
Dynamic Distributed Resource Allocation: A Distributed Constraint Satisfaction
Approach

Pragnesh Jay Modi, Hyuckchul Jung, Milind Tambe, Wei-Min Shen, Shriniwas Kulkarni
University of Southern California/Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292, USA
{modi,jungh,tambe,shen,kulkarni} @isi.edu

Abstract

In distributed resource allocation a set of agents must assign
their resources to a set of tasks. This problem arises in many
real-world domains such as distributed sensor networks, dis-
aster rescue, hospital scheduling and others. Despite the va-
riety of approaches proposed for distributed resource alloca-
tion, a systematic formalization of the problem, explaining
the different sources of difficulties, and a formal explanation
of the strengths and limitations of key approaches is miss-
ing. We take a step towards this goal by proposing a for-
malization of distributed resource allocation that represents
both dynamic and distributed aspects of the problem. We de-
fine four categories of difficulties of the problem. To address
this formalized problem, the paper defines the notion of Dy-
namic Distributed Constraint Satisfaction Problem (DDCSP).
The central contribution of the paper is a generalized mapping
from distributed resource allocation to DDCSE This mapping
is proven to correctly perform resource allocation problems of
specific difficulty. This theoretical result is verified in prac-
tice by an implementation on a real-world distributed sensor
network.

Introduction
Distributed resource allocation is a general problem in
which a set of agents must intelligently assign their re-
sources to a set of tasks such that all tasks are performed
with respect to certain criteria. This problem arises in
many real-world domains such as distributed sensor net-
works (Sanders 2001), disaster rescue(Kitano 2000),
pital scheduling(Decker & Li 1998), and others. However,
despite the variety of approaches proposed for distributed
resource allocation, a systematic formalization of the prob-
lem, explaining the different sources of difficulties, and a
formal explanation of the strengths and limitations of key
approaches is missing.

We propose a formalization of distributed resource allo-
cation that is expressive enough to represent both dynamic
and distributed aspects of the problem. These two aspects
present some key difficulties. First, a distributed situation
results in agents obtaining only local information, but facing
global ambiguity -- an agent may know the results of its lo-
cal operations but it may not know the global task and hence

may not know what operations others should perform. Sec-
ond, the situation is dynamic so a solution to the resource
allocation problem at one time may become unsuccessful
when the underlying tasks have changed. So the agents must
continuously monitor the quality of the solution and must
have a way to express such changes in the problem. Given
these parameters of ambiguity and dynamism, we will de-
fine four classes of difficulties of the problem. In order to
address the resource allocation problem, the paper also de-
fines the notion of Dynamic Distributed Constraint Satisfac-
tion Problem (DDCSP).

The central contribution of the paper is a reusable, gener-
alized mapping from distributed resource allocation to DD-
CSP. This mapping is proven to correctly perform resource
allocation problems of specific difficulty. This theoretical
result is verified in practice by an implementation on a real-
world distributed sensor network. Ideally, our formalization
may enable researchers to understand the difficulty of their
resource allocation problem, choose a suitable mapping us-
ing DDCSP, with automatic guarantees for correctness of the
solution.

Domains and Motivations
Among the domains that motivate this work, the first is a
distributed sensor domain. This domain consists of mul-
tiple stationary sensors, each controlled by an independent
agent, and targets moving through their sensing range (Fig-
ure 1.a and Figure 1.b illustrates the real hardware and sim-
ulator screen, respectively). Each sensor is equipped with
a Doppler radar with three sectors. An agent may activate
at most one sector of a sensor at a given time or switch the
sensor off. While all of the sensor agents must act as a team
to cooperatively track the targets, there are some key diffi-
culties in such tracking.

