
Durham Research Online

Deposited in DRO:

04 November 2008

Version of attached �le:

Accepted Version

Peer-review status of attached �le:

Peer-reviewed

Citation for published item:

Berenbrink, P. and Friedetzky, T. and Martin, R. (2005) 'Dynamic di�usion load balancing.', in Automata,
languages and programming : 32nd International Colloquium, ICALP 2005, 11-15 July 2005, Lisbon, Portugal
; proceedings. Berlin: Springer, pp. 1386-1398. Lecture notes in computer science. (3580).

Further information on publisher's website:

http://dx.doi.org/10.1007/11523468112

Publisher's copyright statement:

The �nal publication is available at Springer via http://dx.doi.org/10.1007/11523468112

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for
personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in DRO

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.

Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971

https://dro.dur.ac.uk

https://www.dur.ac.uk
http://dx.doi.org/10.1007/11523468_112
http://dro.dur.ac.uk/658/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk

Dynamic Diffusion Load Balancing

Petra Berenbrink1, Tom Friedetzky2, and Russell Martin3 ?

1 School of Computing Science
Simon Fraser University

Burnaby, B.C., V5A 1S6, Canada
2 Department of Computer Science

University of Durham
Durham, DH1 3LE, U.K.

3 Department of Computer Science
University of Warwick

Coventry, CV4 7AL, U.K.

Abstract. We consider the problem of dynamic load balancing in arbitrary (connected) networks on n nodes. Our
load generation model is such that during each round, n tasks are generated on arbitrary nodes, and then (possibly
after some balancing) one task is deleted from every non-empty node. Notice that this model fully saturates the
resources of the network in the sense that we generate just as many new tasks per round as the network is able to
delete. We show that even in this situation the system is stable, in that the total load remains bounded (as a function
of n alone) over time. Our proof only requires that the underlying “communication” graph be connected. (It of
course also works if we generate less than n new tasks per round, but the major contribution of this paper is the
fully saturated case.) We further show that the upper bound we obtain is asymptotically tight (up to a moderate
multiplicative constant) by demonstrating a corresponding lower bound on the system load for the particular exam-
ple of a linear array (or path). We also show some simple negative results (i.e., instability) for work-stealing based
diffusion-type algorithms in this setting.

1 Introduction

The use of parallel and distributed computing is established in many areas of science, technology, and
business. One of the most crucial parameters of parallel machines is the efficient utilisation of resources.
Of greatest importance here is an even distribution of the workload among the processors. In particular
applications exposing some kind of “irregularity” require the use of a load balancing mechanism.

A well known and much studied load balancing approach is the so-called diffusion load balancing, first
introduced by Cybenko and Boillat ([11], [10]). The algorithm works in synchronised rounds. The basic idea
is that in every round, every processor p balances load with all its neighbours (independently, i.e., pair-wise).
Let `p be the load of p, `q the load of some of p’s neighbour q, and let ∆ denote the maximum degree of
the underlying graph. In the discrete setting, p transfers max{0, b(`p − `q)/(∆ + 1)c} tasks to q. Some of
many advantages of diffusion-type algorithms are the locality (no global knowledge regarding the overall
load situation, or, in fact, anything except the strict neighbourhood of any vertex is needed), its simplicity,
and its neighbourhood preservation (tasks tend to stay close to the processors where they are generated,
which may help to maintain small communication overhead).

The diffusion load balancing algorithm has been thoroughly analysed for static scenarios, where each
processor has some initial number of tasks, and the objective is to distribute this load evenly among the
processors as quickly as possible. Much work has been done under the assumption that every edge is only
allowed to forward one task per round [16, 17, 19] or when a constant number of tasks can be passed by each
processor [15]. We refer to these scenarios as token distribution problems. In addition [12–14] have studied
the diffusion algorithm where tasks can be split arbitrarily.

? A portion of this work was performed during a visit to the School of Computing Science at Simon Fraser University. Supported
in part by the EPSRC grant “Discontinuous Behaviour in the Complexity of Randomized Algorithms”.

In contrast to the static case of load balancing and token distribution, in the dynamic setting during
each time step new tasks are generated (in some manner) on the set of processors, load is balanced amongst
neighbours, then tasks are deleted from non-empty processors.

Much of the past work has studied the dynamic token distribution problem. Muthukrishnan and Rajara-
man [18] studied a dynamic version where processors can forward a single task in each round. They assume
an adversarial load generation model. The adversary is allowed to generate and to delete tokens from the
network in every round. The simple and elegant algorithm they consider is due to [2]: A node sends a task
to its neighbour if the load difference between them is at least 2∆ + 1. They show that the system is stable
if the load change in every subset S of the nodes minus a|S| is at most (1 − ε)e(S) for ε > 0. Here e(S)
is the number of outgoing edges of S and a is the change in the average load. Their system is said to be
stable if the deviation of the load of any processor from the average load can be bounded. Muthukrishnan
and Rajaraman left open the question whether the system is also stable for ε = 0.

Anshelevich, Kempe, and Kleinberg [4] gave a positive result for token distribution when ε = 0. They
showed that under the above load generation model no processor has more than average load±(2∆+ 1) ·n.
Anshelevich, et. al. also showed how their result can be generalized for edges that can forward c tokens per
time step. A node sends min{c, ρ} tasks to its neighbour if the load difference is at least 2∆c + ρ. In this
setting no processor has more than average load±(2∆+ 1)c ·n as long as the load change in every subset S
of the nodes minus a|S| is at most c · e(S). Additionally, they showed that a generalisation of the algorithm
is stable for two distinct types of jobs, and they extended their results to related flow problems.

In [6, 7] Awerbuch and Leighton use a variant of the token distribution model under the assumption
that tokens can be split into arbitrarily sized parts. They use a “balancing” algorithm to approximate the
multi-commodity flow problem with capacitated edges. Their method is an iterative approach where flow
is queued at the vertices of the graph. In each step, the commodity which has the largest excess is shipped
from one vertex to another, and then new flow is injected into the system. In this balancing process, edge
capacities must always be respected. These edge capacities are analogous to the restrictions on the number
of tasks that can be passed over any single edge in the token distribution problems. Furthermore, their model
does not actually allow full use of those edge capacities, which is similar to the case in [18] where ε > 0
was required to ensure stability. The work in [1] and [5] expands the results of Awerbuch and Leighton for
packet routing, but again in these cases only a constant number of tasks can be moved across any edge in a
single time step.

