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Dynamic Deviation Reduction-Based Volterra
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Abstract—A new representation of the Volterra series is pro-
posed, which is derived from a previously introduced modified
Volterra series, but adapted to the discrete time domain and refor-
mulated in a novel way. Based on this representation, an efficient
model-pruning approach, called dynamic deviation reduction,
is introduced to simplify the structure of Volterra-series-based
RF power amplifier behavioral models aimed at significantly
reducing the complexity of the model, but without incurring loss
of model fidelity. Both static nonlinearities and different orders of
dynamic behavior can be separately identified and the proposed
representation retains the important property of linearity with
respect to series coefficients. This model can, therefore, be easily
extracted directly from the measured time domain of input and
output samples of an amplifier by employing simple linear system
identification algorithms. A systematic mathematical derivation is
presented, together with validation of the proposed method using
both computer simulation and experiment.

Index Terms—Behavioral model, power amplifiers (PAs),
Volterra series.

I. INTRODUCTION

N A wideband wireless system, the distortion induced by
I a power amplifier (PA) can be considered to arise from
different sources or can be assigned to different physical
phenomena such as: 1) static (device) nonlinearities; 2) linear
memory effects, arising from time delays, or phase shifts, in the
matching networks and the device/circuit elements used; and
3) nonlinear memory effects, such as those caused by trapping
effects, nonideal bias networks, temperature dependence on the
input power, etc. To accurately model a PA, we have to take
into account both nonlinearities and memory effects. Although
many behavioral models for RF PAs have been developed
in recent years [1], this kind of modeling technique is still
far from being mature since accurately characterizing PAs
becomes more and more difficult and challenging as wireless
systems migrate to higher frequencies, higher speeds, and wider
bandwidths.
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The Volterra series provides a general way to model a non-
linear system with memory, and it has been used by several
researchers to describe the relationship between the input and
output of an amplifier [1]-[7]. However, high computational
complexity continues to make methods of this kind rather im-
practical in some real applications because the number of pa-
rameters to be estimated increases exponentially with the de-
gree of nonlinearity and with the memory length of the system.
To overcome the high complexity of a general Volterra series, a
Volterra-like approach, called the modified Volterra series, was
proposed in [8] by Filicori and Vannini to model microwave
transistors, and then extended to model PAs by Mirri et al. [9],
[10] and Ngoya et al. [11]. This modified series has the impor-
tant property that it separates the purely static effects from the
dynamic ones, which are intimately mixed in the classical se-
ries. However, this modified Volterra series loses the property
of linearity in model parameters, which means that the output of
the model is no longer linear with respect to the coefficients [9].
This leads to the consequence that models of this kind cannot
be extracted in a direct and systematic way using established
linear system estimation procedures such as the least squares
(LS) techniques, as is usual in the classical case. In fact, al-
though the static part and different order dynamics can be es-
timated separately, extracting higher order dynamics involves
complicated measurement procedures [9]-[11].

In this paper, we first extend the modified Volterra series to
the discrete time domain, and rewrite it in the classical format
after dynamic-order truncation. We then propose a new format
of representation for the Volterra model, in which the input ele-
ments are organized according to the order of dynamics involved
in the model. This is similar to the modified Volterra series, but
retains the property of linearity in the parameters of the model,
as for the classical Volterra series.

Based on this new representation, an effective model-order
reduction method is proposed, called dynamic deviation reduc-
tion [12], in which higher order dynamics are removed since the
effects of nonlinear dynamics tend to fade with increasing order
in many real PAs. Unlike the classical Volterra model, where the
number of coefficients increases exponentially with the nonlin-
earity order and memory length, in the proposed reduced-order
model, the number of coefficients increases almost linearly with
the order of nonlinearity and memory length. Since the model
complexity is significantly reduced after dynamic-order trunca-
tion, this Volterra model can be used to accurately characterize
a PA with static strong nonlinearities and with long-term linear
and low-order nonlinear memory effects. Furthermore, the pro-
posed model takes advantage of the properties of the modified
Volterra series so that the static nonlinearities and different order
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dynamics can be separated after model extraction, which pro-
vides us with an effective way to derive efficient distortion com-
pensation approaches for PA linearization. Finally, since this
model is built in the discrete time domain, it can be directly
embedded in system-level simulation tools and implemented in
digital circuits.

