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Abstract

Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there
exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-
Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which
catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary
reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-
action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of
conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical
results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general
theory.
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Introduction

Enzymes are biomolecules that catalyze (i.e., increase the rates

of) biochemical reactions. Kinetics of enzymatically controlled

reactions is generally influenced by a variety of factors such as

temperature, pH, ionic strength as well as concentrations of

enzymes and ligands (substrates, products, inhibitors or activators)

[1]. The dependence of enzymatically controlled reaction rate on

these concentrations is often referred to as the kinetic law. The

kinetic law can be deduced under certain approximation for an

enzyme with known kinetic mechanism that is when we know how

ligands bind and dissociate from the enzyme and at which state

catalytic transitions occur. These kinetic laws have been derived

for a variety of reaction schemes with mass-action kinetics and

form a solid mathematical foundation of enzymology allowing the

researchers to predict the kinetic laws from enzymatic mechanisms

and vice versa. Ref. [1] gives a wide collection of examples of such

complex enzyme catalyzed reaction mechanisms.

The simplest kinetic mechanism for enzymatic reaction with a

single substrate assumes that the enzyme E combines with a

substrate S to form the ES complex which undergoes irreversible

reaction to form the product P and the original enzyme.

EzS '
k12

k21

ES {?
k21

EzP ð1Þ

The kinetic law for this reaction describing the rate of product

formation, V, as a function of substrate concentration, [S], is given

by the Michaelis-Menten(MM) equation [1,2,3]

V~
Vmax S½ �
S½ �zKM

ð2Þ

This law is generally derived under the quasi-steady state

assumption [1], i.e. when concentration of the substrate-enzyme

complex, [ES], changes much slower than that of the product, [P].

The kinetic parameters of this kinetic law are the MM constant

KM~ k21zk21ð Þ=k12 and maximal rate Vmax~k21½E�T propor-

tional to total enzyme concentration. For more complicated

reaction schemes involving multiple ligands, multi-subunit en-

zymes and other complications the resulting kinetic laws are more

complex but still can be derived following the standard procedures

if the reaction mechanism is known and mass-action kinetics is

assumed.

Results of recent single-molecule experiments shade some doubt

on the applicability of simple mass-action kinetics to enzymatic

reactions. Several experiments have shown that the catalytic

activity of an enzyme fluctuates over a wide range of timescales

[4,5] (1024–10s). These results illustrate a more general phenom-

enon termed a dynamic disorder [6,7] – fluctuations of chemical

reaction rates which originates as a consequence of slow

conformational fluctuations that occur on similar range of

timescales [8,9,10,11]. Such experimental observations have

inspired many theoretical studies [11,12,13,14,15,16] investigating

the effects of conformational fluctuations on the enzyme kinetic

laws. The results of some of theoretical studies indicate that in

general the steady state kinetic law for a fluctuating enzyme

following the mechanism outlined in equation (1) is not of

Michaelis-Menten form [11,14]. However, there are several

limiting cases in which the MM equation is obeyed even for

single-molecule reactions: the quasi-static limit when the confor-

mational dynamics in either E or ES state is much slower than in

the other and the quasi-equilibrium limit when the catalysis is much

slower than substrate dissociation reaction [14] (this limit is called

rapid equilibrium in Ref. [1]). Both limits will result in the steady-
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state velocity for the reaction scheme (equation (1)) to be of the

same form as macroscopic kinetic law of equation (2).

The above results bring two important questions: (1) whether

the macroscopic kinetic laws hold in quasi-static or quasi-

equilibrium limit for more complicated reactions schemes despite

conformation fluctuations and (2) what kind of deviations one can

expect when MM law breaks down. We have partially addressed

these questions in our recent work [17] where we considered a

kinetic scheme that explicitly includes product-release step,

EzS '
k12

k21

ES '
k23

k32

EP {?
k31

EzP ð3Þ

We have shown that even in quasi-static limit the resulting kinetics

deviates from those predicted by macroscopic kinetic laws and

resulted in substrate inhibition effect. Moreover, this effect can

under certain conditions lead to bistability in the reaction network.

Our results thus indicated that conformational fluctuations in the

enzymatic scheme with more than two states of the enzyme (E, ES

and EP for equation (3)) will not generally result in macroscopic

kinetic law in the quasi-static limit. The goal of this work is to

investigate the general applicability of macroscopic rate laws for

fluctuating enzyme systems in the quasi-equilibrium limit.

In an earlier work by Min et al [14] it was showed that the for a

simple enzyme catalyzed reaction (1), the classical MM mass action

kinetics is preserved in the quasi-equilibrium limit even in the

presence of conformational fluctuations which are slower or

comparable to other binding- dissociation processes. This suggested

that the timescales of conformational fluctuations have no effect on

the catalytic rate in the quasi-equilibrium limit. In this paper, we

present a theory of the kinetics for fluctuating enzymes for an

arbitrary reaction scheme – with a possibility of multiple substrates

and cofactors allosterically modulating reaction rate. This work will

therefore extend the results of Min et al [14] from a particular

scheme corresponding to MM kinetics (kinetic scheme (1)) to a more

general catalytic mechanism of arbitrary complexity [1].

