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ABSTRACT: The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin)
features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures.
This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To
investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential
energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans
the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths
along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the
missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and
XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant
reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization
mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

■ INTRODUCTION

The penta-2,4-dieniminium cation (PSB3) is a conjugated and
protonated imine which has been used extensively as a low-cost
computational model of the retinal protonated Schiff base
chromophore (rPSB) of visual pigments1−7 (see Scheme 1).
Indeed, PSB3 reproduces several features of 4-cis-nona-2,4,6,8-
tetraeniminium cation (PSB5),8,9 a model system that
incorporates the five conjugating double bonds of native
rPSB (since the sixth double bond residing on the β-ionone
ring has a reduced conjugation10).
As illustrated in Scheme 1, at the complete-active-space-self-

consistent-field (CASSCF) level of theory, the first singlet
excited state (S1) surface of cis-PSB3 is characterized by a
barrierless relaxation path connecting the Franck−Condon
(FC) region to a peaked conical intersection (CI)1,11 with the
ground state (S0) energy surface. The CI structure is highly
twisted about the central C2C3 double bond and mediates
the photochemical isomerization of cis-PSB3 to trans-PSB3.11

The lowest energy CI12 displays a geometry with a ca. 90°
twisted central bond and a decreased bond length alternation
(BLA) with respect to the S0 equilibrium structures (energy
minima) cis-PSB3 and trans-PSB3.3,13 The same scheme shows
that, after decay in the CI region, the system must relax along
the S0 potential energy surface. In spite of the fact that an exact
knowledge of the properties of this surface is mandatory for the
understanding of the relaxation process, little work has been
devoted to its study. The main target of the present
contribution is to address this issue.

The CASSCF S0 potential energy surface of PSB3 is
characterized, similar to PSB5,8,9 by two transition states (see
TSCT and TSDIR in Scheme 1) featuring a ca. 90° twisted central
bond but opposite BLA patterns and both connecting cis-PSB3
to trans-PSB3. Therefore, both TSCT and TSDIR mediate the
thermal isomerization of cis-PSB3 to trans-PSB3. Comparison
of the optimized CI, cis-PSB3, trans-PSB3, TSCT, and TSDIR
structures and relative CASSCF stabilities (see Scheme 2)
supports the landscape depicted in Figure 1A. This represents a
low-lying two-dimensional cross-section of the PSB3 S0
CASSCF/6-31G* potential energy surface spanning a reaction
coordinate (RC) dominated by the twisting deformation about
the C2C3 double bond and a BLA coordinate dominated by
an inversion between double and single bonds. As we will
explain below, in the CI region, the coordinate space along RC
and BLA is roughly parallel to the branching plane14 associated
with the CI.
Charge distribution analysis demonstrates that PSB3 (as well

as PSB5) features a variable electronic structure along the S0
potential energy surface.8 Indeed, as shown in Scheme 2 and
Figure 1A, one of the transition states (TSDIR) displays a
diradical character consistent with an S0 isomerization
mechanism driven by the homolytic breaking of the central
C2C3 double-bond. Therefore, TSDIR has two unpaired
electrons located on the π systems of the nearly orthogonal allyl
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(C5H2−C4H−C3H−) and protonated imine heteroallyl
(−C2H−C1H−NH2) moieties. In contrast, the other transition
state (TSCT) displays a charge-transfer (closed-shell) character
with an augmented electron density (and therefore a reduced
positive charge) in the NC1 region with respect to that of
the cis and trans equilibrium geometries. The contrasting charge
distributions of TSDIR and TSCT indicate the existence of two
low-lying regions on the S0 potential energy surface of
protonated Schiff bases where qualitatively different π-electron
densities are observed. One region encompasses most of the S0
potential energy surface (including TSDIR and the cis-PSB3 and
trans-PSB3 equilibrium structures) and is characterized by a
wave function with a predominantly correlating covalent/
diradical configuration (ψDIR), while the other region is
dominated by a charge-transfer (singly excited) configuration
(ψCT). Note that since we generally describe regions in the
proximity of a CI, we chose to use the “DIR” label to describe
the covalent wave function although the corresponding

electronic structure varies from closed shell at the reactant
and product to diradical for twisted geometries due to
homolytic cleavage of the central π bond.
Recently we reported the results of semiclassical trajectory

computations for a CASSCF/6-31G*/AMBER model of
bovine rhodopsin (Rh), a dim-light rod visual pigment.15