First, in order for a target to be tracked accurately, at least
three agents must concurrently activate overlapping sectors.
For example, in Figure 2 which corresponds to Figure l.b,
if an agent A1 detects a target 1 in its sector 0, it must co-
ordinate with neighboring agents, A2 and A4 say, so that
they activate their respective sectors that overlap with Al’s
sector 0. Activating a sector is an agent’s operation. Since
there are three sectors of 120 degrees, each agent has three
operations. Since target 1 exists in the range of a sector for
all agents, any combination of operations from three agents

89

From: AAAI Technical Report FS-01-03. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

~t,J n4~or4

~:~: ~ ~-,~
(a) sensor(left) and target(right) (b) simulator (top-down

Figure 1: A distributed sensor domain

~x~ ent A2~

Sector Number

~ \T~et 2N

Agd A 3~ A~ A~~~ ~/Agent A4

Figure 2: Each sensor (agent) has three sectors.

or all four agents can achieve the task of tracking target 1.
Second, there is ambiguity in selecting a sector to find a

target. Since each sensor agent can detect only the distance
and speed of a target, an agent that detects a target cannot tell
other agents which sectors to activate. Assume that there is
only target 1 in Figure 2 and agent A1 detects the target first.
A1 can tell A4 to activate sector 1. However, A1 cannot tell
A2 which of the two sectors (sector 1 or sector 2) to acti-
vate since it only knows that there is a target in its sector 0.
That is, agents don’t know which task is to be performed.
Identifying a task to perform depends on the result of other
related agents’ operations. If there are multiple targets, a
sensor agent may be required to activate more than one sec-
tors at the same time. For instance, in Figure 2, A4 needs
to decide whether to perform either a task for target 1 or a
task for target 2. Since at most one sector can be activated
at a given time, A4 should decide which task to perform.
Thus, the relationship among tasks to perform will affect the
difficulty of the resource allocation problem.

Third, the situation is dynamic as targets move through
the sensing range. The dynamic property of the domain
makes problems even harder. Since target moves over time,
after agents activate overlapping sectors and track a target,
they may have to find different overlapping sectors.

The second domain which motivates our work is Robocup
Rescue (Kitano 2000) for disaster rescue after an earth-
quake. Here, multiple Fire engines, ambulances and police
cars must collaborate to save civilians from trapped, burning
buildings and no centralized control is available to allocate
all of the resources. For instance, an ambulance must collab-
orate with a fire engine have a fire extinguished before it can
rescue a civilian. The tasks are dynamic, e.g., fires grow or
shrink and also ambiguous e.g., a fire engine could receive a
report of a fire in an area, but not a specific building on fire.
This domain thus presents another example of a distributed
resource allocation problem with many similarities with the
distributed sensor network problem.

The above applications illustrates the difficulty of re-
source allocation among distributed agents in dynamic en-
vironment. Lack of a formalism for dynamic distributed re-
source allocation problem can lead to ad-hoc methods which
cannot be easily reused.

Formalization of Resource Allocation

A Dynamic Distributed Resource Allocation Problem is a
structure <A.q, f~, O> where

* A.q is a set of agents, Ag = {A1, A2 An}.

¯ fl = {O~, O~ O~ O~} is a set of operations, where
operation O~ denotes the p’th operation of agent Ai. An
operation can either succeed or fail. Let Op(Ai) denote
the set of operations of Ai. Operations in Op(Ai) are mu-
tually exclusive; an agent can only perform one operation
at a time.

¯ ® is a set of tasks, where a task is a collection of sets of
operations that satisfy the following properties: VT E ®,
(i) T C_ P(f~)
(ii) T is nonempty and, Vt E T, t is nonempty;
(iii) Vt~, t~ ¯ T, t~ ~Z t8 and t~ ~Z t~. t~ and t~ are called
minimal sets. Two minimal sets conflict if they contain an
operations belonging to the same agent.

Intuitively, a task is defined by the operations that agents
must perform in order to complete it. There may be alterna-
tive sets of operations that can complete a given task. Each
such set is a minimal set. (Property (iii) requires that each
of operations in a task should be minimal in the sense that no
other set is a subset of it.) A solution to a resource allocation
problem then, involves choosing a minimal set for each task
such that the minimal sets do not conflict. In this way, when
the agents perform the operations in those minimal sets, all
tasks are successfully completed.

To illustrate this formalism in the distributed sensor net-
work domain, we cast each sensor as an agent and activating
one of its (three) sectors as an operation. Here, O~ denotes
an operation in which agent Ai activates sector p. For exam-
ple, in Figure 2,

¯ Ag {At, A2, Aa, A4},Op(Ai) { i i= = Oo,O1, O~ }, and f~
= [.J Op(Ai).