The outline of the paper is as follows. In the Methods section

we first present our notation and outline standard chemical-

kinetics (mass-action) approaches to derive enzymatic rate laws for

arbitrary reaction schemes in the steady state and in the quasi-

equilibrium limits. We then introduce formalism to account for

possibility of conformational dynamics of the free enzyme and its

complexes. In the Results and Discussion section we analyze

the kinetic laws resulting in the quasi-equilibrium limit and show

that despite slow conformational fluctuations, the catalytic rate has

the same dependence on substrate/modulator concentration as

obtained from conventional mass action kinetics. We further

support our general theory using two complex enzyme catalyzed

reaction schemes involving multiple substrates and inhibitors and

use numerical simulations to test our analytical predictions and

show the nature of possible deviations from macroscopic rate laws.

Methods

Mass-action approaches to enzymatic kinetic laws
General reaction scheme and kinetic equations. To

illustrate our notation and lay grounds for subsequent formalism

involving conformational dynamics of the enzyme, we begin with

presenting a classical mass-action framework used to obtain rate-

law for an arbitrary reaction scheme. To help the reader better

grasp the notation we present particular examples of this

formalism in the Section A of Text S1. Consider an enzyme

(Fig. 1a) that can be present in N different states, Ei, corresponding

to free-enzyme state and various complexes with substrates,

inhibitors, activators etc. Reversible transitions between these

states – binding and dissociation reactions – are represented as

effective first-order reactions

Figure 1. Reaction schemes under consideration. (a) Schematic
diagram of the transitions between various states of enzyme for an
arbitrary reaction scheme discussed in Methods. The detailed balance
condition is shown for the loop comprised by states 1—4. For simplicity
only reversible transitions are shown and catalytic transitions are
omitted. The rate constants for ligand-binding reactions are propor-
tional to concentrations as indicated. (b) Reaction scheme for random
order bisubstrate reaction. (c) Reaction scheme for partial noncompet-
itive inhibition.
doi:10.1371/journal.pone.0012364.g001
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Ei '
kij

kji

Ej ð4Þ

where kij and kji are the forward and backward transition rates

respectively. For ligand-binding reactions, forward rate is a

function of ligand concentration (e.g. in equation (1), for the

ERES transition, the rate will be k12[S]). Importantly, we assume

that reactions represented in equation (4) are truly reversible and

do not consume energy (e.g. do not result in ATP hydrolysis).

Therefore, the rate constants of these reactions are generally not

mutually independent and are subject to detailed balance

constraints (see below). On the other hand, catalytic transitions

between states are usually associated with large free energy drops

supplied by ‘‘energy-currency’’ biochemical molecules such as

ATP. For notation simplicity, here we consider these to be

irreversible given by a set of transitions

Ej {?
kji

Ei ð5Þ

Kinetics of the reaction scheme (equations (4) and (5)) are given by

the set of differential equations of the conventional mass-action

kinetics,

dei

dt
~
XN

j~1

kjiej{kijei{kijeizkjiej

� �
ð6Þ

Here we introduce the normalized concentrations or probabilities

of finding enzyme in each state as ei~
Ei½ �
ET

with ET being the total

concentration of the enzyme,
P

i ½Ei�.
The first two terms in equation (6) takes care of the reversible

transitions not involved in catalysis and the remaining two terms

are the catalytic terms. These equations are linearly dependent

and need normalization condition for a unique solution:

XN

i~1

ei~1 ð7Þ

Steady-State and Equilibrium Rate Law. In the most

common experimental setup the concentrations of enzyme

molecules are significantly less than those of the ligands and,

therefore, the concentration of ligands may not change

significantly on the timescale the distribution of enzyme species

reach steady-state. Therefore we assume that the concentration of

the substrate or any other ligand in this arbitrary reaction scheme

remains constant in time. This is analogous to the reactant steady

approximation (RSA) as proposed by Hanson and Schnell [18].

According to their theory, the RSA and quasi-steady state

approximation [19,20] are two different approximations and

there are instances where the quasi-steady state approximation can

be valid without the RSA. Establishing criteria for comparing

validity of quasi-steady state approximation and RSA for the

reacting system with slow conformational fluctuations of the

enzyme is potentially interesting; however, it is not dealt in here.

Thus in the steady state approach [1,3] it is assumed that the

enzyme species complex attains a nearly constant concentration

within a short time after starting the reaction, i.e. the rate of

change in the concentration of the enzyme-species complex is

equal zero. Within the steady state approximation, the LHS of

equation (6) is zero, and we have

XN

j~1

kjie
ss
j {kije

ss
i {kije

ss
i zkjie

ss
j

� �
~0 ð8Þ

where ss superscript defines steady-state enzyme state probabilities.

For an enzyme in N different states, there are N linearly dependent

equations. The equation for the free enzyme can be excluded

leading to N-1 linearly independent equations. Together with the

constraint given in equation (7) these linear equations can be

solved for the probabilities ess
j . The steady state enzymatic rate (per

unit of enzyme concentration) is given by

v~
XN

j~1

kjie
ss
j ð9Þ

For the kinetic scheme in equation (1), the quasi-steady state

approximation (rate of change of [ES] is equal to zero) leads to

MM law (equation (2)) with KM~ k21zk21ð Þ=k12.