This paper is organized as follows. In Section II, after
introducing the modified Volterra series, we present the new
representation of the Volterra series. Based on this new rep-
resentation, a dynamic model-order reduction is introduced
in Section III. Model extraction procedures and experimental
verification are given in Sections IV and V, respectively, with a
conclusion in Section VI.

II. VOLTERRA SERIES

A Volterra series is a combination of linear convolution and
a nonlinear power series so that it can be used to describe the
input/output relationship of a general nonlinear, causal, and
time-invariant system with fading memory. In the discrete time
domain, a Volterra series can be written as

y(n):ZE...th(il,...,ip)ﬂx(n_ij) )

p=1i;=0  i,=0

where z:(n) and y(n) represents the input and output, respec-
tively, and hy, (i1, . . ., 4, is called the pth-order Volterra kernel.
In real applications, and assumed in (1), the Volterra series is
normally truncated to finite nonlinear order P and finite memory
length M [2].

Unlike neural networks or other nonlinear functions, the
output of the Volterra model is linear with respect to its co-
efficients. Under the assumption of stationarity, if we solve
for the coefficients with respect to a minimum mean or least
square error criterion, we will have a single global minimum.
Therefore, it is possible to extract the nonlinear Volterra model
in a direct way by using linear system identification algorithms.
The Volterra series has been successfully used to solve many
problems in science and engineering [2]-[4]. However, since
all nonlinearities and memory effects are treated in the same
way, the number of coefficients to be estimated increases expo-
nentially with the degree of nonlinearity and with the memory
length of the system. It is very difficult to identify a practically
convenient experimental procedure for the measurement of
kernels of order greater than five so that the described classical
Volterra-series formulation can only be practically used for the
characterization of weakly nonlinear systems.

A. Modified Volterra series

To overcome the limitation of the classical Volterra series,
a Volterra-like approach, called a modified Volterra series
[8]-[10], or dynamic Volterra series [11], was proposed, in
which the input/output relationship for a nonlinear system with
memory is described as a memoryless nonlinear term plus a
purely dynamic contribution. This was based on introducing
the dynamic deviation function e(n, 7)

e(n, 1) = x(n —1) — z(n) (2)
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which represents the deviation of the delayed input signal z(n—
1) with respect to the current input x(n). Substituting (2) in (1),
we obtain

p=1¢,=0 ip=0 7=1
P M M
= Zx”(n) Z Z hy (i1 ip)
p=1 11 = ip=
P p D M
+35 eom(!) 3
p=1r=1 1=
M T
Z hy (i1, ..., ip) | | e(n, ;). 3)
ip=0 j=1

After regrouping the coefficients, it is immediately apparent that
the output signal y(n) in (1) can be expressed through the fol-
lowing dynamic-deviation-based Volterra-like series:

y(n) = ys(n) + ya(n) )

where y;s(n) and yq(n) represents the static and dynamic char-
acteristics of the system, respectively.

ys(n) can be expressed as a power series of the current input
signal z(n)

Ys(n) = Z apa? (n) (5)

where a,, is the coefficient of the polynomial function, while
ya(n) is the purely dynamic part

ya(n) = a7 (n)

p=1r=1
M M r
S wplin, i) [] e(nads)  (6)
=0  i,=0 J=1

where w,, ,-(-)! represents the rth-order dynamic kernel of the
pth-order nonlinearity. The relationship between the coeffi-
cients of the classical Volterra formulation hy (i1, ...,i,) and
those of the dynamic series a, and wp (-) is presented in the
Appendix.

In this model, the static nonlinearities and the dynamic part
are separated. Furthermore, controlling the value of r, i.e., the
order of the dynamics, allows us to truncate the model to a sim-
pler version. For instance, in [8]-[11], (6) was truncated to first
order. In that case, the modified Volterra model would have the
form

P P M
y(n) = Z apzP(n) + Z 2?7 (n) Z wp.1(i)e(n, 1) (7)
p=1 p=1 =0

in which only the static and first-order dynamic behavior are
retained.

INote that here we use w,, ,.(-) instead of g, [#(n), . ..], which was used in
[10], to represent the dynamic coefficients. g, [x(n), . ..] is the combination of
w, ~(+) and x"(n), which depends nonlinearly on z(r), while w, ,.(...) is
independent from x(n).
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However, the static part and the different order dynamics
have to be extracted separately in this model, which involves
very complicated measurement procedures [10], [11], espe-
cially when higher order dynamics are included.