A~ EA9
Then, a task is a set of minimal sets of operations that can

track a target. Fox the situation illustrated in Figure 2, we
define a task for each target in an area of overlap of sectors.T1 - 05, o0 ,0 = {T1, _ 1 2 3 2 3{02, 0o,3 4 2 4 _ 3O0,0~}, 02,0~}},T2-{{00,04}}.

For each task, we use T(Tr) to denote the union of all the
minimal sets of Tr. To denote the set of tasks that include
O~, we use T(O~). Formal definitions are as follow:

¯ VT,¯O,T(T,)= U
t,,ET.

¯ V O~ ̄ f~, T(Oip) {Tr [O.~ ¯ T(Tr)}

90

For instance, in Figure 2, target 1 can be tracked by the
union its minimal sets. In this case, T(T1) = {O~, 02, a,
04} and T(O]) = { T1, 712 }. From A3’s point of view,
this is an ambiguous situation. After A3’s operation Ooa is
successfully executed, Aa cannot alone identify the current
task, since Ooa is included in both T(T1) and T(T2). In
situations, collaboration with other agents is necessary. Fi-
nally, we require that V O~ E f~, [T(Oip) [~ 0. That is,
every operation should serve some tasks.

All the tasks in O are not always present. We use Oc
to denote the subset of tasks that are currently present. This
set is determined by the environment. Agents can execute
their operations at any time, but the success of an operation
is determined by the set of tasks that are currently present.
The following two definitions formalize this interface with
the environment.

¯ Definition 1: V O~ E f~, if O~ is executed and 3 T~ E
Oc t such that O~ E T(T~), then O~ is said to suc-
ceed.

So in our example, if agent A1 executes operation O01 and if
T1 E 19c,~,-,.c,a, then Oo1 will succeed. A task is performed
when all the operations in some minimal set succeed. More
formally,

¯ Definition 2: VTr E O, %. is performed iff 3t,. E T~ such
that all the operations in tr succeed. All tasks that satisfy
this definition are contained in Ocurrent.

We call a resource allocation problem static if O~,,~e,a
is constant over time and dynamic otherwise. So in our dis-
tributed sensor network example a moving target represents
a dynamic problem.

Agents must somehow be informed of the set of current
tasks. The notification procedure is outside of this formal-
ism. Thus, the following assumption states that at least one
agent is notified that a task is present by the success of one
of its operations.

Notification assumption: VTr E O, if T~ E Occident,
then 30~ E T(Tr) such that VTs(~ T,.) E Oc~r t, O~
¢ T8 and O~ succeeds.

We now define some properties of a given resource allo-
cation problem. Tasks in Oc,,~,a can be performed con-
currently under some conditions. For instance, two differ-
ent tasks Tt and T2 can be performed concurrently if all
the operations for performing 711 can be executed concur-
rently with those for performing T2. We define two types of
conflict-free to denote tasks that can be performed concur-
rently. The following Strongly Conflict Free condition im-
plies that all minimal sets from the tasks are non-conflicting.
The Weakly Conflict Free condition implies that there ex-
ists a choice of minimal sets from the tasks that are non-
conflicting.

¯ Definition 3: V T~, T~ E 19 t, T~ and T~ are strongly
conflict free iff the following statement is true:
if T~ ~ 718, then V Ai E Ag,] T(Tr) Op(Ai) [
I T(T~) Op(Ai) [< 1 holds.

¯ Definition 4: V T~, T8 E 19 t, T~ and T~ are weakly
conflict free iff the following statement is true:

if T,. 7~ T~, then there exist t~ E T,. and t~ E T~ s.t. V Ai
e Ag, I t~ n Op(Ai) I + Its cl Op(Ai) I < 1 holds.

When there is no centralized control, no agent knows
what the current task is. When an operation O~ of an agent
Ai succeeds, the agent only knows that there is an uniden-
tified task to be performed from a task set 19. If [T(Oip)
= 1, there is no ambiguity in identifying a task to be per-
formed. Ai whose operation succeeds can look up the task
and inform other related agents of what the current task is.
However, there can be multiple tasks for which O~ is re-
quired. If [T(O~) I > 1, Ai has to decide what the task is
in a cooperative way with other agents. A task T,. E T(Oip)
can be identified when all the operations in an operation set
t,. E T~ succeed. Since operations from different agents are
involved, the decision problem cannot be solved by an indi-
vidual agent.