On the other hand, the quasi-equilibrium limit assumes the

distribution of various enzyme complexes quickly reaches

equilibrium. This is a stronger requirement than steady state

assumption and it is only valid when the catalytic rates (kji) are

much slower than the rate at which any enzyme-ligand complex

dissociation (kji). In this condition, the enzyme reaches equilibrium

between its forms prior to a catalytic transition. In the quasi-

equilibrium limit, equation (8) reduces to

{
XN

j~1

kije
eq
i z

XN

j~1

kjie
eq
j ~0 ð10Þ

However, these equations are simplified much more if we assume

transitions characterized by kij to be truly reversible, i.e. only

involve ligand binding and dissociation reactions and do not

consume external energy. In this case the binding-dissociation

rates obey the detailed balance condition which states that for any

closed loop in a reaction diagram, the product of the transition

rates in the clockwise direction is same as the product of the

transition rates in the anti-clockwise direction (cf. Fig. 1a).

P
clockwise

loop

kij~ P
counterclockwise

same loop

kji ð11Þ

These conditions ensure that in the absence of catalytic transitions

the reactions reach true equilibrium in which not only the sum of

all reaction fluxes for each enzyme pull (Equation (10)) but also

individual fluxes for each irreversible i<j reaction are equal to

zero. As a result, simplified equilibrium equations can be used to

solve for equilibrium probabilities:

kije
eq
i ~kjie

eq
j ð12Þ

The matrix resulting from equations (10) and (12) contains fewer

non-zero elements and therefore often results in less complicated

expressions for equilibrium rate-equation given by

v~
XN

j~1

kjie
eq
j ð13Þ

For kinetic scheme in equation (1), the quasi-equilibrium limit also

Dynamic Disorder Kinetics
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leads to MM law (equation (2)) but with equilibrium dissociation

constant as MM-constant, i.e. KM~k21=k12.

Note that in equation (13), catalytic rates kji generally do not

depend on concentrations so the concentration-dependence of rate

comes through probabilities e
eq
j . For illustration of the formalism

discussed in this section, we derive the mass-action kinetic laws for

noncompetitive inhibition mechanism in the Section A of the Text S1.

Conformational dynamics in enzymatic kinetics
To investigate the effects of conformational fluctuations on the

steady state kinetics of a fluctuating enzyme we introduce a

continuous conformational coordinate x, characterizing enzyme

and its complexes [14,16]. For notation simplicity we assume this

coordinate to be one-dimensional (one of the degrees of freedom is

rate limiting) but all our results are straightforwardly generalizable

for multi-dimensional conformational space. Continuous treat-

ment of the conformational coordinates is the most general

formalism but often these can be approximated into discrete state

models [11,12,13]. These simple discretized models can lead to

closed-form solutions for single-molecule enzymatic kinetics and

are often in good agreement with continuous description.

However some recent results on the measurement of the

fluctuation dynamics show that the fluctuations occur on a wide

spectrum of time-scales [4,10,11] thereby suggesting that a

continuous treatment of the conformational coordinate with a

Smoluchowski-Fokker-Plank equation is a more reasonable

description than a few different conformational states. To account

for enzyme conformational fluctuations for an arbitrary scheme of

enzyme catalyzed reaction (equations (4) and (5)) one has to

analyze coupled reaction diffusion equations [14,21] for evolution

of the probability of finding the enzyme in the state i at a

conformational coordinate x at time t, Pi x,tð Þ

dPi x,tð Þ
dt

~LiPi x,tð Þz
XN

i~1

kji xð ÞPj x,tð Þ{kij xð ÞPi x,tð Þ{
�

kij xð ÞPi x,tð Þzkji xð ÞPj x,tð Þ
� ð14Þ

Here the Smoluchowski operator Li is given by

Li~Di
L
Lx

bU ’i xð Þz L
Lx

� 	
ð15Þ

where the prime sign denotes the first derivative over x; Di is the

diffusion coefficient and Ui is the potential energy landscape along

conformational coordinate of the state i of the enzyme. Since this

potential energy is defined up to a constant, and therefore without

loss of generality we choose potentials so that:

ð
e{bUi xð Þdx~1 ð16Þ

As before, we are interested in the reaction rate after a stationary

distribution of enzyme species and conformations have been

reached. In the steady state (t?? limit), the LHS of equation (14)

reduces to zero and Pi x,tð Þ is replaced by its steady state

probabilities, Pss
i xð Þ respectively.

0~Li xð ÞPss
i xð Þz

XN

j~1

kji xð ÞPss
j xð Þ{kij xð ÞPss

i xð Þ
h

{kij xð ÞPss
i xð Þzkji xð ÞPss

j xð Þ
i ð17Þ

Summing up these N coupled reaction diffusion equations leads

to

X
i

Li xð ÞPss
i xð Þ~0 ð18Þ

Since the diffusion operator is conservative, that is
Ð

Li xð Þ~0, we

note that the steady state distributions can be normalized as

ðXN

j~1

Pss
j xð Þdx~1 ð19Þ

Using equation (17) and (19) one can numerically solve for the

steady state distributions. These distributions are then used to

compute the steady state reaction rate (per molecule of enzyme)

v~

ðXN

j~1

kji xð ÞPss
j xð Þdx ð20Þ

This reaction rate is a function of the concentrations of substrates,

inhibitors, activators and other possible cofactors modulating

enzyme activity. These concentrations enter equation (17) through

rates kij and, therefore, affect probability Pss
i xð Þ. In general, the

steady-state velocity from equation (20) has different ligand-

concentration dependence than that given by mass action kinetics

(cf. equation (9)). For instance, for two-state scheme with single-

substrate reaction, equation (1), the rate expression for the

fluctuation enzyme does not have MM form. However, as we

show in the next section, conformational fluctuations do not affect

the concentration dependence of the kinetic law in the quasi-

equilibrium limit. The derivation in the next section is general and

should apply to any arbitrary reaction scheme. The derivations for

two particular reaction schemes (Fig. 1b and 1c) are sketched in

the Section B of Text S1 as examples to help reader with the

notation.