Such trajectories provided a simulation of the 11-cis to all-trans
photochemical isomerization of rPSB in Rh. The analysis of the
charge distribution along different trajectories indicated that
upon S1 to S0 decay in the region of a CI (where the reactive
C11C12 double-bond is fully twisted), the rPSB chromo-
phore may evolve along a charge-transfer region of the S0
potential energy surface. A direct chemical consequence of such
an event is that the double-bond reconstitution is delayed as
ψCT imposes a single bond character along C11C12. This has
been demonstrated for PSB3 by a quantitative valence-bond
analysis of the CASSCF wave function11 showing that in ψDIR

singlet spin-paired π electrons are ready to recouple along the
reactive bond while in ψCT the π electrons are spin-paired along
adjacent bonds. In other words, even if the chromophore starts
twisting along the reaction (isomerization) coordinate, it will
have to find its way to a region dominated by the ψDIR

configuration before the π-bond reconstitution can begin. As
detailed in ref 15, such a delay has an impact on the fate of the
trajectory that may result in either a reactive (i.e., leading to the
bathorhodopsin photoproduct) or nonreactive (i.e., leading
back to the Rh reactant) event and, in principle, on the reaction
quantum yield.
While the regions of the S0 potential energy surface

describing the transition between the charge-transfer and
covalent states of PSB3 and Rh are presently unknown, the
difference in the π-electron density associated with ψDIR and
ψCT suggests that dynamic electron correlation would play a
key role in determining their relative extension and
stability.16,17 Therefore, dynamic electron correlation may
signif icantly alter the shape of the reference CASSCF landscape

Scheme 1. (Top) The Structures of the cis-Penta-2,4-
dieniminium Cation (PSB3), the 4-cis-Nona-2,4,6,8-
dieniminium Cation (PSB5), and the 11-cis-Retinal
Protonated Schiff Base (rPSB) Which Is Connected to the
Lys296 Residue in Bovine Rhodopsin and (Bottom)
Schematic, One-Dimensional Representation of the
Potential Energy Surfaces of PSB3

Scheme 2. Main CASSCF/6-31G* Geometrical Parameters
(Bond Lengths in Ångstroms and C1−C2−C3−C4
Dihedrals in Degrees) and Relative Energies (Value in
Parentheses in kcal/mol) for the S0 Stationary Points and
Conical Intersection of PSB3a

aThe resonance formula also provides a qualitative representation of
the singlet electron pairing and charge distribution. It is apparent that
in TSCT there are no singlet paired electrons along C2−C3. Thus, the
C2C3 double bond will not be readily reconstituted upon
planarization. This is not happening in TSDIR where one has two
singlet spin paired radical centers ready to couple. The resonance
formula used for the CI represents a mixture of the intersection TSCT
and TSDIR electronic configurations.
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of Figure 1A with potentially important chemical consequences. For
instance, in a situation in which an ensemble of semiclassical
trajectories is computed to simulate the population dynamics of
Rh, an extended and more stable charge-transfer region may
increase the percentage of trajectories traveling along that
region and the average time spent in it after S1 to S0 decay. This
is expected to dramatically change the S0 evolution of the
initially excited population toward the product valley.
In a recent study, Mori et al.7 investigated the effect of

dynamic electron correlation on the geometry of the minimum
energy CI in PSB3. Moreover, Valsson and Filippi6 studied the
effect of dynamic electron correlation on the S1 isomerization
of PSB3, with special attention to the FC region and the
minimum energy path connecting the FC to the CI. In the
present study, we build on these two studies by investigating
the effect of dynamic electron correlation on the shape and
stability of the S0 potential energy surface surrounding the CI.
Accordingly, we characterize the CASSCF/6-31G* surface of
the PSB3 along three potential energy paths (see Figure 1B).
The first corresponds to a coordinate obtained via a linear
interpolation (and extrapolation) of the optimized TSCT and
TSDIR structures (BLA). This interpolation intercepts a single
CI point that is located between the two transition structures
(the structure of this CI intercepted by the BLA path is shown