The Dynamic Distributed Resource Allocation Problem is
to identify current tasks that can change over time and assign
operations that are required by the current tasks. The diffi-
culty of the problem depends on both the ambiguity of the
tasks from a dynamic distributed environment and the rela-
tion among tasks which may require conflicting resources.
Here, we outline four problem classes of increasing diffi-
culty based on ambiguity and the relation among tasks.

¯ Class 1 (static, strongly conflict free, no ambiguity): In
this class of problems, the tasks in 19~,~,-~,a fixed, but
unknown, and are strongly conflict free. Furthermore,
VO~ E f~, I T(Oih) I = 1, so there is no ambiguity in
identifying a task for when an operation succeeds.

¯ Class 2 (static, strongly conflict free, ambiguity): In
this class of problems, the tasks in 19current fixed, but
unknown, and are strongly conflict free. Furthermore,
VO~ E f~, I T(Oih) [> 1, so there is ambiguity in identi-
fying a task for when an operation succeeds.

¯ Class 3 (dynamic, strongly conflict free, ambiguity):
Dynamism means that 19current changes over time. In
other words, the set of tasks that must be performed by
the agents is dynamic.

¯ Class 4 (dynamic, weakly conflict free, ambiguity): By
relaxing strongly conflict free tasks assumption, we make
agents’ decision even harder. With weakly conflict free
tasks, agents may need to select an operation among mu-
tually exclusive operations. Agents should negotiate to
find a solution without involving mutually exclusive op-
erations for each task in 19current.

As the number of class increases, the problem hardness
also increases. A solution method can solve any problem in
lower classes.

Dynamic DCSP

A Constraint Satisfaction Problem (CSP) is commonly de-
fined by a set of variables, each associated with a finite do-
main, and a set of constraints on the values of the variables.
A solution is the value assignment for the variables which
satisfies all the constraints. A distributed CSP is a CSP in
which variables and constraints are distributed among mul-
tiple agents. Each variable belongs to an agent. A constraint

91

defined only on the variable belonging to a single agent is
called a local constraint. In contrast, an external constraint
involves variables of different agents. Solving a DCSP re-
quires that agents not only solve their local constraints, but
also communicate with other agents to satisfy external con-
straints.

DCSP assumes that the set of constraints are fixed in ad-
vance. This assumption is problematic when we attempt to
apply DCSP to domains where features of the environment
are not known in advance and must be sensed at run-time.
For example, in distributed sensor networks, agents do not
know where the targets will appear. This makes it difficult
to specify the DCSP constraints in advance. Rather, we de-
sire agents to sense the environment and then activate or de-
activate constraints depending on the result of the sensing
action. We formalize this idea next.

We take the definition of DCSP one step further by defin-
ing Dynamic DCSP (DDCSP). DDCSP allows constraints
be conditional on some predicate P. More specifically, a dy-
namic constraint is given by a tuple (P, C), where P is an ar-
bitrary predicate that is continuously evaluated by an agent
and C is a familiar constraint in DCSP. When P is true, C
must be satisfied in any DCSP solution. When P is false,
C may be violated. An important consequence of dynamic
DCSP is that agents no longer terminate when they reach
a stable state. They must continue to monitor P, waiting to
see if it changes. If its value changes, they may be required
to search for a new solution. Note that a solution when P
is true is also a solution when P is false, so the deletion of
a constraint does not require any extra computation. How-
ever, the converse does not hold. When a constraint is added
to the problem, agents may be forced to compute a new solu-
tion. In this work, we only need to address a restricted form
of DDCSP i.e. it is only necessary that local constraints be
dynamic.