Results and Discussion

Quasi-equilibrium kinetic laws
Decoupling ansatz. For the reaction scheme in equation (1),

Gopich and Szabo [14] have shown that the general formalism to

monitor catalytic turnover events can be simplified if the

conformational dynamics is much slower compared to substrate

binding and catalytic reactions. In that case reaction-transition

and diffusion probabilities can be decoupled. For our generalized

reaction scheme this decoupling will result in the following ansatz

solution for equation (17)

Pss
j xð Þ&P0

j xð ÞPss xð Þ ð21Þ

where P0
j xð Þ is the steady state probability of each state j of the

enzyme for a fixed value of the conformational coordinate x. It

obeys equation (17) without diffusion terms(LjP
ss
j ~0) satisfies the

condition

XN

j~1

P0
j xð Þ~1 ð22Þ

It can be shown that this ansatz is exact in the quasi-equilibrium

limit (cf. Section C of the Text S1).

Dynamic Disorder Kinetics
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Using the equation (21) in equation (18), we obtain the following

equation for Pss xð Þ

LPss xð Þ:
XN

j~1

LjP
0
j xð ÞPss xð Þ~0 ð23Þ

where we introduce an linear operator L acting on Pss xð Þ. It is

straightforward to show that operator L is effective diffusion

operator of Smoluchowski form as in equation (15). Indeed, using

equation (15) in equation (23) can be written as

LPss xð Þ~
XN

j~1

Di
L
Lx

bU ’i xð Þz L
Lx

� 	
P0

j xð ÞPss xð Þ ð24Þ

Using the chain rule we obtain

LPss xð Þ~ L
Lx

XN

j~1

DjbU ’j xð ÞP0
j xð ÞPss xð Þ

 

z
XN

j~1

DjP
ss xð Þ

LP0
j xð Þ
Lx

z
XN

j~1

DjP
0
j xð Þ LPss xð Þ

Lx

! ð25Þ

Collecting the coefficients of
LPss xð Þ

Lx
in equation (25), we define an

effective diffusion coefficient

D xð Þ~
XN

j~1

DjP
0
j xð Þ ð26Þ

Collecting the terms containing Pss xð Þ in equation (25), we

introduce effective steady state potential Uss(x) as follows

D xð ÞbU ’ss xð Þ~
XN

j~1

DjbU ’j xð ÞP0
j xð Þz

XN

j~1

Dj

LP0
j xð Þ
Lx

ð27Þ

Taking the derivative of equation (26) and using it in equation (27)

we obtain after dividing by D(x)

bU ’ss xð Þ~

PN
j~1

DjbU ’j xð ÞP0
j xð Þ

D xð Þ z
D’ xð Þ
D xð Þ ð28Þ

Integrating both sides of equation (28) over x, we have

bUss(x)~ ln D xð Þz
ð PN

j~1

DjP
0
j xð ÞbUj

’ xð Þ

PN
j~1

DjP
0
j xð Þ

dx ð29Þ

As a result the effective diffusion operator L turns out to be the

Smoluchowski operator with coordinate-dependent diffusion

coefficient

L~
L
Lx

D xð Þ bU ’ss xð Þz L
Lx

� 	
ð30Þ

with D(x) and Uss(x) defined by equation (26) and (29) respectively.

Therefore, the general solution of equation (30) results in the

steady state conformational distribution Pss xð Þ proportional

Boltzmann distribution Pss xð Þ~ae{bUss xð Þ. Using normalization

of the steady state distributions Pss
j xð Þ and P0

j xð Þ (equation (19)

and (22)), we conclude Pss xð Þ is normalized as
Ð

Pss xð Þdx~1. As a

result we obtain the following solution for Pss xð Þ

Pss xð Þ~ e{bUss xð ÞÐ
e{bUss xð Þdx

ð31Þ

Using equation (21) and (31), the steady state rate v in equation

(20) reduces to

v~

Ð PN
j~1

kji xð ÞP0
j xð Þ

 !
e{bUss xð Þdx

Ð
e{bUss xð Þdx

ð32Þ

Quasi-equilibrium with detailed balance condition. In

many enzymatic reactions, the catalytic rates kji are slower than all

other transition rates. This assumption is referred to as the quasi-

equilibrium (or rapid quilibrium) condition. In this limit the

steady-state probabilities satisfy the detailed balance condition

assuring the fluxes of each individual reaction vanish for any

arbitrary i<j transition

kij xð ÞP0
i xð Þ~kji xð ÞP0

j xð Þ ð33Þ

As in mass-action kinetics (cf. Methods) these equations result in

interdependencies of reaction rates (equation (11)). These

conditions are satisfied for all x if one used transition-state

expressions for reaction rates given by

kij xð Þ~k0
ij exp b Ui xð Þ{U

{
ij xð Þ

h in o
ð34Þ

where U
{
ij xð Þ is the transition state potential and the prefactors

k0
ij and k0

ji obey the condition (11), that is P
clockwise

loop

k0
ij~

P
counterclockwise

same loop

k0
ji. These prefactors are independent of the con-

formational coordinate of the enzyme x but for bimolecular

binding reactions they are functions of ligand concentrations.