in Scheme 2). The second (MEPDIR) corresponds to the
minimum energy path connecting TSDIR to the cis reactant and
the trans product where the wave function remains
predominantly covalent (ψDIR). The third (MEPCT) corre-
sponds, again, to a minimum energy path describing the
isomerization coordinate passing through TSCT and connecting
reactant and product. However, this path intercepts regions
dominated by different electronic configurations (ψCT or ψDIR).
The results reported below show that incorporation of

dynamic electron correlation on top of the CASSCF wave
function using either variational (MRCISD) or perturbative
(MRPT2) theories consistently leads to a stabilization of the
region dominated by the charge-transfer configuration (ψCT)
with respect to the rest of the surface. Accordingly, the TSCT
structure becomes the lowest energy saddle point on the PSB3
S0 potential energy surface. Consistently with the results of
Mori et al.,7 the same effect leads to a shift in the position and
shape of the CI along the BLA coordinate and toward TSDIR.

■ METHODS

The dynamic electron correlation is introduced on top of the
reference CASSCF wave function in a variational scheme using
the MRCISD and MRCISD+Q methods and also using
different implementations of multireference second order
perturbation theory (MRPT2) such as single state CASPT218

(referred to hereafter as simply CASPT2), multistate-CASPT2
(MS-CASPT2),19 XMCQDPT2,20 and QD-NEVPT2.21−23 We
now revise the methods used for generating structures along
the paths of Figure 1 and present details about the
multireference methods used.

Reference Potential Energy Surface. CASSCF structures
and energies were computed using the MOLCAS 7.6 quantum
chemistry software package.24 TSCT and TSDIR were both
optimized at the equal-weight two-root state averaged (SA)-
CASSCF/6-31G* level. The basis set employs Cartesian d
polarization functions. The active space comprises the six π-
orbitals of PSB3 occupied with six electrons (6-in-6). The
CASSCF wave functions were then used as zero-order
approximations for the higher level methods described below.
From the two transition state structures, the BLA path was
produced by using a linear interpolation/extrapolation of their
coordinates to give a set of 14 structures (including the two
transition states) spanning the corresponding BLA coordinate.
Throughout this work, we define the BLA coordinate as the
difference between the average bond length (in Ångstroms) of
formal double bonds (NC1, C2C3, and C4C5) and
formal single bonds (C1−C2 and C3−C4). The other two
paths (MEPCT and MEPDIR) were produced by running two
IRC calculations for each path at the CASSCF level of theory
with a step size of 0.01 Å·(amu)1/2 and starting from the
corresponding transition state. The resulting MEPCT and
MEPDIR paths represent thermal isomerizations from cis-PSB3
to trans-PSB3. Since, in this study, we are mainly concerned
with the region surrounding the CI, we do not consider the
whole path, which comprises over 100 geometries, but rather
only the eight structures closest to the transition states from
each side (thus each path includes 17 geometries including the
transition state). The CASSCF/6-31G* energy profiles along
the BLA, MEPCT, and MEPDIR paths are shown in Figure 1B.
Unless otherwise specified, the CASSCF reference wave
function and basis set are the same as the ones used for the
geometry optimization.

Figure 1. Low-lying ground state potential energy surface of PSB3.
(A) Schematic two-dimensional cross-section of the S0 potential
energy surface of PSB3. The two geometrical coordinates are
dominated by bond length alternation (BLA) and the C2−C3 twisting
reaction coordinate (RC), respectively. The surface region dominated
by a charge-transfer wave function (ψCT) is displayed in brown, while
that dominated by a covalent/diradical wave function (ψDIR) is
displayed in green. The electronic structures of the two transition
states are described with a bubble diagram representing the total
Mulliken charge along the backbone of PSB3 (charges summed onto
heavy atoms). The values of these charges are displayed. Finally, the
three paths used in the present study (BLA coordinate, MEPCT, and
MEPDIR) are schematically represented as dashed lines on the surface.
(B) S0 and S1 two-root SA-CASSCF/6-31G* energy profiles along the
three paths represented in part A. Brown regions correspond to
regions dominated by a charge transfer wave function, while green
regions are predominantly covalent (although the contribution of
charge transfer character in these regions also varies).
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In order to determine the relaxed structure and branching
plane vectors characterizing the CI, the Gaussian ’03 software
package was used.25 The CI structure shown in scheme 2
provided a guess initial structure for the CI optimization. A
conical intersection optimization was performed with the two-
root SA-CASSCF method and the reduced maximum step size
of 0.05 Bohr, which converged to a solution in five iterations
and provided the branching plane vectors corresponding to the
CI geometry.
Multireference Calculations. Single point CASPT2 and

