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We reveal a direct link between two fundamental wave phenomena in periodic media, Pendellösung

oscillations and resonant coupling between spectral bands. We experimentally measure the power transfer

between laser beams associated with the high-symmetry points in periodic and biased hexagonal photonic

lattices. As a result, we demonstrate that Pendellösung oscillations dominate the dynamics of resonant

interband transitions on a short propagation scale.

DOI: 10.1103/PhysRevLett.106.083902 PACS numbers: 42.25.Bs, 42.82.Et

Coherent transport of waves in periodic media manifests

itself in resonant phenomena such as Bragg scattering of

x rays, electrons, and neutrons [1] in crystals, matter waves

[2], and visible light [3] in optical lattices. Resonant cou-

pling between two [1,2,4,5] or several [6] forward and

Bragg-reflected waves leads to dynamic diffraction and

Pendellösung effect [1,2,4,5] with the wave energy oscil-

lating between high-symmetry momentum states. In con-

trast, the resonant coupling between spectral bands can be

induced by an external force, and it leads to Landau-Zener

interband tunneling (LZT) [7,8]. These two fundamental

phenomena have never been linked before, even though

they are observed in essentially similar settings, as cou-

pling between localized momentum states [8].

Periodic photonic structures, such as coupled waveguides

[3,9,10] and optical lattices [10,11], allow direct visualiza-

tion of many fundamental linear and nonlinear phenomena

inherent to wave packets and quantum particles of different

nature [12], such as electrons in crystals and matter waves in

optical lattices [13]. Examples include Bloch oscillations

[14], LZT [7,8], as well as nonlinear [10,11,15], disorder-

driven [16], and dynamic [17] localization. While the later

use narrow [11,15] or partially incoherent [18] beams with

wide spatial spectra, broad beams with localized spatial

spectra are usually required to selectively access specific

Bragg resonances. For instance, one-dimensional (1D)

Pendellösung oscillations between forward and Bragg-

reflected waves have been demonstrated with quasiplane

waves in holographic volume gratings [4] and in microwave

photonic crystals [5]. Nevertheless, resonant effects, such

as Bloch oscillations [14] and LZT [7,8] can be observed

with relatively narrow (and thus experimentally accessible)

beams covering only several lattice sites.

In this Letter, we reveal a deep relation between two

fundamental wave phenomena, Pendellösung oscillations

and interband transitions, in experimental studies of

resonant coupling between high-symmetry momentum

states of two-dimensional (2D) photonic lattices. In pure

periodic lattices these critical points form few-level oscil-

latory systems, with periodic Pendellösung transfer of

population between levels due to interference of two or

many Bloch waves; this process is similar to Rabi oscil-

lations and energy beating in coupled waveguides. In the

regime of LZT in lattices of a finite length, the observed

energy transport between high-symmetry points can be

explained by Pendellösung and Bloch oscillations, without

significant tunneling between spectral bands.

We begin with the resonant model of interband coupling

in hexagonal photonic lattices governed by the Landau-

Zener-Majorana (LZM) system [6,19]. As an example,

we consider a two-level LZM model of two resonantly

coupled plane waves (high-symmetry momentum states)

with complex amplitudes c1;2:

dc1;2=dz ¼ �ib1;2zc1;2 þ i�c2;1: (1)

Here, z is the propagation length in the crystal, the coef-

ficients b1;2 are proportional to the linear gradient of the

refractive index, and the coupling coefficient � is defined

by the resonant Fourier component of the lattice potential

[20]. Equation (1) describes the asymptotic transfer of

populations jc2;1j2 between levels due to interband tunnel-

ing, induced by the refractive index gradient. However,

at short propagation distances z � 0, close to the Bragg

resonance, the gradient terms b1;2zc1;2 are small and can be

neglected, thus effectively reducing Eq. (1) to

dc1;2=dz ¼ i�c2;1: (2)