Using equation (34) in equation (33) we get

P0
j xð Þ

P0
i xð Þ

~
kij xð Þ
kji xð Þ~

k0
ij

k0
ji

exp b Ui xð Þ{Uj xð Þ
� �
 �

ð35Þ

Without loss of generality we can search for a solution for P0
j xð Þ in

the form of

P0
j xð Þ~Fj xð Þe{bUj xð Þ ð36Þ

Using equation (36), we obtain that
Fj xð Þ
Fi xð Þ~

k0
ij

k0
ji

. This relation

implies that all Fj must have the same conformation coordinate

dependence, e.g,

Fj xð Þ~CjF xð Þ ð37Þ

Dynamic Disorder Kinetics
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where the constants Cj are independent of x. Using equations (36)

and (37) one therefore obtains the following solution for P0
j xð Þ in

the quasi-equilibrium limit

P0
j xð Þ~ Cje

{bUj xð Þ

PN
j~1

Cje
{bUj xð Þ

ð38Þ

Using equation (26) and (38) in equation (29) we have

bUss(x)~ ln

PN
j~1

DjCje
{bUj xð Þ

PN
j~1

Cje
{bUj xð Þ

z

ð PN
j~1

DjCje
{bUj xð ÞbUj

’ xð Þ

PN
j~1

DjCje
{bUj xð Þ

dx

~ ln

PN
j~1

DjCje
{bUj xð Þ

PN
j~1

Cje
{bUj xð Þ

{

ð
L
Lx

ln
XN

j~1

DjCje
{bUj xð Þ

dx

~{ ln
XN

j~1

Cje
{bUj xð Þ

ð39Þ

Taking exponentials on both sides of the equation we conclude

that

e{bUss xð Þ~
XN

j~1

Cje
{bUj xð Þ ð40Þ

With the use of equation (40) it can be shown that equation (32)

reduces to

v~

Ð PN
j~1

kji xð Þe{bUj xð ÞCjdx

Ð PN
j~1

Cje
{bUj xð Þ

dx

ð41Þ

Defining the conformational equilibrium average in the state j as

S ::::ð ÞTj~

Ð
::::ð Þe{bUj xð ÞdxÐ

e
{bUj xð Þ

dx
, the steady state velocity per molecule

of the enzyme is given by

v~
XN

j~1

SkjiTjcj ð42Þ

where SkjiTj~
Ð

kjie
{bUj xð Þ

dx and

cj~Cj

,XN

j~1

Cj ð43Þ

Combining equation (35) and (38), and using the relation in

equation (43) we find

cik
0
ij~cjk

0
ji ð44Þ

Comparing equation (12) and (44) we conclude that each ci is

equal to probability of finding the enzyme in state i, ei, computed

from conventional mass-action kinetics with rate prefactors k0
ij

serving as a mass-action rate constants. Hence for any arbitrary

enzyme catalyzed reaction the steady state velocity in the quasi-

equilibrium limit has same dependence on substrate concentration

as obtained from mass action kinetics with position-independent

prefactors used as rates. One straightforward conclusion from this

results states that in the quasi-equilibrium limit, the steady state

reaction rate only depends on ligand concentrations and rate

prefactors and does not depend the conformational diffusion

coefficients. We illustrate this idea for two different reaction

mechanisms (Fig. 1b, c) in next section and also show it assuming

discrete conformational states in the Section D of the Text S1.

Examples
We have shown in the previous section that even in the presence

of slow conformational fluctuations, quasi-equilibrium condition

results in the same dependence of the steady state enzymatic

velocity on ligand concentration as observed in mass action

kinetics. We have also concluded that the validity of this

approximation does not depend on the timescale of the

conformational dynamics. To support our general theory we

consider two reaction schemes involving the binding of multiple

ligands (substrates and inhibitors) to the free enzyme (Fig. 1b

and c).

Bisubstrate random-order mechanism. Let us first

consider a reaction scheme as shown in Fig. 1b which involves

the random binding of two substrates S1 and S2 to the enzyme E

followed by product formation. For this scheme the steady state

rate of product formation per molecule of the enzyme (equation

(20)) is given by:

v~

ð
k41 xð ÞPss

4 xð Þdx ð45Þ

where k41 xð Þ is the catalytic rate and Pss
4 xð Þ is the probability of

Table 1. Model parameters for enzyme states for the reaction
scheme in Fig. 1b.

E ES1 ES2 ES1S2

U0
i

0 21 21 3

x0
i

1 20.5 20.5 0

mi 1 0.5 0.5 0.4

doi:10.1371/journal.pone.0012364.t001

Table 2. Model parameters for transitions between different
enzyme states for the reaction scheme in Fig. 1b.