AWC (Yokoo & Hirayama 1998) is a sound and complete
algorithm for solving DCSPs. An agent with local vari-
able Ai, chooses a value vi for Ai and sends this value to
agents with whom it has external constraints. It then waits
for and respond to messages. When the agent receives a
variable value (Aj = vj) from another agent, this value is
stored in an AgentView. Therefore, an AgentView is a set
of pairs {(Aj, vj), (Ak, vk) }. Intuitively, the AgentView
stores the current value of non-local variables. A subset of
an AgentView is a NoGood if an agent cannot find a value
for its local variable that satisfies all constraints. Whenever
a NoGood is found, it is stored so that those assignments
are not considered in the future. For example, an agent with
variable Ai may find that the set {(Aj, vj), (Ak, vk)} is a No-
Good because, given these values for Aj and Ak, it cannot
find a value for Ai that satisfies all constraints, In this case,
AWC will store the set {(Aj, vj), (Ak, Vk)}. This means that
these value assignments cannot be part of any solution.

The most straightforward way to attempt to deal with dy-
namism in DCSP is to consider AWC as a subroutine that
is invoked anew everytime a constraint is added. Unfortu-
nately, in many domains such as ours, where the problem
is dynamic but does not change drastically, starting from
scratch may be prohibitively inefficient. Another option, and

the one that we adopt, is for agents to continue their compu-
tation even as the constraints change asynchronously. A po-
tential problem with this approach is that when constraints
are removed, a stored NoGood may now become part of a
solution. We solve this problem by allowing agents to store
their own variable values as part of NoGoods. For example,
if an agent with variable A~ finds that a value vi does not
satisfy all constraints given the AgentView {(Ai, vj), (Ak,
vk)}, it will store the set {(Ai, v0, (Aj, vj), (Ak, vk)} as
NoGood. With this modification to AWC, NoGoods remain
"no good" even as local constraints change.

Generalized Mapping

In this section, we map the Class 3 Resource Allocation
Problem, which subsumes Class 1 and 2, onto DDCSP. Our
goal is to provide a general mapping so that any resource al-
location problem can be solved in a distributed manner by a
set of agents by applying this mapping.

Our mapping of the Resource Allocation Problem is mo-
tivated by the following idea. The goal in DCSP is for
agents to choose values for their variable so all constraints
are satisfied. Similarly, the goal in resource allocation is for
the agents to choose operations so all tasks are performed.
Therefore, in our first attempt we map variables to agents
and values of variables to operations of agents. So for ex-
ample, if an agent As has three operations it can perform,¯
{ 0I, 0~, then the variable corresponding to this agent
will have three values in its domain. However, this simple
mapping attempt fails because an operation of an agent may
not always succeed. Therefore, in our second attempt, we
define two values for every operation, one for success and
the other for failure. In our example, this would result in six
values.

It turns out that even this mapping is inadequate for the
Class 2 and 3 Resource Allocation Problem. This is because
an operation can be required for more than one task. We
desire agents to be able to not only choose which operation
to perform, but also to choose for which task they will per-
form the operation. For example in Figure 2, Agent A3 is
required to active the same sector for both targets 1 and 2.
We want A3 to be able to distinguish between the two tar-
gets, so that it does not unnecessarily require A2 to activate
sector 2 when target 2 is present. So, for each of the values
defined so far, we will define new values corresponding to
each task that an operation may serve.

More formally, given a Class 3 Resource Allocation Prob-
lem <A.q, ~2, 0), the corresponding DCSP is defined over a
set of n variables,

¯ A = {A1, A2 Are}, one variable for each As E Ag.
We will use the notation As to interchangeably refer to an
agent or its variable.

The domain of each variable is given by:

¯ VAI E fit 9, Dom(A0 = U OivxT(O~)x{yes,n°}¯
O~E.~

In this way, we have a value for every combination of
operations an agent can perform, a task for which this op-
eration is required, and whether the operation succeeds or

9"2

fails. For example in Figure 2, Agent A3 has two operations
(sector 1 and 2) with only one possible task (target) and
operation (sector 0) with two possible tasks (target 1 and
This means it would have 8 values in its domain.

A word about notation: V O~ E f~, the set of values in
OipxT(Oip)x{yes} will be abbreviated by the term O~*yes
and the assignment Ai = O~*yes denotes that 3v E O~*yes
s.t. Ai = v. Intuitively, the notation is used when an agent
detects that an operation is succeeding, but it is not known
which task is being performed. This analagous to the sit-
uation in the distributed sensor network domain where an
agent may detect a target in a sector, but not know its exact
location. Finally, when a variable Ai is assigned a value, we
assume the corresponding agent is required to execute the
corresponding operation.