Clearly the condition that processors can forward only a single task (or a constant number) per edge in
each round significantly restricts the number and distribution of tasks that can be generated on (or deleted
from) processors in each round and still obtain a stability result. Thus, in the results of [18] and [4] some
dependence on the quantity e(S) (or some measure of the “edge expansion”) is to be expected.

Anagnostopoulos et. al. [3] consider the setting where there are no restrictions on the number of tasks
balanced between processors in a time step, and they allow a broad range of injection models. Their protocol
is similar to that studied in [15] for a static setting, but is not the typical diffusion load balancing procedure.
In their setting, in each step nodes are matched randomly with adjacent neighbours and matched nodes
equalise their load. Hence, every processor is only involved in a single load balancing action. They show
that the system is stable as long as at most wnλ tasks (in expectation) are generated in a time interval of
lengthw, where λ < 1. Their proof method unfortunately cannot be generalized to the case of full saturation
when λ = 1, which is the main focus of this paper.

1.1 Our Results

In this paper we present the first analysis of the simple diffusion scheme for the dynamic load balancing
problem that allows full saturation of the resources. We assume that n new tasks are generated per round

and, after load balancing, every non-empty processor deletes one task each round. (With small modifications
our proofs will carry through to the case when we generate at most n tasks per round.) In contrast to [4] and
[18], the newly generated tasks may be arbitrarily distributed among the nodes of the network, regardless of
any “edge expansion” type of condition as in those models. For example, the tasks may always be generated
on the same processor, or all tasks may be generated on one processor but the processor can change from
round to round, or alternatively, the tasks may be allocated at random each round. Note that, obviously,
without load balancing the total number of tasks in the system may grow unboundedly with time (in the
worst case, we generate n new tasks per step but delete only one).

We show that the system of processors is stable under the diffusion load balancing scheme and the
generation model described above. By stable, we mean that the total load in the system does not grow with
time. In particular, we show that the total system load can be upper-bounded by O(∆n3), where ∆ denotes
the maximum degree of the network. Furthermore, we present a simple, asymptotically matching lower
bound when the network is a path.

Our technique also captures a different scenario, similar to that in [4, 18], where stability is defined in
terms of deviation of any processor’s load from the average. In this scenario we have two separate phases, the
first where tasks are generated on and/or deleted from nodes, and the second where tasks are then balanced
amongst nodes. Let L̄t(S) denote the total load of the nodes in the set S after the task generation/deletion
phase, and Lt(S) denote the total load of S after the balancing step at time t. Assume that the genera-
tion/deletion phase satisfies the following condition:

(L(S)t − L̄(S)t−1) ≤ (avg(t)− avg(t− 1)) · |S|+ ρ

where avg(t) denotes the average system load in step t. Then the total load of S can be bounded by |S| ·
avg(t) + 5∆nρ.

For both proofs of our results we use a potential function. Although the potential function we use looks
similar to the one used in [4], the proof technique is very different. The proof method in [4] very much relies
upon the restriction of their generation/deletion model, where the number of tasks inserted into/deleted from
a set S is bounded by a function of e(S), the number of edges that join the set S to its complement S̄. This,
together with the bounded capacities on the edges of the graph, allows for a direct analysis of how the loads
of sets might change in a single step of their process. The arbitrary distribution of tasks in our generation
model and the unrestricted capacity of the edges in our network (i.e. unknown bounds on load transferred
into a set S in a single step) does not allow us to directly obtain similar results, so we need a different proof
to show stability under our model.

Another approach to show our results would be to demonstrate an upper bound on the number of tasks
that can be moved over a single edge during any time step of our algorithm. If this is possible, the results
in [4] could then be used to prove stability under either model that we have described. However, the authors
of this paper feel that showing this result is not easier than the proof method we used, especially in the
second model where the number of tasks inserted into the system at any time can be unbounded.

In the final part of our paper we discuss a different method of load balancing, one which is commonly
referred to as work stealing. In this framework, processors that are empty after task generation will balance
with processors that are not empty, but no other balancing actions are permitted.

We show that for this work-stealing protocol there are graphs for which the system cannot be stable for
a significant class of generation parameters. These results show that restricting balancing actions to empty
processors is not sufficient in general.

In contrast, Berenbrink, Friedetzky, and Goldberg [8] showed stability of a work stealing algorithm
under a load generation model that is similar to many of those already mentioned. They consider a flexible
distribution of n generators among the nodes of the network, where each generator is allowed to generate
a task with probability strictly smaller than one. In this setting a very simple, parameterized work-stealing

algorithm achieves stability (in our sense) for a wide range of parameters. The important point to note is that
their model applies only when the set of processors (and their communication linkages) forms a complete
graph, and their results only hold for the case where strictly less than n tasks (in expectation) are generated
during any time step.

Our model is defined in the next section, and the formal definition of the diffusion approach to load
balancing is given following that.

1.2 Our Model

Our parallel system is modelled by a connected graph G = (V,E). The nodes V of the graph model
our processors P = {P1, . . . , Pn} , and the edges E model the underlying communication structure. If two
nodes are connected with each other, this means that the processors modelled by the nodes can communicate
directly. For us, this means that they are allowed to exchange tasks. Nodes not connected by an edge have
to communicate via message passing. Furthermore, let ∆ be the maximum degree of the graph. We assume
that each processor maintains a queue in which yet-to-be-processed tasks are stored. One round looks as
follows:

1. n generators are arbitrarily distributed over the processors, and each generator generates one task at the
beginning of every time round. For 1 ≤ i ≤ n, let kti = j if generator i is allocated to processor Pj in
round t, and kti = 0 if the generator is not allocated to any processor in that round.

2. Every processor balances its load with some or all its neighbours in the network (according to a well-
defined scheme for doing this operation).

3. Every non-empty processor deletes one task.

Let ˆ̀t
i be the load of Pi directly after the load deletion phase in round t. A system is called stable if the

number of tasks L̂t(P) =
∑n

i=1
ˆ̀t
i that are in the system at the end of round t does not grow with time, i.e.

the total load L̂t(P) is bounded by a number that might depend on n, but not on the time t.

We will mainly focus on one load balancing method called the diffusion approach. Every processor is
allowed to balance its load with all its neighbours. As mentioned previously, we briefly consider a second ap-
proach in Section 4 where only empty processors are allowed to take load from their non-empty neighbours.
We call this second method the work stealing approach.