ERES1

ERES2

ES1RE
ES2RE

ES1RES1S2

ES2RES1S2

ES1S2RES1

ES1S2RES2

ES1S2RE+P
(catalysis)

k0
ij

.
k0

ij
20 20 8 8 10

U
0{
ij

3 3 6 6 3

xe
ij 0.65 0.65 20.65 20.65 0.65

mij 11.1 11.1 11.1 11.1 11.1

doi:10.1371/journal.pone.0012364.t002
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finding the enzyme in the catalytic state (ES1S2 form, state 4) at a

conformational coordinate x. As shown in Section B of the Text

S1, in the quasi-equilibrium limit, the steady state rate has the

same dependence on the substrate concentration (equation (B.4))

as those obtained from mass action kinetics (equation (A.5)).

To further verify these analytical results, to check the validity of

the quasi-equilibrium approximation and to look at the effects of

conformational dynamics in the general case we solve the coupled

reaction diffusion equations for the reaction scheme(equation

(B.2)) numerically using the Wang algorithm [21,22] with

transition rates given by equation (34). The catalytic rates kij xð Þ
are same as shown in equation (34) with k0

ij as the position-

independent prefactor. The potentials Ui (x) and U
{
ij (x) are

modeled as harmonic potentials (we measure the potentials in the

units of 1/b= kBT and drop this factor):

Ui xð Þ~ 1

2
mi x{x0ið Þ2zU0

i ð46Þ

and

U
{
ij xð Þ~ 1

2
mij x{xe

ij

� �2

zU0
ij{: ð47Þ

The enzyme turnover rate can be calculated numerically using

equation (45), (46) and (47) with parameters given in Tables 1 and

2. Fig. 2a shows the plot of the transition rates as functions of the

enzyme conformational coordinate x for the parameters chosen

calculated using equation (34); the same transition-state potential

form is assumed for the catalytic rates. We assumed different

conformational coordinates for maximum rate of initial substrate

binding (E+S1RES1, E+S2RES2) as compared to subsequent

binding(ES1+S2RES1S2, ES2+S1RES1S2).

The results of the simulations are depicted in Fig. 2b which

shows the steady state rate v as a function of [S1] with fixed [S2]

when the conformational dynamics in the ES1 state is very slow.

For the case in which the catalytic rate is comparable to the

dissociation rates of S1 or S2 from ES1S2 state, slow conformational

fluctuations have a significant effect on the kinetic law leading to

non-monotonic dependence of v (red squares). This effect

resembles substrate inhibition observed in our earlier work [17]

for a different reaction scheme. The effect is not present in mass-

action kinetics (red solid line). To understand the origin of

substrate inhibition in this random-order bi-substrate reaction, one

needs to focus on Fig. 2a, which indicates the ranges of

conformational coordinates where transitions between the differ-

ent states take place. The catalytic reaction ES1S2RE+P occurs

along the positive values of x (rate k41, red solid line). The

regenerated enzyme E then combines with the free substrate S1

Figure 2. Numerical results for the random order bisubstrate
reaction. (a) Rate constants kij (x) and kij (x) as function of the
conformational coordinate x, with parameters given in Tables 1 and 2

calculated from Eq. (34) and kij xð Þ~k0
ij exp Ui xð Þ{U

{
ij xð Þ

h i.
kBT

n o
.

(b) Normalized rate v
�

k0
41 as a function of concentration [S1] at a fixed

concentration of [S2] = 10. When catalytic reaction is fast with k0
41~10,

slow diffusion in ES conformation leads to non-monotonic dependence

—substrate inhibition effect (red squares) and a deviation from the
macroscopic rate law (red solid line) computed from mass action
kinetics. For slow catalysis (k0

41~10{3 , quasi-equilibrium limit) normal-
ized rate v

�
k0

41 has the same dependence on S1 concentration (black
circles) as the macroscopic kinetic law (black solid line) calculated from
equation (B.4). We use DES1 = 1022 and DE = DES2 = DES1ES2 = 102 and the
rest of parameters as in (a). c) Enzymatic rate as a function of
conformational diffusion. We took all the diffusion coefficients to be the
same DE = DES1 = DES2 = DES1S2 = D. For fast catalysis k0

41~10 the enzy-
matic rate decreases with decreased diffusion (red dashed line). In the
quasi-equilibrium limit, when the catalysis is slow k0

41~10{3 the
enzymatic rate does not depend on the diffusion coefficient (black solid
line). Notably the same trend continues with further decrease in
diffusion coefficients, D. We use [S1] = [S2] = 1 and the remaining
parameters as in (a, b).
doi:10.1371/journal.pone.0012364.g002
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and S2 to form the ES1 and ES2 complexes. The conversion from

ES1RES1S2 and ES2RES1S2 takes place along the negative values

of x (rates k34 and k24, dashed line). At a fixed concentration of S2,

and at high S1 concentration, the free enzyme regenerated after

the product release step (ES1S2RE+P) quickly binds to the

substrate S1 to form the ES1 complex along the positive values of

x. This ES1 complex needs to relax and change its conformation

into the negative region of x for the reaction ES1RES1S2 to take

place. Since conformational dynamics in the ES1 state is very slow,

this order of substrate binding (S1 first, then S2) would result in

slower catalytic rate as compared to a different order (S2 first, then

S1). But as the substrate concentration S1 is increased the

probability of the substrate S2 to bind first to the enzyme decreases

essentially pushing the reaction to proceed through the ES1 state

and thereby leading to a decrease of the overall catalytic flux.