B. New Representation of Volterra Series

In order to take advantage of the modified Volterra series, but
also keep the model extraction as simple as possible, we derive
a new representation of the Volterra series here.

Let us start from the first-order truncated modified Volterra
series in (7). At first sight, this modified Volterra model seems
to be fundamentally different from the classical Volterra series.
However, if we re-substitute (2) in (7), we obtain

+) Z wy1 (8) [#P 7 (n)z(n — i) — 2P(n)] . (8)

After some rearrangements, it can be shown that

Z}Lp()
_{_pr Y
p=1

Now, we truncate (6) to second order, and the model becomes

=D’ (n) + > 2" (n) Y wpa(i)e(n,i

0)2*(n)

(0,...,0,9)x(n—14). ()

P M M
+D a2 (n) Y wpa(in,iz)e(n,in)e(n, da).
p=1 i1=0142=0

(10)

In the same way, re-substituting (2) in (10), we obtain

n) = Z ap®(n)

pr K
n ZQ;P—?(n) Z Z wp 2 (i1, 2)
p=1 11=0142=0

—a(n)]fz(n = iz) — x(n)]

Z wp ( — z(n)]

[z(n — 1)

X [z(n —41)

P
— P
= E apxt (n
p=1

4325

P M

2.2 i) |
p=11i=0
P M

P 3 waliv )

p=14,=01,=0
X [2P 72 (n)z(n — i1)z(n — iz) — 2P Y(n)z(n — i1)
—2?" Y (n)z(n — i) + 2P (n)] . (11)

Regrouping the coefficients a,,, wy 1(-), and w, 2(-), we can
write (11) as

) [z (n)z(n —

i) —a’(n)]

p=1
P M
+ Z 2P Y(n) Z hp1(0,...,0,9)z(n — z)]
p=1 =1
P 1 M
) (2772 (0) Y D (0,0, 02)
p=2 i1=1iy=i;
xx(n—il)x(n—ig)] . (12)

Following the same procedures of (8)—(12), we can rewrite
the classical Volterra series in (1) as

y(n)
P
= hpol0 a?(n)
p=1
P> M M
—}—Z Z a:p_"(n)z Z
p=1 |r=1 =1 ip=in_q
hyp (0,00, 0,41, ..., 0 )Ha:(n—L])

13)

which leads to a new representation of Volterra series, where
hpr(0,...,0,41,...,7,.) represents the pth-order Volterra
kernel where the first p — 7 indices are “0,” corresponding to
the input item zP~"(n)z(n — 41),...,2(n — i,). Compared
to (1), we can see that the coefficients hy, (-, ...,-) in (13) are
the same as in the classical expression, but the sequence of
the input product items in the input vector has been changed.
In this new representation, r represents the possible number
of product terms of the delayed inputs in the input items. For
instance, 7 = 1 means only one delayed input is included in the
product, i.e., zP~!(n)z(n — 7). On the other hand, compared
to the dynamic-deviation based series in (6), we see that  can
also be interpreted as the order of the dynamics involved in the
model since it decides how many deviations, i.e., e(n,;), will
be included in the input vector.

To make this clear, we now further demonstrate the properties
of the new Volterra representation by using kernels indices with
their corresponding input items, as shown in Table I, where a
“0” corresponds to the current instantaneous input z(n) and a

non-“0”, i.e., an “3,” corresponds to the delayed input z(n — 7).
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TABLE 1
INDICES OF COEFFICIENTS

r=0 =1 r=2 =3

(instantaneous) | (1%-order dynamics) (2“d-order dynamics) (3rd-0rder dynamics)
Ay 0 1,2,3,....M
ho(-,) 00 01, 02, 03,..., OM 11,12, ..., 1M, 22,23, ...,

MM
h3, () | 000 001, 002, 003,..., 011,012, 013, ..., 01M, 022, 111, 112, 113, ..., 11M, 122,
00M 023, ...,033, 034, ..., OMM 123, ..., 133,134, ..., MMM

In Table I, each row includes kernels from the same order of non-
linearity, while the columns are divided by the order of the dy-
namics involved in the model. We can easily see that the value of
r directly indicates how many non-“0” indices are in the kernel
and, thus, find out how many delayed inputs are involved in the
input products. For instance, » = 2 means that all its input prod-
ucts have two components from delayed inputs, e.g., “012” cor-
responds to z(n)x(n—1)z(n—2). Inthe classical Volterra series
of (1), the coefficients are gathered by rows in Table I, which is
based on the orders of nonlinearity, while in the new representa-
tion of (13), the coefficients are organized by columns, i.e., the
orders of the dynamics involved, where » = 0 corresponds to
the first term in (13), then the second column, and so on. This
makes the new Volterra model have the same advantages as the
modified Volterra series. However, at the same time, the prop-
erty of linearity in the coefficients is also kept from the classical
Volterra series.

