27-51. 

26. Somberg, B. L. (1987). A comparison of rule-based and 
positionally constant arrangements of computer menu 
items. Proc. CHI/GI 1987, ACM Press: 255-260. 

27. Witten, I.H., Frank, E. (2005). Data Mining: Practical 
machine learning tools and techniques, 2nd Edition, 
Morgan Kaufmann, San Francisco. 

 