MS-CASPT2 energies were computed using the MOLCAS 7.6
quantum chemistry software package.24 For these calculations,
an imaginary shift of 0.2 was used to exclude intruder states,
consistent with previous studies. The effect of the ionization
potential-electronic affinity (IPEA) shift on CASPT2 energies is
considered. The IPEA parameter reduces a systematic error
through a modification of the zeroth order Hamiltonian, and its
0.25 value has been obtained by fitting a specific set of
experimental data26 (see also the discussion in ref 27 for
systems that require different IPEA values). CASPT2 energies
reported with the IPEA shift are labeled with “IPEA=0.25;”
otherwise the reported CASPT2 values and geometries are
obtained with IPEA=0. The reported QD-NEVPT2 energies
are based on the partially contracted variant of NEVPT222

using state-specific sets of canonical inactive and virtual orbitals
as opposed to the same set of state average orbitals.
XMCQDPT2 energies were computed using Firefly version
7.1.G, build number 5620.28 For the XMCQDPT2 calculations,
the intruder state avoidance (ISA) shift was set to 0.02 for
avoiding the intruder states. MRCISD energies were computed
using both the internally contracted (IC)29 and uncontracted
variants. IC-MRCISD energies were computed with the
Molpro30 package while uncontracted MRCISD energies
were computed with the Columbus quantum chemistry
software package.31−34 The integrals for Columbus were
obtained with the Dalton quantum chemistry software.35 The
full CASSCF active space (6-in-6) was included in the reference
space for MRCISD and IC-MRCISD calculations. Generalized
interacting space restriction was used for uncontracted
MRCISD. The original Davidson correction (Q) was used for
MRCISD+Q calculations (for the effect of using alternative
corrections, see the Supporting Information, SI). The 1s core
orbitals in carbon and nitrogen atoms were kept frozen for all
multireference calculations, and in all cases the 6-31G* basis set
with Cartesian d polarization functions was consistently used.
However, MRCISD+Q energy profiles along the BLA
coordinate were also computed using the 3-21G, 6-31++G**,
and 6-311G* basis sets to test the effect of the basis set quality
on the relative energies of the states with ψCT and ψDIR

character (see the SI). The effect of expanding the basis set
was found to slightly stabilize charge transfer electronic
characters.
In the present work, MRCISD and MRCISD+Q energy

profiles are reported for the uncontracted variant. The IC-
MRCISD and uncontracted MRCISD energy profiles are very
similar (see the SI). However, MRCISD charge transfer profiles
are computed for the IC-MRCISD variant with Molpro
(population analysis in Columbus is incompatible with our
use of a basis set with Cartesian d functions). All charges
reported in this study are computed with the Mulliken
population analysis. The charge-transfer and covalent/diradical
characters (i.e., the weights of the ψDIR and ψCT configurations,
respectively) are measured indirectly by computing the total

Mulliken charge of the allyl moiety (C5H2−C4H−C3H−)
which is separated from the Schiff base moiety (−C2H−C1H−
NH2) by the isomerizing C2C3 bond. The XMCQDPT2
charges (computed in Firefly) and QD-NEVPT2 and MS-
CASPT2 charges (computed externally) were derived from the
wave functions obtained by the diagonalization of the effective
Hamiltonian evaluated at the 0+1+2 order. These wave
functions are linear combinations of the two SA-CASSCF
wave functions, and thus they belong to the CAS space. The
charges therefore include the most important effects caused by
state mixing while omitting other contributions from the first-
order interacting space.
In this study, we have invariably employed a two-root state