Thus, this new representation makes possible an effective
model-order reduction method and a systematic distortion
evaluation approach, while keeping the conventional linear
procedures for the model extraction, as will be discussed in
Sections III and IV.

III. DYNAMIC DEVIATION REDUCTION

In most real PAs, the distortions mainly arise from the static
nonlinearities, and the effects of nonlinear dynamics in the PA
fade with increasing order. This means that the static nonlinear-
ities and low-order dynamics are the dominant sources of the
distortions induced by the PA. Therefore, it is reasonable to re-
move higher order dynamics in the model to reduce the model
complexity.

In [8]-[11], the modified Volterra series was truncated to the
first order, in which only first-order dynamics are accounted for
in the model. However, as discussed in [13], while this first-
order truncation permits accurate modeling of highly nonlinear
systems, its effectiveness tends to be limited to those systems
where the nonlinear dynamics are sufficiently small so that they
can be omitted. Unfortunately, it is found in practice that many
solid-state amplifiers exhibit nonnegligible nonlinear dynamics,
especially due to thermal and bias circuit modulation effects,
which implies that nonlinear memory effects become apparent.
In that situation, a first-order truncation is insufficient. Higher
order dynamics must also be accounted for, and more terms need
to be added to improve the accuracy of the model. However, we

cannot simply add higher order terms to the dynamic model be-
cause increasing the order of dynamics in (6) results in a rapid
growth of model extraction effort, requiring complicated multi-
dimensional measurements.

Fortunately, the new Volterra representation in (13) provides
us with a very flexible way to prune the Volterra model effi-
ciently, keeping, at the same time, the model extraction com-
plexity to an acceptable level, as is explained below.

Since in (13) 7 represents the order of the dynamics of the
input products, we can easily control the order of dynamic be-
havior by limiting the value of r, i.e., setting 1 < r < R,
where R is a small number, thus pruning the model, as in the
modified Volterra series. For instance, it is easy to see that the
second-order truncated modified Volterra model in (10) is equiv-
alent to the truncation of the new Volterra model in (13) by lim-
iting 1 < r < 2, which leads to (12).

The key difference between (10) and (12) is that they require
different model extraction procedures. Extracting the model in
(10) requires difficult experimental measurements, as described
in [10] and [11], while the coefficients in (12) can be extracted
in a direct way since the output of this model is still linear with
respect to all coefficients. This can be done by using LS algo-
rithms to estimate the Volterra kernels from measured arbitrary
input and output data of the PA in the discrete time domain, as
presented in Section I'V.

The decision on how to select the truncation order depends
on the practical characteristics of PAs and the model fidelity
required. We refer to this model reduction approach as “dy-
namic deviation reduction” since 7 represents the order of the
dynamic deviation in the model. Note that this dynamic-order
truncation does not affect the nonlinearity or memory trunca-
tion in the same way as in the classical series. In other words,
it only removes higher order dynamics, preserving the static
nonlinearities and low-order dynamics. For example, in (12),
we removed the higher order dynamics, whose order is over
two—i.e., all kernels in column 3 and beyond in Table I were
omitted—but we are still able to characterize high-order static
nonlinearities by increasing P, or to model longer-term linear
and first/second-order nonlinear dynamics by increasing M. In
conclusion, we have three truncation parameters, i.e., P, M,
and r, to choose from in this dynamic model-order reduction,
which renders the application of the Volterra model much more
flexible.

In the classical Volterra series, we only truncate the model by
limiting the order of nonlinearity P and memory length M so
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Fig. 1. Truncated Volterra model structure.

that the number of the pth-order coefficients is M T .2 However,
after dynamic deviation reduction, the number of coefficients
will only be 1+M+M?2+. ..+ M".3When r has a small value,
the total number of kernels can be kept reasonably small even
with large values of P and M. This significantly simplifies the
model structure and reduces the model extraction effort. How-
ever, model fidelity can still be acceptable since higher order
dynamics do not significantly impact on the output of the PA.