Diffusion approach. We begin with a detailed description of the first approach, an integral variant of the
First Order Diffusion scheme. Let ¯̀t

i be the load of processor Pi directly before the load balancing phase,
and `ti the load directly after the load balancing phase. Let αti,j be the load that is to be sent from Pi to Pj in
round t for (i, j) ∈ E (αti,j = 0 otherwise). Then αi,j and `i are calculated as follows:

αti,j := max

{
0,

⌊
¯̀t
i − ¯̀t

j

2∆

⌋}
`ti := ¯̀t

i −
∑

(i,j)∈E

αti,j +
∑

(j,i)∈E

αtj,i

To compute ˆ̀t
i, the load of processor Pi after load deletion, it remains to subtract one if `ti > 0, thus

ˆ̀t
i := max{0, `ti − 1}.

Note that the “standard” diffusion approach divides ¯̀t
i− ¯̀t

j by ∆+ 1 instead of 2∆. We need the 2∆ for
our analysis.

We will now very briefly introduce our contributions. In Section 2, we prove Theorem 1, which states
that we can upper-bound the total system load by 3∆n3. This generalizes the results of [4] to the case of
unbounded edge capacities and, hence, analyses the standard diffusion approach.

Theorem 3 in Section 3 provides an asymptotically matching lower bound, showing that our upper bound
is tight, up to a multiplicative constant.

In Section 4 we discuss the problem of combining the diffusion-approach with the work-stealing ap-
proach and show that certain assumptions necessarily lead to instability.

2 Analysis of the Dynamic Diffusion Algorithm

In this section we will show that the diffusion approach yields a stable system. Moreover, we are able to
upper bound the maximum load that will be in the system by O(∆n3). Throughout, we assume that n ≥ 2
and ∆ ≥ 2.

In order to clarify the exposition, we first recall the notation we have already defined:

– ¯̀t
i denotes the load of processor Pi after we have generated tasks at the start of round t, but before load

is balanced,
– `ti is the load of processor Pi immediately after the load balancing phase, and
– ˆ̀t

i is the load of processor Pi after the task deletion phase of round t (i.e. at the very end of round t).
– We will also use notation like L̄t(S) =

∑
i:Pi∈S

¯̀t
i for a subset S ⊆ P , with similar definitions for

Lt(S) and L̂t(S).

With this notation, our main result about the diffusion approach to load balancing is

Theorem 1. Let n ≥ 2 denote the number of processors in the system, and an upper bound on the number
of tasks that are generated during each time round. Let ∆ ≥ 2 denote the maximum degree of the graph G
that specifies the communication linkages in the network. Then, starting with an empty system, for all t ≥ 1
we have

L̂t(P) =
n∑
i=1

ˆ̀t
i ≤ 3∆n3.

We will prove this theorem by first giving a series of preliminary results. The proof of Theorem 1 uses
a similar potential function as the one that was used in [4] (though what follows is very different). This idea
is to prove an invariant that for all t ≥ 1, every subset S ⊆ P satisfies the following inequality:

L̂t(S) ≤
n∑

i=n−|S|+1

i · (4∆) · n. (1)

Then, Inequality (1) will immediately imply Theorem 1 (by taking S = P).
We will often have occasion to refer to the right hand side of Inequality (1) for many sets, so to make

our proofs that follow easier to read, we define the following function f : {1, . . . , n} → N in this way

f(k) =
n∑

i=n−k+1

i · (4∆) · n. (2)

Definition 1. In what follows, we will refer to sets as being bad after load generation in round t, or after
the load balancing phase of round t, etc., meaning that the load of the set at that particular time violates
Inequality (1). For example, if we say that a set S is bad after load generation in round t, we mean that
L̄t(S) > f(|S|).

Conversely, we will also refer to a set as being good (after load generation, or load balancing, etc.) if it
satisfies Inequality (1) (at the time in question).

The first lemma states that if we consider any (non-empty) set S at the end of round t, there must have
existed a set S′ so that the load of S′ before load balancing was at least as large as the load of S after load
balancing, i.e. L̄t(S′) ≥ Lt(S) ≥ L̂t(S). The fact that might not be obvious is that we can assert that the
two sets contain the same number of processors. This is the statement of the following lemma.

Lemma 1. Let ∅ 6= S ⊆ P denote an arbitrary subset of processors. There exists a set |S′| such that

1. |S′| = |S|, and
2. L̄t(S′) ≥ Lt(S).

Proof. The claim is clear if S = P , since in this case we have Lt(P) ≥ L̂t(P) and L̄t(P) = Lt(P). Taking
S′ = P then satisfies the conclusions of the theorem.

So we suppose that S is not the entire set of processors. In this case let Sin = {v : v ∈ S and ∃w 6∈
S such that αtwv > 0)}. In other words, Sin is the subset of S consisting of processors that received tasks
from outside of S during load balancing.
Case 1: Sin = ∅. This case is essentially the same as when S = P . Since no processors in S received load
from outside of S, the elements of S can only exchange load among themselves or send load to processors
outside of S. Then it is clear that L̄t(S) ≥ Lt(S), so taking S′ = S again satisfies the desired conclusions.
Case 2: Sin 6= ∅. Let R = {w : w 6∈ S and ∃v ∈ Sin such that αtwv > 0}. In other words, R is the set of
nodes not in S that pushed tasks into S during load balancing. The main idea of what follows is that we are
going to swap some elements of R for elements of Sin on a one-for-one basis to find the set S′ we desire.
More formally, let Lin =

∑
w∈R,v∈Sin

αtwv denote the total flow from R to S during load balancing. We
aim to find sets R1 ⊆ R and S1 ⊆ Sin with

1. |R1| = |S1|, and
2. L̄t(R1) ≥ Lt(S1) + Lin + (flow from S1 to S\S1).

Then we will take S′ = S\S1∪R1. Our choice of the setR1 guarantees that S′ will satisfy L̄t(S′) ≥ Lt(S),
since the elements of R1 account for all flow that enters S during load balancing, plus all flow that passes
from elements in S1 to elements in S\S1 as well.