averaging for the reference CASSCF wave functions. The
consequences of this choice have been assessed (see the SI for a
full analysis) by performing a series of state average
computations with additional roots (the roots are always
taken with equal weights) for the transition state TSCT. We
found that the S0−S1 energy gap is, in general, sensitive to the
number of roots used in CASSCF and in most MRPT2
methods, and even in MRCISD. The changes are rationalized
by considering that when a covalent root is added to the state
average set, the weight of the states with the corresponding
charge distribution is increased in the averaged molecular
orbital description. This behavior explains the difference
between our two-root results and the three-root results by
Mori et al.7 showing a displaced CI in PSB3 at the CASSCF
level of theory. However, the MRCISD+Q level reduces the
dependence, and the energies become less sensitive to the
number of roots used in the generation of the reference wave
function. It is shown that minimal state-averaging may be the
best compromise in order to get more accurate CASSCF and
MRPT2 energies. Better MRPT2 accuracies may be achieved
by increasing the dimension (i.e., adding more CASCI states)
in the construction of the effective Hamiltonian (e.g., in
XMCQDPT2) while keeping the underlying state-averaging
scheme for CASSCF the same, as shown in the case of
butadiene in ref 20.
In the Results and Discussion, we also present the effect of

optimizing the BLA, MEPCT, and MEPDIR paths with CASPT2
and XMCQDPT2, which are representative MRPT2 methods.
Due to the unavailability of analytical gradients for these
methods, numerical gradients were used (these methods are
available in Molcas 7.6 for CASPT2 and in the developer’s
version of Firefly for XMCQDPT2). The cis-PSB3, trans-PSB3,
TSCT, and TSDIR structures were reoptimized with the MRPT2
methods in a manner consistent with the CASSCF
optimizations (also employing the same 6-31G* basis set and
number of roots). The BLA path was then generated by
interpolation/extrapolation of the MRPT2 optimized TSCT and
TSDIR structures, and the MEPCT and MEPDIR paths were
generated using IRC calculations employing numerical
gradients and started from the MRPT2 optimized transition
states. CASPT2 IRC calculations used identical parameters to
those performed with CASSCF since the same software
package was employed for both calculations. XMCQDPT2
IRC calculations employed the Gonzalez−Schlegel second
order method36 and a stride of 0.0053 Å·(amu)1/2.

■ RESULTS AND DISCUSSION

In the first three subsections, we systematically describe the
changes in the shape of the PSB3 potential energy surface along
the BLA, MEPCT, and MEPDIR coordinates following MRCISD
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and MRPT2 computations using the common 6-31G* basis.
The effect of the geometrical relaxation of the surface stationary
points at the MRPT2 level is investigated in the fourth
subsection. A discussion of the quality of CASPT2//CASSCF/
6-31G* calculations widely used in photochemical and
photobiological applications is given in the last subsection.
BLA Path and Branching Plane. The energy profiles

along the BLA coordinate computed with CASSCF, MRCISD,
MRCISD+Q, and various MRPT2 methods are shown in
Figure 2A and B. We assume here that MRCISD+Q provides
the quantitatively correct description of the different electronic

structures of PSB3. It is apparent that the selected reference
CASSCF method not only overestimates energy barriers of the
two transition states with respect to MRCISD+Q but displays a
reverse stability order of TSCT and TSDIR. A discussion on the
effect of dynamic electron correlation on the topology of the
ground state is presented at the end of this section.
Consistent with the MRCISD+Q result, all MRPT2 methods