Model implementation also becomes much simpler since
only a limited number of multiplier products are needed, as
shown in Fig. 1. There, a polynomial series is used to construct
the instantaneous transfer function, while transversal finite
impulse response (FIR) filters are used to implement the time
shifts and convolutions [1], [3]. Note that, in this figure, the
even-order nonlinear terms were omitted since only odd-order
nonlinearities affect the first-zone output, i.e., the one where
the information is transmitted. Also, only real RF signals were
considered. For handling carrier-modulated signals, a low-pass
equivalent Volterra model was developed in [12], where com-
plex envelope signals were assumed.

Furthermore, as discussed in Section II, the new represen-
tation of the Volterra series in (13) is equivalent to the modi-
fied Volterra series of (4). This means that the coefficients of
the modified Volterra series can be directly calculated from the
coefficients extracted for (13) or vice versa. Therefore, when the
Volterra kernels in (13) are extracted, the modified series in

2For formulation simplicity, this number includes all kernels. If kernel sym-
metry is considered and omitting even-order kernels that do not contribute to the
PA’s first zone output, the total number of coefficients can be further reduced,
but it still increases exponentially with P.

3This number can also be decreased if kernel symmetry is again considered
and even orders are omitted.
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Fig. 2. Functional block diagram for dynamic distortion evaluation.

(4) can be easily constructed. The purely static effects and dif-
ferent orders of dynamics can then be separated. As illustrated
in Fig. 2, this provides us with an effective way to investigate
the origins of different kinds of distortion and to evaluate their
effects on the output of the PA.

As the functional block diagram shows, the nonlinear static
and different dynamic characteristics are built into several
sub-blocks according to their orders. Hence, by switching on
branches containing these blocks, we can observe how the
distortion changes in the output, and can thereby evaluate the
effects induced by the static or dynamic nonlinearities. Of
course, similar blocks could be used upstream of the PA to
operate as pre-distorters so as to cancel the distortions induced
by the PA, although that is not detailed in this study.

IV. MODEL EXTRACTION

A. Excitation Signals

In this study, we use arbitrary signals as the excitation. To
make sure the excitation source is sufficiently rich to excite all
important properties of the system, most of the techniques used
for the extraction of the Volterra model to date are formulated
through a system approach, using the correlation properties of
Gaussian white noise [2]-[4]. However, it is not convenient to
use these approaches with contemporary commercial circuit
simulators or experimental measurements. This is because
most commercial simulators cannot handle a general Gaussian
white noise source, and also practical PAs are not excited
by Gaussian noise signals. Thus, here, we use a combination
of several time-domain wideband code division multiple ac-
cess (W-CDMA) user signals to extract the Volterra kernels.
W-CDMA is a popular air interface technology for third-gen-
eration RF cellular communication systems, which supports
wide RF bandwidths, typically from 5 to 20 MHz. It is based on
the direct-sequence code division multiple access (DS-CDMA)
technique, i.e., user information bits are spread over a wide
bandwidth by multiplying the user data with quasi-random
bits (called chips) derived from code division multiple access
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(CDMA) uncorrelated spreading codes. It is well known that a
general model of a DS-CDMA system with spread-spectrum
(SS) signals is described as [15]

s(t) = Z mi(t)e; () cos [2m fot + 0;(1)] (14)

where m;(t) = ith baseband quadrature or binary phase-shift
keying modulated signal and ¢;(t) = ith pseudonoise binary
code with a bandwidth of B. fj is the carrier frequency and 6, (¢t)
is the phase of the carrier associated with the sth SS signal. Ac-
cording to the law of large numbers and the central limit theorem
in statistics, no matter what the distribution of each SS signal is,
as n becomes large, the CDMA signal s(¢) will tend towards
a (band-limited) zero-mean Gaussian stochastic process [15].
Therefore, a composite baseband CDMA or W-CDMA excita-
tion signal can be utilized as an equivalent band-limited white
Gaussian process to estimate the Volterra transfer function of a
PA.

Furthermore, a W-CDMA signal has much higher
peak-to-average power ratio and much wider modulation
frequency components than the sometimes used two-tone
signal, which means that it can drive the PA through a wider
nonlinearity and dynamics region. W-CDMA signal sources are
currently available in most commercial computer-aided design
(CAD) software, e.g., Agilent ADS, MATLAB/Simulink, etc. It
is also a built-in feature of most of the latest signal generators.