This generic oscillatory system can be also obtained

from the LZM model (1) with zero index gradient,

b1;2 ¼ 0, and thus it describes Pendellösung oscillations

along the propagation length [5] of a perfectly periodic

crystal. The oscillation frequency � is determined by the
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lattice depth [4]. Therefore, with initial population at one

level, c1ð0Þ ¼ 1 and c2ð0Þ ¼ 0, the harmonic solution to

Eq. (2) can be used to derive�, and thus the lattice depth, as

a function of the power ratio at two high-symmetry points

after propagation of distance z, �z ¼ tan�1jc2j=jc1j. In
fact, a similar method is used routinely with x-ray and

neutron [1] scattering to determine the structure and atomic

scattering amplitude of crystals. Interestingly, the same

Eq. (2) also describes two evanescently coupled waveguides

[9], and it is analogous to Rabi oscillations of an externally

driven two-level atom [21]. The analogy with Rabi oscilla-

tions [6] is based on the similarity between atomic levels

and high-symmetry points, with coupling strength � pro-

portional to the lattice amplitude, similar to the Rabi fre-

quency � defined by the strength of the driving field [21].

The arguments above suggest that Pendellösung

oscillations should dominate any interband coupling at

small propagation distances. Therefore, the first important

step in our experimental demonstration is to use pure

Pendellösung oscillations in lattices without index gradient

to verify the applicability of the theoretical model and

measure the lattice depth. In experiments, we realize pho-

tonic LZM systems in an optically induced hexagonal

lattice produced by interfering three ordinarily polarized

beams from a frequency-doubled Nd:YVO4 laser at a

wavelength of 532 nm in a 23 mm long photorefractive

strontium barium niobate crystal. An external dc electric

field, Eext, applied to the crystal, is used to control the

lattice depth. We use stretched hexagonal lattices, see

Fig. 1(a), to restore the symmetry of intersite coupling

broken by anisotropic modulation of the refractive index

in the photorefractive crystal [22]. The period in horizontal

x direction is d ¼ 22 �m and the stretching factor is � ¼
2:4. Two CCD cameras are used to analyze the output

beam in real as well as in Fourier space (far field). The

lattice Brillouin zone (BZ) and the band-gap spectrum are

shown in Figs. 1(b) and 1(c).

The two-level resonance can be excited on the border of

the irreducible BZ, and we choose the Y-symmetry point of

the lattice where the gap between the first two Bloch bands

is the smallest, as seen in the plot of the propagation

constant � in Fig. 1(c). The 1D Pendellösung oscillations

between the critical points Y and Y’ in Fig. 1(b) are excited
by sending a Gaussian beam with FWHM of 160 �m
in the direction of the Y point and recording the far-field

intensity profiles, Figs. 1(e)–1(g). The input at the Y point

is Bragg reflected and the output contains a second peak

at the Y’ point. The Bragg-reflected beam remains well

localized in Fourier space with its width replicating input

beam. We estimate the relative powers P1;2 by numerical

integration, and compare them with the plane-wave

intensities jc1;2j2 given by Eq. (2). The ratio of the two

powers changes with the externally applied field, Eext ¼
0–1 kV=cm, because the latter determines the lattice depth

and thus the oscillation frequency,�L ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2=P1

p

, as

depicted in Fig. 1(d). The resonant theory [6] predicts

Pendellösung oscillations between the two high-symmetry

points due to the interference and beating of two Bloch

waves. Therefore, the oscillation frequency can also be

estimated as � � ��=2. Indeed, the latter values of

��L=2 [calculated, dashed line in Fig. 1(d)] are close to

the experimental data and to the results of full numerical

simulations. The Bloch-wave spectrum of the input

Gaussian has dominating contributions from the first and

second bands (not shown) for the entire range of lattice

depths, which further supports the validity of the resonant

two-level approximation.