To do this, let E1 = {(w, v) : w ∈ R, v ∈ Sin, αtvw > 0}. Consider an edge e1 = (w1, v1) ∈ E0 where
αte1 is largest. Then, from the definition of αtwv, we see that ¯̀t

w1
≥ 2∆αtw1v1+¯̀t

v1 . The key observation is that
by choosing the largest edge, the expression ¯̀t

w1
accounts for all possible load that v1 could have received

during load balancing, and all tasks that w1 pushes into the set S too (and any tasks that v1 might happen to
pass to other elements in S, since this is counted in the term ¯̀t

v1). We set R1 := {w1} and S1 := {v1}, and
E2 = E1\ ({(w1, v

′) : v′ ∈ Sin} ∪ {(w′, v1) : w′ ∈ R}).
Then, we iteratively apply this argument, namely take a largest edge e2 = (w2, v2) ∈ E2. (Note that

w2 6= w1 and v2 6= v1.) The choice of largest edge then allows us to swap w2 for v2, again accounting for
all tasks that w2 pushes into S during load balancing, all tasks that v2 receives, and any tasks that v2 passes
to other elements in S. Then, we add w2 to R1, i.e. R1 := R1∪{w2}, add v2 to S1, so S1 := S1∪{v2}, and
delete the appropriate set of edges from E1. Thus, E2 = E1\ ({(w2, v

′) : v′ ∈ Sin} ∪ {(w′, v2) : w′ ∈ R}).
We continue to iterate this procedure, selecting an edge with largest αtwv value, and performing an

exchange as before, until we finish step k with a set Ek = ∅. It is possible that this procedure terminates
at a step when R1 = R or S1 = Sin (or both), or with one or both of R1, S1 being proper subsets of their
respective sets. In any case, we have constructed sets R1 and S1 (each with k ≤ min{|Sin|, |R|} elements),
so that by taking S′ = (S\S1) ∪R1, this set S′ satisfies the two conditions of the theorem.

¿From the previous lemma, we see that we have proven an inequality about the load of the sets of highest
loaded processors, before and after load balancing (which, of course, need not be equal to each other). Thus
we can conclude the following result:

Corollary 1. For i ∈ [n], let M̄ t
i denote a set of i largest loaded processors before load balancing (in

round t). Also let M t
i denote a corresponding set of i largest loaded processors after load balancing. Then

L̄t(M̄ t
i) ≥ Lt(M t

i).

We also conclude another result from Lemma 1.

Corollary 2. Fix i ∈ {1, . . . , n}. Suppose that every subset with i processors is good after the load gener-
ation phase of round t. Then, after the load balancing phase (and thus after the task deletion phase), every
subset with i processors is still good. (Of course, provided that M̄ t

i is good after load generation, we actually
get the same conclusion from Corollary 1.)

Our next result tells us that if a set is made bad by load generation, then the load balancing and deletion
phases are sufficient to make that set good again.

Lemma 2. Suppose that at the end of round t, every set S ⊆ P satisfies (1). Further, suppose that after the
load generation phase in round t + 1, there is some set S ⊆ P such that L̄t+1(S) > f(|S|). Then, at the
end of round t+ 1, S again satisfies Inequality (1).

Proof. If there is more than one set S such that L̄t+1(S) > f(|S|), we may apply the argument that follows
to each, so we fix one of the possible sets S. Suppose that x ∈ {1, . . . n} denotes the number of tasks that
were injected into this set during load generation in round t+ 1.

We first show that
if Pj ∈ S then ¯̀t+1

j ≥ (n− |S|+ 1)(4∆)n− x. (3)

In the case when S = {Pi} for some i (that is, |S| = 1), this statement is clear, since we must have
¯̀t
i > n(4∆)n to violate Inequality (1).

When |S| ≥ 2 we can prove (3) by contradiction. So assume that some Pj ∈ S satisfies ¯̀t+1
j < (n−|S|+

1)(4∆)n− x. Since S was good before load generation, but not after, we know that L̄t+1(S)− f(|S|) > 0.
Then, using that L̄t+1(S\Pj) = L̄t+1(S)− ¯̀t+1

j , and our assumption on ¯̀t+1
j , we conclude

L̄t+1(S\Pj) > L̄t+1(S)− (n− |S|+ 1)(4∆)n+ x

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S\Pj |)− (n− |S|+ 1)(4∆)n+ x

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S|) + x > x.

Since we injected x tasks into S during the load generation phase of round t + 1, we know that
L̄t+1(S\Pj) ≤ L̂t(S\Pj) + x. Putting this together with our last inequality above, we see that

L̂t(S\Pj) + x− f(|S\Pj |) ≥ L̄t+1(S\Pj)− f(|S\Pj |) > x

=⇒ L̂t(S\Pj)− f(|S\Pj |) > 0.

This is a contradiction to the assumption stated in the hypothesis that all sets satisfied (1) at the end of round
t. Hence, we conclude what we wanted to show, namely Inequality (3).

If S = P , then our lemma follows immediately. In this case, the lower bound in (3) is also a lower
bound on the load of each processor after the load balancing phase, i.e. `ti ≥ (4∆)n−n > 0 for all Pi (since
x = n when S = P). Thus, each processor will delete one task during the deletion phase. Since we injected
at most n tasks into the system and deleted n tasks, the set S = P again satisfies (1), and we are done.

So, we now assume that S 6= P . Then, in a similar manner as before, we can show

if Pj 6∈ S, then ¯̀t+1
j ≤ (n− |S|)(4∆)n+ n. (4)

To see this, again assume the contrary, so that some Pj 6∈ S satisfies ¯̀t+1
j > (n− |S|)(4∆)n+ n. Then we

have the following inequalities

L̂t(S ∪ Pj) + n ≥ L̄t+1(S ∪ Pj) (5)

L̄t+1(S ∪ Pj)− f(|S ∪ Pj |) > L̄t+1(S)− f(|S|) + n. (6)

Inequality (5) holds simply because we insert n tasks into the system, and Inequality (6) follows by
breaking up the difference on the left hand side into constituent parts, and using our assumption about ¯̀t+1

j .
These inequalities together imply

L̂t(S ∪ Pj)− f(|S ∪ Pj |) + n ≥ L̄t+1(S)− f(|S|) + n (7)

L̂t(S ∪ Pj)− f(|S ∪ Pj |) ≥ L̄t+1(S)− f(|S|) > 0. (8)

The final inequality in (8) comes from our assumption that L̄t+1(S) > f(|S|). Of course, (8) violates the
hypothesis of the theorem stating that all sets satisfied Inequality (1) at the end of round t. Hence, we obtain
the upper bound on the load of elements not in S, as expressed in (4).

The rest of this lemma is a simple calculation. We first note that no load will be passed from P\S into S
during the load balancing phase because of the load differences in the processors. Then, since our network
G is connected, there must be an edge (i, j) with Pi ∈ S and Pj 6∈ S. Using our bounds (3) and (4) for ¯̀t

i

and ¯̀t
j , respectively, we find that

αt+1
ij ≥

¯̀t+1
i − ¯̀t+1

j

2∆
− 1 ≥ 4∆n− n− x

2∆
− 1 ≥ 2n− n

∆
− 1 ≥ 3

2
n− 1.