Next, we must constrain agents to assign "yes" values to
variables only when an operation has succeeded. However,
in Class 3 problems, an operation may succeed at some time
and fail at another time since tasks are dynamically added
and removed from the current set of tasks to be performed.
Thus, every variable is constrained by the following dy-
namic local constraints.

¯ Dynamic Local Constraint 1 (LC1): VTr E O, VO~ E
T(T,.), we have LCI(A0 = (P, C),

P: O~ succeeds.

C: Ai = O~*yes

¯ Dynamic Local Constraint 2 (LC2): VT~. E 19, VO~
T(T,.), we have LC2(Ai) = (P, C),

P: O~ does not succeed.

C: Ai ~ O~*yes

The truth value of P is not known in advance. Agents
must execute their operations, and based on the result, lo-
cally determine if C needs to be satisfied. In the Class 1 and
2 problems, the set of current tasks does not change and thus,
the troth value of P, although initially unknown, once known
will not change over time. On the other hand, in the Class
3 and 4 problems, where the set of current tasks is changing
over time, the truth value of P will change, and hence the
corresponding DCSP will be truly dynamic.

We now define the external constraint (EC) between vari-
ables of two different agents. EC is a normal static constraint
and is always present.

¯ External Constraint: VTT E 19, VO~ E T(Tr), VAj E

EC(Ai, Aj):
(!) A~ = O~Tryes, and
(2) Vt~ e Tr s.t. O~, E tr, 3q s.t. O~ E t~.

=~, Aj = O~Tryes

The EC constraint requires some explanation. Condition (1)
states that an agent Ai has found an operation that succeeds
for task T,.. Condition (2) quantifies the other agents whose
operations are also required for T,.. If Aj is one of those
agents, the consequent requires it to choose its respective
operation for the T~. If Aj is not required for T~, condition
(2) is false and EC is trivially satisfied. Finally, note that

every pair of variables Ai and A j, have two EC constraints
between them: one from A~ to Aj and another from Aj to
Ai. The conjunction of the two unidirectional constraints
can be considered one bidirectional constraint.

We will now prove that our mapping can be used to solve
any given Class 3 Resource Allocation Problem. The first
theorem shows that our DDCSP always has a solution, and
the second theorem shows that if agents reach a solution,
all current tasks are performed. It is interesting to note
that the converse of the second theorem does not hold, i.e.
it is possible for agents to be performing all tasks before
a solution state is reached. This is due to the fact that
when all current tasks are being performed, agents whose
operations are not necessary for the current tasks could still
be violating constraints.

Theorem I : Given a Class 3 Resource Allocation
Problem (Ag,f~,19), 19 ~ c_ O, there exists a solution
to the corresponding DDCSP.

proof’ We proceed by presenting a variable assignment
and showing that it is a solution.

Let B = {Ai E A I~% C 19 nt,30~ E T(T,.)}.
We will first assign values to variables in B, then assign
values to variables that are not in B. If A~ E B, then
3Tr E 19 t, 30~ E T(T,.). In our solution, we assign
A~ = OipT~yes. If Ai ¢. B, we may choose any O~Trno E
Dom(Ai) and assign Ai O~T~no.

To show that this assignment is a solution, we first show
that it satisfies the EC constraint. We arbitrarily choose two
variables, Ai and Aj, and show that EC(A~, Aj) is satisfied.
We proceed by cases. Let Ai, Aj E A be given.

¯ case I: Ai ~- B
Since Ai = O~T~no, condition (1) of EC constraint
false and thus EC is trivially satisfied.

¯ case 2:AiEB, Aj fiB

Ai = OipTryes in our solution. Let t~ E T~ s.t. O~
E t,.. We know that Tr E 19c t and since Aj ~ if,
we conclude that flO~ Etr. So condition (2) of the
constraint is false and thus EC is trivially satisfied.