The two-level system (2) offers interesting opportunities

to explore phase-only manipulation of Pendellösung oscil-

lations in photonics. Figure 2 presents experimental results

on two-beam excitation of the two-level system, with the

relative phase � between input beams at Y-symmetry

points, providing full control over output population ratio.

This input realizes the following initial conditions for the

LZM system (2): c1ð0Þ ¼ 1=
ffiffiffi

2
p

and c2ð0Þ ¼ expði�Þ=
ffiffiffi

2
p

;

the solution reads jc1;2ðzÞj2 ¼ ð1� sin� sin2�zÞ=2. For a
given lattice depth � and crystal length z ¼ L, the output

FIG. 1 (color online). (a) Experimental intensity distribution

of the stretched hexagonal lattice. (b) First BZ with the high-

symmetry points. (c) Band-gap diagram calculated for a lattice-

wave amplitude I0 ¼ 1:1 and an external field Eext ¼ 1 kV=cm.

The numbers next to the curves show band index.

(d) Experimentally measured Rabi frequency � of oscillations

between Y and Y’ points (shown as dimensionless parameter

�L) versus external field Eext (dots with error bars). Solid line:

numerical simulations; dashed line: normalized gap ��L=2
between first two bands at Y point as indicated in (c). (e)–

(g) Experimentally recorded far-field output intensity for

Eext ¼ 0:2, 0.6, and 1 kV=cm, respectively.
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is fully defined by the input phase �. The Bloch-band

population in Fig. 2(d) strongly depends on the phase

difference � and shows coupling between the two lowest

Bloch bands. The experimental measurements in Fig. 2(e)

show a remarkable agreement with simple harmonic solu-

tions to Eq. (2), namely, the two cases correspond to differ-

ent frequencies �, and thus different amplitudes of power

ratios at � ¼ �=2, as defined by the LZM solution:

maxðjc1ðLÞj=jc2ðLÞjÞ ¼ ð1þ sin2�LÞ= cos2�L.
More importantly, 2D lattices provide access to multi-

level systems, in addition to the 1D Bragg reflection de-

scribed above. In the configuration in Fig. 3(a), the field

amplitudes at M points in momentum space are described

by three-level LZM model [20]. By varying the relative

phase � between two input beams at M and M’ points, we

are able to distribute and switch the output power between

two or three beams, in excellent agreement with resonant

theory. Despite the anisotropy of the stretched hexagonal

lattice, the experimental outputs in Figs. 3(c)–3(f) clearly

show the strong localization at high-symmetry points.

Indeed, the measured relative power of the output peaks

is in excellent agreement with numerical simulations in

Fig. 3(h), and it recovers the corresponding solutions to

the Rabi system derived in [20].

In contrast to the Rabi oscillations between waveguide

modes [23] or spectral bands [24] in longitudinally

modulated waveguides, so far we observed oscillations

of populations between high-symmetry points in momen-

tum space, while the Bloch-band populations in Figs. 2(d)

and 3(g) are given by the initial excitation. To induce

tunneling between different Bloch bands, one needs to

break the periodicity of the lattice by additional longitudi-

nal modulation [23,24] or a linear refractive index gradient

[7,8]. The latter case corresponds to LZ tunneling and has

been previously studied in square lattices [8]. However, no

relation between Pendellösung oscillations and the tunnel-

ing process has been revealed. The reduction from Eq. (1)

to Eq. (2) suggests that, for small propagation distances,

the Pendellösung oscillations will dominate the dynamics,

while the tunneling process determines the asymptotic

power transport.
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FIG. 2 (color online). Two-level Pendellösung oscillations.

(a) The two-level system of Fig. 1, but excited with a pair of

beams with equal power and phase difference �. (b),(c)

Examples of experimental far-field output intensity distributions

for (b) � ¼ 0 and (c) � ¼ �=2. (d) Corresponding Bloch-band

populations, calculated for I0 ¼ 1:1 and Eext ¼ 1 kV=cm.