The last two inequalities use the facts that x ≤ n and ∆ ≥ 2. We see this final ratio is at least n (with our
assumption that n ≥ 2). Hence, during round t + 1, at most n tasks were injected into the set S during
load generation, and at least n tasks were removed from S during the load balancing phase (and none were
inserted into S during this phase). Therefore, after load balancing (and thus also after the task deletion phase)
S again satisfies Inequality (1).

Lemma 2 tells us that if a set is made bad by the load generation phase, then the load balancing and
deletion phases are sufficient to make this set good. The essential task that remains to be shown is that load
balancing cannot, in some way, change a good set into a bad one. Corollary 2 tells us half the story. We need
a little more to cover all possible sets.

Lemma 3. Suppose that at all sets are good at the end of round t, but that after load generation in round
t + 1, there exists a bad set S with |S| = i. Then after load balancing and deletion, there exists no bad set
with i processors.

Now we are prepared to prove our main result.

Proof. [Theorem 1]
We prove this theorem by induction on t. Inequality (1) holds when t = 1, for however we inject the

first n tasks into the system, all sets are good at the end of the first round.
So assume that at the end of round t, all sets are good. Fix i ∈ {1, . . . , n}. If all sets of i processors are

good after the load generation phase, then from Corollary 2 they are all good at the end of round t+ 1.
If there is some bad set of i processors after load generation, then Lemmas 2 and 3 show that all sets of

size i are still good at the end of round t+ 1.
Finally, it is not possible that during load balancing a (good or bad) set of i processors will lead to the

creation of a bad set of j(6= i) processors. For suppose there is some bad set of j(6= i) processors at the

end of round t+ 1. Lemma 1 tells us that there must exist a set of j processors that was bad before the load
balancing phase, but then Lemmas 2 and 3 again tell us that there is no bad set of j processors at the end
of round t + 1, a contradiction to our assumption that there was a bad set of j processors at the end of the
round.

On the first glance it might look as if the our proof strategy is overly complicated and that there is a
much simpler proof. In the course of proving our result, we show that there is a gap of 4n∆ tasks between
a processor in the bad set S and a processor outside of the bad set before balancing whenever S is bad
after balancing. Hence, at least n tasks were sent away from S in this step and the invariant could not have
been violated by S. But unfortunately it is possible to create a different bad set of processors during load
balancing (possibly with a different number of processors), and we have to discount this case too. Hence,
we have to show that if we can find a bad set after load balancing, then there was another bad set S′ before
load balancing, which leads us to a contradiction through our series of lemmas above.

3 A Matching Lower Bound

In this section we provide a simple example that asymptotically matches the upper bound from Section 2.
Consider the linear array G = (V,E) with V = {P0, . . . , Pn−1} and E = {(Pi, Pi+1)|0 ≤ i < n − 1}.
Furthermore, suppose that during every time step, n new tasks are generated on processor Pn−1. The idea
of the proof essentially follows from a few simple observations, which we state without formal proof.

Observation 2

1. Clearly, the system must be periodic since it is stable and there is a finite number of possible configura-
tions it can be in, i.e., there is a “run-in” phase during which load is being built up (essentially, load is
being distributed from processor Pn−1 to all other processors), followed by periodical behaviour.

2. Another obvious fact is that once the system has finished the initial run-in phase, every processor must
delete one task in every round. If that were not the case, the system could not possibly be stable (we
would delete strictly fewer tasks that are generated per period, i.e., the system load would increase by
at least one during every period).

3. Suppose the period length is T . Then we see that once the system is periodic, during any T rounds,
processor Pi (i > 0) must send exactly T · i many tasks to processor Pi−1 (some of which gets spread to
the other processors Pi−2, . . . , P0), because that is just the number of tasks that processors Pi−1, . . . , P0

delete in T rounds. In other words, on average processor Pi sends i many tasks during any of those
rounds (it does, in fact, send exactly i tasks to processor Pi−1, thus T = 1; more about that later).

4. In our setting, load will never be sent toward processor Pn−1.

Theorem 3 below implies that the preceding analysis of our algorithm is tight up to a multiplicative
constant, because the line graph has maximum degree ∆ = 2, and thus we have an upper bound of O(n3)
on the system load.

Theorem 3. The system described above on the linear array is stable with a total steady-state system load
of Θ(n3).

Proof. We begin by showing that processor Pi will never send more than i tasks to processor Pi−1; the
proof is by induction on time. The claim is trivially true in round 1. Let αti denote the number of tasks that
processor Pi sends to processor Pi−1 in round t. (We may extend the definition to αtn = n and αt0 = 0 for
all t.) Suppose the claim holds for some t−1 > 1, i.e., αt−1

i ≤ i for all i ∈ {1, . . . , n−1}. Let `ti denote the

load of processor Pi before the balancing in round t, 0 ≤ i < n. ¿ From Observation 2 (2), for large enough
values of t we have `ti = `t−1

i + αt−1
i+1 − α

t−1
i − 1 and `ti−1 = `t−1

i−1 + αt−1
i − αt−1

i−1 − 1. Using the facts that

αt−1
i =

⌊
`t−1
i − `t−1

i−1

4

⌋
and

`t−1
i − `t−1

i−1

4
≤

⌊
`t−1
i − `t−1

i−1

4

⌋
+

3
4
,

we can conclude that

αti =
⌊
`ti − `ti−1

2∆

⌋
≤

`ti − `ti−1

2∆
=

`ti − `ti−1

4

=
(`t−1
i + αt−1

i+1 − α
t−1
i − 1)− (`t−1

i−1 + αt−1
i − αt−1

i−1 − 1)
4

=
`t−1
i − `t−1

i−1

4
+
αt−1
i+1 − 2αt−1

i + αt−1
i−1

4
≤

⌊
`t−1
i − `t−1

i−1

4

⌋
+

3
4

+
αt−1
i+1 − 2αt−1

i + αt−1
i−1

4

= αt−1
i +

3
4

+
αt−1
i+1 − 2αt−1

i + αt−1
i−1

4
=

2αt−1
i + αt−1

i+1 + αt−1
i−1

4
+

3
4

≤ 2i+ (i+ 1) + (i− 1)
4

+
3
4

= i+
3
4

From the above we know that processor Pi will never send more than i tasks to processor Pi−1 during
each round (i.e. αti ≤ i since fractional tasks are not allowed in our model). However, in order to obtain
stability, at least i tasks on average are necessary. Thus, we can conclude that once the system is “run-in”,
processor Pi will always send i tasks to processor Pi−1, i.e., the system is in fact periodic with period length
T = 1. Clearly, there are many possible fixed points with this property. However, since we are interested
in a lower bound, we pick the one with smallest total load, i.e., the one in which processor P0 is empty at
the end of a round, receives one tasks from processor P1 in the next round, deletes it, and so on. Since a
load difference of 2∆i = 4i implies i tasks being sent, this means that, directly before balancing, the load
of processor Pi is

∑i
j=0 4j = 2i(i+ 1), and thus the total system load is

∑n−1
i=0 2i(i+ 1) = (2n3 − 2n)/3.