¯ case 3:AiEB, Aj E B

A~ = OipT~yes and Aj = O~T~yes in our solution. Let
t,. E T,. s.t. Op E t,.. T~ and Tr must be strongly conflict
free since both are in 19 ~. IfT~ ~ T~., then ~ O~ E
f~ s.t. O~ Etr. So condition (2) of EC(Ai,Aj) is false
and thus EC is trivially satisfied. If 718 = Tr, then EC is
satisfied since Aj is helping Ai perform T,-.

Next, we show that our assignment satisfies the LC
constraints. If Ai E B then A~ = OipTryes, and LC1,
regardless of the truth value of P, is clearly not violated.
Furthermore, it is the case that O~ succeeds, since T,. is
present. Then the precondition P of LC2 is not satisfied and
thus LC2 is not present. If A~ ~ B and A~ = O~Trno, it
is the case that O~ is executed and, by definition, does not
succeed. Then the precondition P of LC1 is not satisfied
and thus LC1 is not present. LC2, regardless of the truth

93

value of P, is clearly not violated. Thus, the LC constraints
are satisfied by all variables. We can conclude that all
constraints are satisfied and our value assignment is a
solution to the DDCSE []

Theorem II : Given a Class 3 Resource Allocation
Problem (A.q,f~,®), Ocu t C_ O and the corresponding
DDCSP, if an assignment of values to variables in the DD-
CSP is a solution, then all tasks in Oc~,~r~nt are performed.

proof" Let a solution to the DDCSP be given. We want to
show that all tasks in Ocurrenl are performed. We proceed
by choosing a task T~ E Ocu~cnt. If we can show that it is
indeed performed and since our choice is arbitrary, we can
conclude that all members of ®~,~r~,a are performed.

Let T~ E O~r~,a. By the Notification Assumption,
some operation O~, required by Tr will be executed. How-
ever, the corresponding agent Ai, will be unsure as to which
task it is performing when O~ succeeds. This is due to the
fact that 0~ may be required for many different tasks. It
may randomly choose a task, T8 E T(Oip), and LC1 re-
quires it to assign the value O./.Tsyes. The EC constraint
will then require that all other agents Aj, whose operations
are required for T~ also execute those operations and as-
sign Aj = OJqT~yes. We are in solution, so LC2 cannot
be present for Aj. Thus, O~ succeeds. Since all opera-
tions required for T~ succeed, T~ is performed. By defini-
tion, T8 E O~,,r~,~t. But since we already know that T~ and
T~ have an operation in common, the Strongly Conflict Free
condition requires that T~ = T~. Therefore, % is indeed
performed. []

Given our formalization of dynamic environments, when
tasks change, this implies changes only in local constraints
of agents, and hence the theorems are able to address dy-
namic changes in tasks. Class 4 tasks require dynamism in
external constraints as well, and this is not handled and an
issue for future work.

Experiments in a Real-World Domain

We have successfully applied the DDCSP approach to the
distributed sensor network problem, using the mapping in-
troduced in Section. Indeed, in recent evaluation trials con-
ductedin government labs in August and September 2000,
this DDCSP implementation was successfully tested on four
actual hardware sensor nodes (see Figure 1.a), where agents
collaboratively tracked a moving target. This target track-
ing requires addressing noise, communication failures, and
other real-world problems; although this was done outside
the DDCSP framework and hence not reported here.

The unavailability of the hardware in our lab precludes ex-
tensive hardware tests; but instead, a detailed simulator that
very faithfully mirrors the hardware has been made available
to us. We have done extensive tests using this simulator to
further validate the DDCSP formalization: indeed a single
implementation runs on both the hardware and the simula-
tor. One key evaluation criteria for this implementation is
how accurately it is able to track targets, e.g., if agents do
not switch on overlapping sectors at the right time, the tar-

Num nodes 4 6 8
one target 57,6 (9.50) 190,23 (8.26) 247,35 (7.05)
two targets 91,13 (7.00) 244,29 (8.41)

Table 1: Results from Sensor Network Domain.

get tracking has poor accuracy. Here, the accuracy of a track
is measured in terms of the RMS (root mean square) error
the distance between the real position of a target and the tar-
get’s position as estimated by a team of sensor agents. Our
results here -- assuming a square sensor node configuration
of Figure 1.b -- are as follows. Domain experts expect an
RMS of approx 3 units, and thus they believe these results
are satisfactory. Our RMS for Class 1 problems is 0.9 units,
and for Class 3 problems, the RMS is 3.5 units.