B. Extraction Methodology

As mentioned earlier, the output of the new Volterra model
is linear with respect to its coefficients. It is, therefore, possible
to extract the nonlinear Volterra model in a direct way by using
arbitrary sampled input and output signals.

Recently, a time-domain stimulus-response measurement
solution has been proposed by Agilent Technologies [16]
(shown in Fig. 3), which uses arbitrary waveforms, e.g., com-
plex W-CDMA envelopes, as the input excitation. Similar
configurations are also used by many other companies and
researchers. In this test system, the modulated data files are
first created at baseband, downloaded to the arbitrary waveform
generator, as complex in-phase (I) and quadrature (Q) signals,
which are then fed to an IQ modulator present in the electronic
signal generator (ESG). The signal generator produces the test
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signal to the PA, i.e., our device-under-test (DUT). The output
of the DUT is then down-converted and sampled by the vector
signal analyzer (VSA). The sampled input and output data are
captured and finally used to extract behavioral models for the
PA.

From the point-of-view of system identification, we can con-
sider that the coefficients appearing in (13) are a generalization
of the impulse response coefficients hp (. ..) defining a linear
model. Consequently, one possible approach to the problem of
the Volterra model parameter estimation is to treat it as a large,
but standard, linear regression problem. In particular, we could
form a single large parameter vector @ containing all of the un-
known coefficients h,, ,.(. . .) and define the matrix X including
all of the product terms x(n —41), ..., z(n — ijr) appearing in

the model forn = M + 1,..., N, where N is the total length
of the available data record. If we assume the presence of an un-
modeled error e = [e(M + 1),...,e(N)]T, the Volterra model

can be written as

y=X0+e (15)

wherey = [y(M + 1),...,y(N)]¥. A popular solution to this
Eroblem is the LS method, in which @ is estimated as the value
0 that minimizes the model error criterion

(16)
n=M+1

where (-)T represents the transpose.* A standard result states
that such an estimate can be given by
f = (X"X) 'XTy. 17)
This result has the advantage of notational simplicity and gen-
eral applicability. Obviously, other linear adaptive techniques,
such as the recursive least squares (RLS) and the least mean
squares (LMS) algorithms, could also be here employed to es-
timate the model parameters.

C. Model Fidelity Evaluation

The PA behavioral model presented in this study operates
on baseband time-domain waveforms. To directly assess the
predictive accuracy of the model, a very useful time-domain
waveform metric, termed the normalized mean square error
(NMSE) [17], can be employed. This verification metric is
the total power of the error vector between the measured and
modeled waveforms, normalized to the measured signal power,
given explicitly by

NMSE
:=10log
N meas mod 2 meas mod 2
D k=1 {(Z’h,k —Yrk ) +(yQ,k _yQ,k) }
X

N meas 2 meas 2
k=1 |k ) T YQk

4For the low-pass equivalent model, this transpose becomes the Hermitian
transpose.

(18)
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Fig. 4. Simplified schematic diagram of the simulated PA.

where the measured and modeled in-phase y; and quadrature
yq waveforms have N sample points. It is assumed that the
“true” waveform is much closer to the measured waveform than
the modeled waveform. Thus, the NMSE is indeed a metric of
model fidelity.

However, many other system-level performance evaluation
figures, e.g., adjacent channel power ratio (ACPR), error vector
magnitude (EVM) and bit error ratio (BER), etc., could also be
employed to evaluate the model fidelity.

V. MODEL VALIDATION

Here, we verify the new behavioral model through both com-
puter simulations and experimental tests.

The first example is intended to test the model ability in cap-
turing the various nonlinear and dynamic effects of microwave
PA circuits. Thus, we used a PA equivalent circuit in a stan-
dard microwave simulation software package to have easy con-
trol on the nonlinearity and memory effects. This also allowed
us to eliminate noises and measurement errors in computer sim-
ulation, putting in evidence the actual model deficiencies. The
disadvantage associated to such a test is that the validity of the
behavioral model becomes obviously conditioned by the accu-
racy of the equivalent-circuit model used.

To make this modeling technique closer to the “real” world,
we then also tested a commercial heterojunction bipolar tran-
sistor (HBT) PA in our laboratory. By using the Agilent con-
nected-solution test bench shown in Fig. 3 [16], we captured
the complex envelope data from the measured input and output
of the PA, and then used them to extract and validate the behav-
ioral model proposed.