Together with the upper bound of 3∆n3 = 6n3 we get the statement of the theorem.

4 Some Instability Results for Work Stealing

In this section we will consider a variation of our load balancing process where we may transfer tasks to
empty processors only. This approach is similar to the diffusion approach, only the computation of the αti,j
is different. The value of αti,j , the load that is sent from Pi to Pj , is larger than zero iff Pj is empty (and Pi
non-empty). This method is referred to as work stealing.

αti,j =

{
b

¯̀t
i

∆+1c : ¯̀t
j = 0

0 : otherwise

Note that the bounds below also hold when we divide by 2∆ instead of∆+1. We use the above definition
as worst case assumption. In [8] the authors showed that simple work stealing yields a stable system. They
assumed that there are at most (1 − ε)n new tasks generated per round, for some ε ∈ (0, 1]. The important
point to note is that in [8], the processor communication links correspond to a complete graph on n vertices.
Here we will see that the work stealing method can fail (in the sense that the total load is unbounded over
time) if the graph is no longer the complete graph.

We consider the line network. In a line, we have an edge between node Pi and Pi+1 for 1 ≤ i ≤ n− 1.
Hence, the maximum degree is 2.

Observation 4 Assume we have n processors connected as a line and n generators are all on processor 1.
Then the diffusion work stealing system is not stable.

Proof. Let us assume the system is in a state where P2 is empty and P1 has k tasks directly before the
balancing. Then it will transfer k/3 tasks to P2 during the load balancing step. It is easy to see that it will
take at least

t =
k

3(n− 1)
+
n−2∑
i=1

i =
k

3(n− 1)
+
n2 − 4n− 3

2

time steps until P2 is empty again. To see that, assume that all other processors are empty. Then it takes
n − 2 steps until load will reach Pn, it takes n − 3 time steps until load will reach Pn−1, and so on. In the
meantime, the load of P1 increases by t(n− 1) tasks. Thus, the load of P1 after t steps is at least

k − k

3
+
(

k

3(n− 1)
+
n2 − 4n− 3

2

)
(n− 1) ≥ k.

This shows that the load of P1 increases between any two consecutive balancing actions.

In a similar manner, under adversarial injection schemes, it is easy to show that the work stealing proto-
col will not be stable for many classes of graphs, even under a randomised injection pattern. For example,
we can simply define the process in a way such that the expected load of a processor increases between two
load balancing actions.

5 A Different Model for Task Generation/Deletion

In this section we define a load generation model similar to [18] and [4]. Rather than bounding the total
number of tasks that are generated per round, we bound the load change in any subset of the processors.
During each round, tasks can be added or deleted from processors, subject to the restriction in Inequality (9)
below. The processors then balance load amongst themselves as before.

In the following, ¯̀t
i (respectively, L̄t(S)) denotes the load of processor Pi (resp. the total load of all

processors in set the S) after we have generated and deleted tasks, and `ti (resp. Lt(S)) is the load of
processor Pi (resp. the total load of all processors in the set S) immediately after the load balancing phase.
Let avg(t) be the average load of the processors in round t after load generation and deletion, i.e. avg(t) =
1
n ·
∑n

i=1
¯̀t
i. Again, Lt(P) denotes the total system load at the end of step t. One round looks now as follows:

1. Tasks are generated and deleted according to the following generation restriction:

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) + n. (9)

2. Every processor balances its load with some or all its neighbours in the network using the diffusion
operation defined in Section 1.2.

We can show the following result (whose proof may be found in the appendix).

Theorem 5. Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the maximum
degree of the graph G that specifies the communication linkages in the network. Assume the load generation
and deletion fulfills the generation restriction in (9). Then, starting with an empty system, for all t ≥ 1 and
all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆n3.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆n2.

5.1 Further Extensions

We can easily generalize our results to other load generation processes, and the proofs of the following
results are much like those of Theorem 5 and can be found in the Appendix.

Theorem 6. Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the maximum
degree of the graph G that specifies the communication linkages in the network. Assume the load generation
and deletion fulfills the generation restriction

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) +K.

Then, starting with an empty system, for all t ≥ 1 and all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆nK.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆nK.

Furthermore, we can improve our results to a load generation model where the imbalance that we allow
to be generated in any set depends on the number of outgoing edges.

Theorem 7. Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the maximum
degree of the graph G that specifies the communication linkages in the network. Let e(S) be the number of
outgoing edges of the set S. Assume the load generation and deletion fulfills the generation restriction

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) +K · e(S).

Then, starting with an empty system, for all t ≥ 1 and all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆nK.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆nK.

References

1. W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen. Adaptive packet routing for bursty adversarial traffic. J. Computer
and Systems Sciences 60 (2000), pp. 482–509.

2. W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on dynamic and asynchronous networks.
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 632–641.

3. A. Anagnostopoulos, A. Kirsch, and E. Upfal. Stability and efficiency of a random local load balancing protocol. Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003).

4. E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algorithms in dynamic adversarial systems. Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 399–406.

5. B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple routing strategies for adversarial systems. Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 158–167.

6. B. Awerbuch and T. Leighton. A simple local control algorithm for multi-commodity flow. Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science (FOCS 1993), pp. 459–468.

7. B. Awerbuch and T. Leighton. Improved approximation algorithms for the multi-commodity flow problem and local compet-
itive routing in dynamic networks. Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC 1994),
pp. 487–496.

8. P. Berenbrink, T. Friedetzky, and L.A. Goldberg. The natural work-stealing algorithm is stable. SIAM Journal of Computing,
SICOMP 32 (2003), pp. 1260–1279.

9. P. Berenbrink , T. Friedetzky , and E. W. Mayr. Parallel continuous randomized load balancing. Proceedings of the 10th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’98), 1998, pp.192-201 .