(e) The measured (relative) powers of output beams (symbols

and error bars) and the corresponding numerical simulations

(solid lines) for external bias Eext ¼ 0:4 kV=cm (inner curves)

and Eext ¼ 1 kV=cm (outer curves). The symbols next to the

curves indicate corresponding beam in BZ.
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FIG. 3 (color online). Switching of power between different

outputs by input phase-only manipulation. (a) Three-level

Pendellösung oscillations realized by coupling of threeM points.

The experimental input in (b) consists of two beams atM andM’

points with equal power and phase difference �. Corresponding
LZMsolution is derived in [20], and it allows one to obtain a single

beam at the output, as in (c) with � ¼ 0, or any pair of output

beams in (d)–(f) with � ¼ �=3 in (d), � in (e), and 5�=3 in (f).

The Bloch-band populations in (g) (calculated for I0 ¼ 1:1 and

Eext ¼ 1 kV=cm) show the coupling between first three bands, as

expected from resonant theory. (h) Measured relative powers of

the output beams (symbols and error bars) and the corresponding

numerical simulations (solid lines). Eext ¼ 1 kV=cm.
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In order to study experimentally the tunneling dynamics

of optical beams in lattices with index gradient, the crystal

is illuminated from the top with a transversely modulated

incoherent white light which induces a refractive index

gradient along the transverse x direction. Since it is not

possible to directly observe the evolution of the signal

beam inside the crystal, we vary the incident angle and

image the output real space and the Fourier space onto a

CCD camera [8]. For a fixed crystal length and angles

below the Bragg resonance, such an excitation at different

transverse wave vector components is equivalent to differ-

ent starting points in the BZ and thus allows one to infer

details of the tunneling dynamics at different stages of the

beam evolution. Our results for symmetric LZ tunneling in

Fig. 4 confirm theoretical predictions and demonstrate the

interplay of both effects at the initial stage of evolution.

Since the medium length L is relatively short, it is not

possible to reach the asymptotic transfer of population

between bands, yet we observe significant transfer of

power between resonantly coupled wave packets in

Fourier space, shown in Fig. 4(e). The localization of these

waves in momentum space corresponds to high-symmetry

points in the frame moving in the BZ due to gradient-

induced Bloch oscillations, cf. Figs. 4(a) and 4(b). The

actual interband coupling is demonstrated in numerical

simulations in Fig. 4(f), where the first and third Bloch

bands undergo periodic exchange of energy with small and

gradual tunneling of power to the second band. Therefore,

such regime can be characterized as quasi-Pendellösung

oscillations.

In conclusion, we have studied Pendellösung oscilla-

tions and interband Landau-Zener transitions in experi-

ments on resonant coupling between high-symmetry

points of 2D photonic lattices. The comparison of both

effects shows that, in biased lattices of a finite length, the

Landau-Zener tunneling is dominated by Pendellösung

oscillations allowing for spatial spectral shaping of the

waves. Our findings provide an important insight into

resonant wave transport in periodic media, and they can

be applied to electromagnetic and matter waves.
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FIG. 4 (color online). Observation of Landau-Zener tunneling.

(a),(b) Fourier space and (c),(d) real space output intensity

distributions for input inclination angles of the signal beam:

� ¼ 0:14� in (a),(c) and � ¼ 0:26� in (b),(d). (e) Measured

output power ratios (markers) and the corresponding numerical

simulations (solid lines). The error bars show finite beam widths

in the reciprocal space; the arrow in the BZ inset indicates

the direction of the linear index gradient � ¼ rIgrad. (f) The

dynamics of band populations (in the Bloch-wave basis of the

periodic lattice with � ¼ 0) during the tunneling in the crystal

with band indices next to the curves. Calculations are for

I0 ¼ 0:9 and Eext ¼ 1:35 kV=cm, with the gradient illumination

Igrad of width b ¼ 200 �m and amplitude B ¼ 2 [20].
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