Since only the envelopes carry useful information in these
systems, all behavioral models herein extracted belong to the
low-pass equivalent format [12].

A. Computer Simulations

In this test, we designed an equivalent-circuit PA model and
simulated it with the Agilent ADS microwave simulation soft-
ware package. This is a GaAs MESFET class-A PA operating at
2 GHz under a bias of 88% of Idss with distributed matching
networks. The block diagram is shown in Fig. 4. We used a
W-CDMA signal as the excitation, and captured the simulated
input and output data of the PA. These data were then used for
model extraction and model validation.

To show the memory effects presented by the PA, we first sim-
ulated the circuit under a simple quadrature amplitude modula-
tion (QAM) signal for various information bandwidths and for
two different bias impedances. The resulting dynamic AM/AM
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Fig. 5. Sample AM/AM diagrams indicate the memory effects presented in
the PA. (a) 1-MHz envelope with ideal bias networks. (b) 10-MHz envelope
with ideal bias networks. (c) 1-MHz envelope with nonideal bias networks.
(d) 10-MHz envelope with nonideal bias networks.

plots are shown in Fig. 5 (the AM/PM plots have similar aspects,
which are not shown here).
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Fig. 6. Sample time-domain waveforms of predicted and simulated behavioral
for the case (b) PA.

As shown in case (a), the PA is almost static when operated
with a narrow band of 1 MHz and with ideal bias networks.
Thus, in this case, a memoryless representation, such as the
AM/AM and AM/PM model, could be used. However, when
the bandwidth increases from 1 to 10 MHz, some memory ef-
fects become apparent (the AM/AM plot presents hysteresis), as
shown in case (b). These memory effects are mainly due to the
PA’s matching networks, and they are mostly linear since they
manifest themselves even in the PA small-signal region. Another
widely known way to create memory effects for narrow band-
widths is to increase the reactance presented by the bias net-
works. That is shown in case (c), where now most of the effects
are nonlinear, as can be seen from the fact that they only ap-
pear beyond the PA’s onset of gain compression. Finally, in case
(d) we have both linear and nonlinear memory effects (10-MHz
bandwidth and for the increased bias impedance), something
that could be expected from a real PA subject to wide bandwidth
signals.

Since we want to evaluate the model’s ability in treating
various orders of system dynamics, we extracted a model for
the PA as shown in case (b)—only first-order dynamics—and
for the PA as shown in case (d)—first-order and higher order
dynamics. In case (b), considering that the memory effects
mainly emerged from linear and low-order nonlinear dynamics,
we truncated the dynamic model to the first order, i.e., r = 1
with nonlinearity order P = 5 and memory length M = 3. The
model was extracted via the LS estimation process proposed in
Section IV. The average NMSE was —41 dB, a relative error
less than 0.01%, which indicates that the first-order model
predicted the PA output waveform quite well in this situation.
We also calculated the coefficients for the equivalent modified
Volterra model, and then the static and dynamic parts were sep-
arated. A sample of time-domain waveforms is shown in Fig. 6,
where we can see that the model that includes only the static
part is less accurate than the one including the dynamics. In
case (d), a first-order (r = 1) truncated model performed quite
poorly as the NMSE could not get below —36 dB. However,
when we added the second-order dynamics into the model, i.e.,
set 1 < r < 2, the NMSE was improved to —42 dB. Again,
the time-domain waveforms are shown in Fig. 7. These results
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Fig. 7. Sample time-domain waveforms of predicted and simulated behavioral
for the case (d) PA.

TABLE II
MODEL PERFORMANCE IN THE TIME DOMAIN
Order of
Deviation ! 2 3 4 >
NMSE (dB) -33.1 -37.2 -38.8 -38.1 -37.8
Number of
Coefficients 18 54 118 184 244

clearly show that different orders of dynamic truncation have
to be employed under different conditions, depending on the
system characteristics and the desired model fidelity.

B. Experimental Tests

In order to validate the proposed behavioral modeling
technique in a real system, a commercial HBT class-AB PA
was tested. This PA was operated at 2.14 GHz and excited
by downlink 3GPP W-CDMA signals of 3.84-Mc/s chip rate
and peak-to-average power ratio equal to 8.2 dB@0.01%
probability on complementary cumulative distribution function
(CCDF). The test bench setup used the ADS-ESG-VSA con-
nected solution shown in Fig. 3. Around 12 000 sampling data
points, with a sampling rate of 15.36 MHz, were captured from
the PA input and output envelope signals.