Table 1 presents further results from the implementation.
Experiments were conducted for up to 8 nodes solving Class
3 problems. Each cell in the table presents the number of
messages exchanged, the number of sector changes, and in
parenthesis, the number of messages exchanged per sector
change. For instance, in configuration involving one dy-
namic target and 6 nodes, agents exchanged 190 messages,
for 23 sector changes, i.e., 8.23 message per sector change.
More nodes involve more sector changes, since a dynamic
target passes through regions covered by different nodes,
and the nodes must search for this target to pin down its
location.

The key results here are that: (i) The dynamic DCSP al-
gorithm presented in Section is able to function correctly;
(ii) increasing number of nodes does not result in increas-
ing numbers of messages per sector change, providing some
evidence for scalability of our mapping.

Summary and Related Work

In this paper, we proposed a formalization of distributed re-
source allocation that is expressive enough to represent both
dynamic and distributed aspects of the problem. We de-
fine four categories of difficulties of the problem and ad-
dress these formalized problems by defining the notion of
Dynamic Distributed Constraint Satisfaction Problem (DD-
CSP). The central contribution of the paper is a generalized
mapping from distributed resource allocation to DDCSP.
Through both theoretical analysis and experimental verifi-
cations, we have shown that this approach to dynamic and
distributed resource allocation is powerful and unique, and
can be applied to real-problems such as the Distributed Sen-
sor Network Domain.

In terms of related work, there is significant research in
the area of distributed resource allocation; for instance, Liu
and Sycara’s work(Liu & Sycara 1996) extends dispatch
scheduling to improve resource allocation. Chia et al’s work
on distributed vehicle monitoring and general scheduling
(e.g. airport ground service scheduling) is well known but
space limits preclude us from a detailed discussion (Chia,
Neiman, & Lesser 1998). However, a formalization of the
general problem in distributed settings is yet to be forthcom-
ing. Our work takes a step in this direction and provides a
novel and general DDCSP mapping, with proven guarantees
of performance. Some researchers have focused on formal-

94

izing resource allocation as a centralized CSP, where the is-
sue of ambiguity does not arise(Frei & Faltings 1999). The
fact that resource allocation is distributed and thus ambigu-
ity must be dealt with, is a main component of our work.
Furthermore, we provide a mapping of the resource alloca-
tion problem to DDCSP and prove its correctness, an issue
not addressed in previous work. Dynamic Constraint Satis-
faction Problem has been studied in the centralized case by
(Mittal & Falkenhainer 1990). However, there is no distribu-
tion or ambiguity during the problem solving process. The
work presented here differs in that we focus on distributed
resource allocation, its formalization and its mapping to DD-
CSP. Indeed, in the future, our formalization may enable re-
searchers to understand the difficulty of their resource allo-
cation problem, choose a suitable mapping using DDCSP,
with automatic guarantees for correctness of the solution.

Acknowledgements

This research is sponsored in part by DARPA/ITO under
contract number F30602-99-2-0507, and in part by AFOSR
under grant number F49620-01-1-0020.

References
Chia, M.; Neiman, D.; and Lesser, V. 1998. Poaching and dis-
traction in asynchronous agent activities. In ICMAS.
Decker, K., and Li, J. 1998. Coordinated hospital patient schedul-
ing. In ICMAS.
Frei, C., and Faltings, B. 1999. Resource allocation in networks
using abstraction and constraint satisfaction techniques. In Proc
of Cot~’traint Programming.
Kitano, H. 2000. Rohocup rescue: A grand challenge for multi-
agent systems. In ICMAS.
Liu, J., and Sycara, K. 1996. Multiagent coordination in tightly
coupled task scheduling. In ICMAS.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint satis-
faction problems. In AAAI.
Sanders. 2001. Ecm challenge problem,
http://www.sanders.com/ants/ecm.htm.
Yokoo, M., and Hirayama, K. 1998. Distributed constraint satis-
faction algorithm for complex local problems. In ICMAS.

95