10. J.E. Boillat. Load balancing and Poisson equation in a graph. Concurrency: Practice and Experiences 2 (1990), pp. 289–313.
11. G. Cybenko. Load balancing for distributed memory multiprocessors. J. Parallel and Distributed Computing 7 (1989), pp.

279–301.

12. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balancing. J. Parallel Computing 25
(1999), pp. 789–812.

13. R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion properties of graphs. Proceedings of the 15th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2003), pp. 266–273.

14. R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing
Systems 35 (2002), pp. 305–320.

15. B. Gosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J. Computer and Systems Science, 53 (1996),
pp. 357-370.

16. B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan, C.G. Plaxton, R. Rajaraman, A.W. Richa, R.E. Tarjan, and D. Zuck-
erman. Tight analyses of two local load balancing algorithms. Proceedings of the 27th Annual ACM Symposium on Theory
of Computing (STOC 1995), pp. 548–558.

17. F.M. auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive token distribution. Algorithmica 15 (1996), pp.
413–427.

18. S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed load balancing. Proceedings of the 10th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA 1998), pp. 47–54.

19. D. Peleg and E. Upfal. The token distribution problem. SIAM J. Computing 18 (1989), pp. 229–243.
20. Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and the analysis of iterative load-balancing

schemes. Proceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 694–703.

Appendix

Proof of Lemma 3.

Proof. Without loss of generality, we can assume that S = M̄ t
i , the largest i processors. Lemma 2 tells us

that S is not bad at the end of round t + 1. We therefore have to show that we do not somehow change a
good set (of i processors) into a bad set during the load balancing phase. This proof is similar in flavor to
that of Lemma 1, except that the argument is somewhat more delicate in this case.

Since we injected at most n tasks into the set S to change S from a good set into a bad set, we know
that L̄t+1(S)− n ≤ f(|S|). Our goal now is to show that any set S′ of i processors will satisfy Lt+1(S′) ≤
L̄t+1(S)− n, meaning that S′ is good after load balancing.

So with this mind, fix some set S′ where |S′| = i. We assume that S′ 6= S, otherwise by Lemma 2 there
is nothing to prove. Define the following sets:

Scommon = S ∩ S′ Sold = S\Scommon Snew = S′\Scommon.

We note that |Snew| = |Sold| ≥ 1. From our previous argument in Lemma 2, we know that the load
difference (after generation, but before balancing) of any pair of processors, one from S and one from P\S,
is at least 4∆n− 2n.

In order to show our result, we will consider the load balancing actions of round t + 1 in three stages.
We first compute (and fix) the values of αt+1

i,j . Then we proceed this way:
Stage 1. Internal load balancing actions among processors of S, and among processors of P\S. After this
stage, the load difference between a pair of processors, one from S and one from P\S is still at least
4∆n− 2n.

Stage 2. Processors in Sold balance with those in Snew. This can only move load from Sold to Snew because
of the high load difference between processors of these two sets.

Stage 3. All remaining load balancing actions are performed. Which ones remain? Because there are no
balancing actions from Snew ⊆ P\S into Scommon ⊆ S, the only remaining ones are

(a) Scommon to Snew,
(b) Sold to P\(S′ ∪ Sold), and
(c) Scommon to P\(S′ ∪ Sold).

The balancing actions of (a) and (b) do not change the load of S′ = Scommon ∪ Snew, and those of (c) can
only decrease the load of S′. Hence, if we can show the load of S′ after Stage 2 is at most L̄t+1(S)−n, then
we get the conclusion we want.

To this end, let L1(Snew) denote the load of Snew after Stage 1, and L2(Snew) the load after Stage 2
(and similarly for other sets Sold, S, etc.). Let A =

∑
j∈Sold,k∈Snew

αt+1
j,k denote the total load transferred

during Stage 2 from Sold to Snew, and let B denote the load that remains in Sold after Stage 2. We note the
following equations hold:

L2(S′) = L2(S) + L2(Snew)− L2(Sold)
L1(Sold) = A+B

L2(Sold) = B

L2(Snew) = L1(Snew) +A

L2(S) = L1(S)−A.

All of these equations together imply that

L2(S′) = L1(S)−A+ L1(Snew) +A−B
= L1(S) + L1(Snew)−B
= L1(S) + L1(Snew) +A− L1(Sold).

Since Stage 1 did not change the total load of S (so L1(S) = L̄t+1(S)), if we can show that

L1(Snew) +A− L1(Sold) ≤ −n (10)

we obtain our desired result. Having arrived at the crux of the problem, we now demonstrate Inequality (10).
First note that if, in fact, there are no edges from Sold to Snew, then A = 0. In this case, if we pair the

vertices from Sold with those from Snew, then Inequality (10) follows immediately using the fact that the
load difference of processors in Sold and Snew is at least 4∆n− 2n.

Suppose there is at least one edge from Sold to Snew. Because of the load difference of processors in
Sold and Snew, we see that any edge for which αt+1

j,k is positive, we in fact have that αt+1
j,k ≥ n.

Consider the subgraphG′ that consists of processors in Sold and Snew and edges which were used to pass
load from Sold to Snew during Stage 2. Choose an edge from G′ such that the value of αt+1

j,k is maximised.
Assume (for simplicity) that j = 1 and k = 2. As in Lemma 1, we conclude that ¯̀t+1

1 ≥ 2∆αt+1
1,2 + ¯̀t+1

2 .
Define A1,2 =

∑
k∈Snew

αt+1
1,k +

∑
j∈Sold

αt+1
j,2 , the total flow out of P1 (into Snew) and into P2 (from Sold).

Since αt+1
1,2 has maximum value over edges, we see that ¯̀t+1

1 ≥ 2∆αt+1
1,2 + ¯̀t+1

2 ≥ A1,2 + ¯̀t+1
2 . Hence,

we see that ¯̀t+1
2 + A1,2 − ¯̀t+1

1 ≤ 0. Indeed, if at least one of P1 and P2 has degree strictly smaller than
∆ in G′, this difference is smaller than or equal to −n, which is what we want on the right hand side of
Inequality (10)!

In either case, consider the subgraph G′′ obtained from G′ by deleting the processors P1, P2, and all
edges adjacent to them. As before, if there are no edges, we can pair the remaining processors however we
like, and then we get the desired inequality. Otherwise, if we can show that L1(Snew\P2) + (A − A1,2) −
L1(Sold\P1) ≤ −n we again have shown Inequality (10).