Importantly, this effect does not happen in the quasi-equilibrium

limit (when k41 is very slow). In this limit the rate law is not only

monotonic (black circles) but also coincides with the steady state

rate as obtained from mass action kinetics (black solid line).

Moreover, in agreement with our theoretical derivation, the

enzymatic rate does not depend on the diffusion when the catalytic

rate is slow (Fig. 2c).

Partial noncompetitive inhibition. We also consider

another scheme described in Fig. 1c. In this enzyme catalyzed

reaction, there are two catalytic reactions which lead to product

formation, one from the ES complex and another from the ESI

complex. The steady state rate of product formation is therefore

given by

v~

ð
k21 xð ÞPss

2 xð Þzk43 xð ÞPss
4 xð Þ

� �
dx ð48Þ

where k21 xð Þ and k43 xð Þ are the catalytic rates. Pss
2 xð Þ and Pss

4 xð Þ
are the probabilities of finding the enzyme in the ES (state 2) and

ESI form (state 4) respectively at a conformational coordinate x.

When k43%k21, then the ESI complex cannot produce product as

effectively as ES complex leading to decrease of catalytic rate as

probability of ESI state formation increases at rising inhibitor

concentrations.

Fig. 3a shows the transition rates for Fig. 1c as a function of the

conformational coordinate x calculated using equation (34); the

same transition-state potential form is assumed for the catalytic

rates. Fig. 3b is a plot of the normalized steady state rate calculated

numerically using. equation (B.4) and (48) with the potentials as

defined in equation (46) and (47) as a function of the inhibitor

concentration [I] with the conformational dynamics in ES state is

very slow. The parameter values for the numerical simulations are

taken from Tables 3 and 4. For the case in which the catalytic rates

are comparable to the dissociation rates of S or EI from the ES or

Figure 3. Numerical results for the partial noncompetitive
inhibition reaction. a) Rate constants kij (x) and kij (x) as function of
the conformational coordinate x, with parameters given in Tables 3 and

4 calculated using Eq. (34) and kij xð Þ~k0
ij exp Ui xð Þ{U

{
ij xð Þ

h i.
kBT

n o
.

b) Normalized rate v
�

k0
43 as a function of concentration [I] at a fixed

concentration of [S] = 1. When catalytic reaction is fast with k0
21~10 and

k0
43~0:5 Slow diffusion in ES conformation leads to an increase in the

rate at low and intermediate inhibitor concentration followed by a

decay (red squares), a deviation from the macroscopic rate law(red solid
line) computed from equation (A.3). For slow catalysis (k0

21~k0
43~10{3,

quasi-equilibrium limit) normalized rate v
�

k0
43 has the same depen-

dence on I concentration (black circles) as the macroscopic rate
law(black solid line) calculated from equation (B.7). We use DES = 1022

and DE = DEI = = DESI = 102 and the rest of parameters as in (a). c)
Enzymatic rate as a function of conformational diffusion. We took all the
diffusions to be the same DE = DES = DEI = DESI = D. For fast catalysis
k0

21~10 and k0
43~0:5 the enzymatic rate decreases with decreased

diffusion (red dashed line). In the quasi-equilibrium limit, when the
catalysis is slow k0

21~k0
41~10{3 the enzymatic rate does not depend

on the diffusion coefficient (black solid line). Notably the same trend
continues with further decrease in diffusion coefficients, D. We use
[S] = 1, [I] = 0.1 and the remaining parameters as in (a, b).
doi:10.1371/journal.pone.0012364.g003
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ESI complex respectively, slow conformational fluctuations lead to

an increase in the rate at low and intermediate I concentrations

followed by decrease with the further increase in I concentration

(red squares). To understand the origin of this effect, one needs to

focus on Fig. 3a, which indicates the ranges of conformational

coordinates where transitions between the different states take

place. The faster catalytic reaction ESRE+P occurs along the

negative values of x (k21: red solid line). But the binding of the

enzyme E with the substrate S is more likely to occur along the

positive values of x (rate k12, black solid line). Since conformational

dynamics in the ES state is very slow, the flux through the pathway

E+SRESRE+P is limited by the conformational relaxation in ES

state and, therefore, can be small. On the other hand, if inhibitor

has a chance to bind to the enzyme first, another, faster catalytic

pathway is possible, inhibitor binds first, then substrate binds, then

inhibitor dissociates and catalysis occurs: E+IREI+SRESIR
ES+IRE+P+I. Because the inhibitor is likely to dissociate in the

negative conformation, slow conformational diffusion in ES state

does not affect the flux. This second pathway becomes more likely

as concentration of inhibitor, I, increases initially. This initial

increase thereby leads to increase in overall catalytic rate. As

inhibitor concentration further increased, ES state is more likely to

bind the inhibitor, I, and the flux get limited by the catalytic rate

from ESI state. This effect leads to decrease of the enzymatic rate

at higher inhibitor concentrations toward smaller catalytic rate k43

(red dashed line in Fig. 2a). The above described effect does not

play a role in the quasi-equilibrium limit (when k43 and k21 are

smaller than kij). In this limit the rate law is not only monotonic

(black circles) but also coincides with the steady state rate as

obtained from mass action kinetics (black solid line). Intuitively,

this occurs because in the equilibrium the flux does not depend on

the pathway. In addition, as suggested by our theoretical

derivation, the enzymatic rate does not depend on the diffusion

when the catalytic rate is slow (Fig. 3c).