In this test, the nonlinearity of the model was truncated to
order 5, and the memory length was set to 3, i.e., P = 5 and
M = 3. For comparison, we also truncated the order of the dy-
namics, i.e., set the value of r, from 1 to 5, which means that
we extracted five different models from the first-order dynamic
truncation to the full model. To evaluate the model’s fidelity in
the time domain, the NMSEs for each partial model were calcu-
lated. These results are shown in Table II, where we can see that
the performance of the first-order model is quite poor. When
the second-order dynamics were added in, the accuracy of the
model was significantly improved. Nevertheless, increasing fur-
ther the order of the dynamics only achieved minor improve-
ments. The performance of the full model, in the case of max-
imum r = 5, was even worse than the truncated ones. This is
common in nonorthogonal Volterra models, and is due to the
fact that, when too many coefficients are involved, more uncer-
tainties are brought into the model extraction process.
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Fig. 8. Measured and modeled spectra of the PA first zone output.

The frequency-domain spectra of the outputs are shown in
Fig. 8. From these results, we can see that the first-order dy-
namic model predicted the spectrum quite well in the in-band
part, but some offsets appeared in the adjacent channels. The
second-order model did better, but no obvious improvement
was achieved after further increasing the order of the dynamics,
which reflects what was already observed with the time-domain
metric.

From these measurement results, we can conclude that static
nonlinearities and low-order nonlinear dynamics do dominate
nonlinear distortions caused by the tested PA. Therefore, it
is indeed reasonable to remove higher order dynamics in the
model, to reduce the model complexity, since their effects
quickly fade with increasing order. Since the model structure
becomes much simpler after model reduction, we gain room to
increase the maximum order of nonlinearity P to cover higher
order nonlinear effects, enabling in this way the application of
the Volterra model to strongly nonlinear systems. In addition,
we may increase the memory length M to characterize a wider
range of long-term linear and low-order nonlinear memory
effects if needed.

VI. CONCLUSION

A new format of Volterra series has been introduced in this
paper, which consisted of regrouping the Volterra coefficients so
that different dynamic orders can be controlled and separated,
but keeping the easiness of the model extraction process. Based
on this new representation, we proposed a “dynamic deviation
reduction,” which greatly simplified the model structure and,
therefore, significantly reduced the complexity of Volterra-se-
ries-based behavioral models. Using this model reduction ap-
proach, we can effectively trade off between model simplicity
and model fidelity, in a judicious manner, making the applica-
tion of the Volterra model more flexible in practical applications.
A model of this kind was shown to be easily extracted from
time-domain measurements or simulations and simply imple-
mented in system-level simulators.
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APPENDIX

The relationship between the classical Volterra formulation
and the dynamic Volterra series can be developed as follows.

In the static part, each coefficient a,, coincides with the mul-
tiple summation of the corresponding Volterra kernels of the
same dimension

M M
=3 S Byl iy,

i1=0  ip=i,_,

(A.1)

In the dynamic part, the coefficients of the first-order dy-
namics are

w1,1(@) = ha (i) (A.2)
M
wa,1 (i) = ha(0,3) + D halin, i)

—_———

il =1 or ig:’l;

(A3)

M M M
w1 (i) =h3(0,0,4)+ Y hs(0,i1,i2)+Y > hs(ir, iz, is)

i11=1 or iy=1

11=1% or 13=1 Or 13=1
(A4)

Thus, we can see that wy, 1 (i) is the original pth-order Volterra
kernel with the index (0, . . ., 0, %) plus the sum of kernels of the
same dimension with different indices, but in which one of them
equals .

The second-order coefficients are

wa 2 (i1,42) = ha(i1,42) (A.5)
M
w3 2(i1,02) = h3(0,41,12) + Z ha(is, ia, i5) (A.6)
if i3,04,i5€(11,i2)
M
wa (i1, i2) = ha(0,0,41,12) + Y ha(0, i, 14, 75)
if i3,i4 ;;e(il-,i2)
M M
+ ZZ}L4(i3ai47i57i6)
if 13141:’26 €(i1,i2)
(A.7)

The coefficients for higher order dynamics can be derived in
the same way.
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