The point is that we can proceed in an inductive manner as before, until we either find a pair Pj ∈
Sold, Pk ∈ Snew where Pj sent load to Pk during Stage 2 and one of Pj and Pk has degree (in the remaining
subgraph ofG′) that is strictly less than∆ (in which case ¯̀t+1

k +Aj,k− ¯̀t+1
j ≤ −n), or we obtain a subgraph

that has processors remaining, but no edges (and in this case we pair up the remaining processors however
we like, and the large load difference between processors in the two sets gives us Inequality (10)). Whatever
occurs, we can pair up processors in a one-to-one fashion to prove Inequality (10), and thus, our lemma.

Proof of Theorem 5.

Proof. The proof of this theorem follows the proof of Theorem 1. Here, we will concentrate on the parts
that have to be changed compared to that proof. We redefine f as follows.

f(k) =
n∑

i=n−k+1

i · (5∆) · n. (11)

Our new invariant is

Lt(S) ≤ |S| · avg(t) + f(|S|) = |S| · avg(t) +
n∑

i=n−|S|+1

i · (5∆) · n. (12)

Similar to the previous section, we call a set S bad if Lt(S) > |S| · avg(t) + f(|S|), and good otherwise.
Since Lemma 1, Corollary 2, and Corollary 1 only depend on the load balancing scheme and not on the
underlying load generation and deletion, they still can be applied. Because Lemma 2 depends on the actual
load of the processors and, therefore, on the load generation model, we have to adjust it. The new version is
presented below.

Lemma 4. Suppose that at the end of round t, every set S ⊆ P satisfies (12). Further, suppose that after
the load generation and deletion phase in round t + 1, there is some set S ⊆ P such that L̄t+1(S) >
|S| · avg(t+ 1) + f(|S|). Then, at the end of round t+ 1, S again satisfies Inequality (12).

Proof. We only consider the parts of the proof that are different from the proof of Lemma 2.
We first show that

if Pj ∈ S then ¯̀t+1
j ≥ (n− |S|+ 1)(5∆)n+ avg(t+ 1)− n. (13)

In the case when S = {Pi} for some i (that is, |S| = 1), this statement is clear, since we must have
¯̀t+1
i > n(5∆)n+ avg(t+ 1) to violate Inequality (12).

As in Lemma 2, when |S| ≥ 2 we can prove (13) by contradiction. So assume that some Pj ∈ S satisfies
¯̀t+1
j < (n− |S|+ 1)(5∆)n + avg(t + 1)− n. Since S was good before load generation, but not after, we

know that L̄t+1(S) − f(|S|) > |S| · avg(t + 1). Then, using that L̄t+1(S\Pj) = L̄t+1(S) − ¯̀t+1
j , and our

assumption on ¯̀t+1
j , we conclude

L̄t+1(S\Pj) > L̄t+1(S)− (n− |S|+ 1)(5∆)n− avg(t+ 1) + n

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S\Pj |)− (n− |S|+ 1)(5∆)n− avg(t+ 1) + n

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S|)− avg(t+ 1) + n > (|S| − 1) · avg(t+ 1) + n.

On the other hand, Inequality (9) tells us that

L̄t+1(S\Pj) ≤ Lt(S\Pj) + (|S| − 1) · (avg(t+ 1)− avg(t)) + n.

Putting this together with our last inequality above, we see that

Lt(S\Pj) + (|S| − 1) · (avg(t+ 1)− avg(t)) + n− f(|S\Pj |) ≥ L̄t+1(S\Pj)− f(|S\Pj |)
≥ (|S| − 1) · avg(t+ 1) + n

=⇒ Lt(S\Pj)− f(|S\Pj |) > (|S| − 1) · avg(t).

This is a contradiction to the hypothesis that all sets satisfied (12) at the end of round t. Hence, we conclude
what we wanted to show, namely Inequality (13).

When S = P , then our lemma follows immediately since the load of S is exactly n · avg(t+ 1). hence,
we can assume that S 6= P . Then, in a similar manner as before, we can show

if Pj 6∈ S, then ¯̀t+1
j ≤ (n− |S|)(5∆)n+ avg(t+ 1) + n. (14)

To see this, again assume the contrary, so that some Pj 6∈ S satisfies

¯̀t+1
j > (n− |S|)(5∆)n+ avg(t+ 1) + n.

Then we have the following inequalities

Lt(S ∪ Pj) + n+ (avg(t+ 1)− avg(t))(|S|+ 1) ≥ L̄t+1(S ∪ Pj) (15)

L̄t+1(S ∪ Pj)− f(|S ∪ Pj |) > L̄t+1(S)− f(|S|) + avg(t+ 1) + n. (16)

Inequality (15) is due to the generation restriction. Inequality (16) follows by breaking up the difference
on the left hand side into constituent parts, and using our assumption about ¯̀t+1

j . These inequalities together
imply

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1) + n ≥ L̄t+1(S)− f(|S|) + avg(t+ 1) + n(17)

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1) ≥ L̄t+1(S)− f(|S|) + avg(t+ 1) > 0.(18)

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1) ≥ |S + 1| · avg(t+ 1) (19)

L̂t(S ∪ Pj)− f(|S ∪ Pj |) ≥ |S + 1| · avg(t) (20)

(21)

Inequality in (18) comes from our assumption that L̄t+1(S) > |S| · avg(t+ 1) + f(|S|). Again, we have a
contradiction and obtain the upper bound on the load of elements not in S, as expressed in (14).

Again, we have a load difference of at least 5∆n between processors on S and processors not in S. The
rest of this lemma is a simple calculation and can be done similar to the one in Lemma 4.

Lemma 3 only depends on the load difference of the processors and is still valid under the new load
generation and deletion model. We have only to show that we still have

L̄t+1(S)− n ≤ |S| · avg(t+ 1) + f(|S|),

i.e. if we subtract n from the load of set S after load generation and deletion, set S is good again. This can
be done as follows.

Due to the generation restriction, we know that the load generated in S is upper bounded by |S|·(avg(t+
1)− avg(t)) + n. We know that Lt(S) ≤ |S| · avg(t) + f(|S|) since S was good at the end of round t. This
gives us

L̄t+1(S) ≤ Lt(S) + |S| · (avg(t+ 1)− avg(t)) + n ≤ |S| · avg(t) + f(|S|) + |S|(avg(t+ 1)− avg(t)) + n

L̄t+1(S) ≤ |S| · avg(t+ 1) + f(|S|) + n

L̄t+1(S)− n ≤ |S| · avg(t+ 1) + f(|S|).

Also, the remainder of the proof of Theorem 5 can be done similar to the proof of Theorem 1.