Concluding remarks
In this paper we developed a generalized formalism to study the

kinetics of an enzyme with arbitrary complicated kinetic

mechanism in the presence of dynamic disorder. Slow conforma-

tional fluctuations which are a source of dynamic disorder are

common to many enzymes and can lead to deviations from

macroscopic rate laws as predicted by conventional chemical

kinetics. Here we have focused on the kinetic laws in the quasi-

equilibrium limit where catalytic transitions are slower than ligand

binding-dissociation reactions. Our results indicate that even in the

presence of slow conformational fluctuations macroscopic rate

laws will hold in this limit. This implies that the steady state rate

has the same dependence on the ligand concentration as observed

in conventional mass action kinetics for any arbitrary enzyme

catalyzed reaction network. This dependence will coincide with

that obtained from conventional mass-action kinetics using

conformation-independent rate prefactors as rate constants. This

result extends the previous work of Min et al. [15] from simple

Michaelis-Menten scheme to a kinetic scheme of arbitrary

complexity with multiple substrates and allosteric ligands. As a

consequence, in this quasi-equilibrium limit, the rate no longer

depends on the conformational dynamics of the enzyme (Fig. 2c

and Fig. 3c). Our analytical predictions are further supported by

numerical simulations for the two complex reaction schemes

(Fig. 1bc). Importantly these simulations also indicate that quasi-

equilibrium limit can be achieved when conformational dynamics

is very slow, even when it is slower than the catalytic rate. The

obtained conclusions are therefore applicable to any enzyme with

arbitrary complex kinetic mechanism (multiple substrates, cofac-

tors, allosteric ligands) as long as the catalytic steps are slower than

ligand dissociation reactions.

In the single molecule enzyme experiment on the catalytic activity

on the enzyme b-galactosidase the MM behavior of the average

number of catalytic turnovers per unit time still holds [4] even in the

presence of fluctuations on all time scales. The quasi-equilibrium

condition provides a plausible explanation of this effect [14]. How

general is quasi-equilibrium limit for enzymatic kinetic systems with

possibly slow fluctuating enzyme conformations? One can argue that

for some enzymatic reactions where the substrate specificity actually

comes about from different binding affinities rather than different

catalytic rates. In that case for efficient specificity selection, multiple

binding-dissociation must to occur before the catalysis to proceed. As

a result, these enzymes will essentially operate in quasi-equilibrium

limit. On the other hand, some of enzymes have evolved to function

in catalytically perfect regime, i.e. when the catalytic rate is much

faster than substrate dissociation [23,24]. These enzymes do not

operate in quasi-equilibrium and dynamic disorder may affect their

kinetic laws. However, it is not clear how common such enzymes are,

given that fast catalytic efficiency does not always directly transfer

into fitness [25]. In any case, comparison of the turnover rate of the

reaction at low substrate concentration to that predicted by diffusion-

reaction theory can aid in predicting if the enzyme operates near

quasi-equilibrium limit.

Table 4. Model parameters for transitions between different enzyme states for the reaction scheme in Fig. 1c.

ERES
EREI

ESRE
EIRE

ESRESI
EIRESI

ESIRES
ESIREI

ESRE+P
(catalysis) sstep)

ESIREI+P
(catalysis)

k0
ij

.
k0

ij
20 20 8 8 10 0.5

U
0{
ij

3 3 6 6 3 3

xe
ij 0.65 0.65 20.65 20.65 20.65 20.65

mij 11.1 11.1 11.1 11.1 11.1 11.1

doi:10.1371/journal.pone.0012364.t004

Table 3. Model parameters for enzyme states for the reaction
scheme in Fig. 1c.

E ES EI ESI

U0
i

0 21 21 3

x0
i

1 20.5 20.5 0

mi 1 0.5 0.5 0.4

doi:10.1371/journal.pone.0012364.t003
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A classical model of allosteric regulation assume that binding of

small-molecule regulator into some distant, non-catalytic site

affects the reactions in the catalytic site and therefore changes the

catalytic flux. Recently, Xing proposed [21] that the slow

conformational dynamics of allosteric proteins is a possible

alternative to allosteric regulation mechanism. In this scheme,

binding of ligand leads to an increased roughness of potential-

energy landscape and thereby affect the enzymatic rate through

conformational diffusion. Our theoretical results place an

important constrain for such non-allosteric regulation mechanism

to be significant. We show that the timescale of conformational

transitions (no matter how slow) does not affect the reaction flux if

the catalytic rates are much slower than ligand dissociation rates

(quasi-equilibrium limit). Thus dynamic disorder may only affect

the kinetic laws when catalytic transitions are fast.

Supporting Information

Text S1 (A) Mass-action kinetics for random-order bisubstrate

and partial noncompetitive inhibition reaction schemes. (B)

Conformational dynamics for random-order bisubstrate and

partial noncompetitive inhibition reactions. (C) Decoupling ansatz

is exact in quasi-equilibrium limit. (D) Discrete-state model for

conformational fluctuations in the quasi-equilibrium limit.

Found at: doi:10.1371/journal.pone.0012364.s001 (0.10 MB

PDF)
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