seem to yield the same change characterized by the TSCT
stabilization and the CI shifting toward TSDIR. On the other
hand, the magnitude of the charge-transfer stabilization
depends on the method. CASPT2 and MS-CASPT2 yield the
same energy profile for the charge-transfer state as MRCISD+Q
but, as expected,26 an overstabilized covalent curve due to the
lack of IPEA shift. In Figure 2B, we show that the incorporation
of the IPEA shift yields CASPT2(IPEA=0.25) and MS-
CASPT2(IPEA=0.25) profiles substantially identical to
MRCISD+Q. Our findings are consistent with a study on
diatomic molecules where it was also found that CASPT2 with
a modified zeroth-order Hamiltonian performs better than
unmodified CASPT2 when compared to FCI.37 XMCQDPT2
(Figure 2A) yields curves similar to MRCISD but both shifted
to lower energies, and with a slightly overstabilized covalent
curve with respect to MRCISD+Q. In Figure 2B, we report
XMCQDPT2 results obtained using slightly different defi-
nitions of the model Fock-like operator used to define the zero-
order Hamiltonian within the XMCQDPT2 formalism. Those
modifications of the “classical” XMCQDPT2, termed
“XMCQDPT2/diagonal fit” and “XMCQDPT2/F(Γns)”, pro-
vide a more balanced description of states of very different
nature and therefore produce energy profiles which are in
better agreement with MRCISD+Q. More details about these
methods are provided in the SI. Finally, the QD-NEVPT2
method leads to an overstabilization of the ψCT configuration
with respect to MRCISD+Q. In contrast, the covalent curve is
substantially on top of MRCISD+Q. For this reason, when
using the reference CASSCF wave function defined above, QD-
NEVPT2 yields a considerably shifted position of the CI. The
QD-NEVPT2 CI is shown in an extrapolation of the path in
Figure 2A. This overstabilization of the charge transfer
configuration is due to the limit in the zero-order CASSCF
wave function and may be resolved by using a larger active
space.38 In fact, we find that the expansion of the active space to
6-in-8 allows the QD-NEVPT2 energy profile to virtually
overlap with that of MRCISD+Q(6-in-6) (Figure 2B). Upon a
similar active space expansion, CASPT2, CASPT2(IPEA=0.25),
and XMCQDPT2 show a modest variation where their
agreement with MRCISD+Q(6-in-6) decreases, as discussed
in the SI.
In Figure 2A, we find an artifact along the MRCISD+Q

profile (near 0.025 Å of the BLA coordinate) in correspond-
ence with the MRCISD CI. This artifact is significantly reduced
when using a Davidson correction with a relaxed or rotated
reference, as discussed in ref 39 (also see the SI). A second,
more pronounced artifact occurs along the MS-CASPT2
profile. This artifact is located in the vicinity of 0.00 Å along
the BLA coordinate and therefore in correspondence with the
CASSCF CI. Such behavior has been shown to arise in both
CASPT2 and MS-CASPT2 if the corresponding CASSCF S0
and S1 wave functions (which in this case correspond to the
ψDIR and ψCT configurations) are highly mixed, e.g., near a
CI.20,40 Solutions to this problem have already been proposed,
and XMCQDPT2 does not suffer from this problem while QD-
NEVPT2 reduces it. The XMCQDPT2 extension has recently

Figure 2. Energy profiles along the BLA coordinate compared with
two-root SA-CASSCF (red) and MRCISD+Q (black) which are
present in both parts A and B. The energy values are relative to the
reactant (cis-PSB3). The position of the CI for each method is
indicated with a filled circle. The curves are labeled at the left margin
to distinguish between diabatic curves with predominantly charge
transfer (ψCT) and covalent-diradical (ψDIR) character for each
method. (A) The S0 and S1 energies for MRCISD (gray), CASPT2
(dark blue), MS-CASPT2 (magenta), QD-NEVPT2 (orange), and
XMCQDPT2 (green). The QD-NEVPT2 CI does not lie within the
selected BLA coordinate values, and so its position is estimated by
extrapolating the QD-NEVPT2 curve using a polynomial fit (dashed
line). (B) The S0 and S1 energies for CASPT2(IPEA=0.25) (blue),
MS-CASPT2(IPEA=0.25) (violet), QD-NEVPT2 with 6-in-8 active
space (brown), XMCQDPT2 with a diagonal fit (pink), and
XMCQDPT2/F(Γns) (dark green). (C and D) Schematic valence
bond-like state mixing diagrams for the S0 and S1 energy profiles along
the BLA coordinate at the CASSCF and MRCISD+Q levels of theory,
respectively. The diabatic states are represented with dashed lines.
Mixing of the diabatic states produces the adiabatic states represented
with solid lines. Brown curves are dominated by a charge transfer wave
function, while green curves are dominated by a covalent one.
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also been used for the development of the XMS-CASPT2
method.41 However, here we are interested in the qualitative
changes on wide regions of the potential energy surfaces, while
these artifacts are localized. See the SI for a more detailed
discussion of those artifacts.
It is of interest to explore the changes imposed by the

dynamic electron correlation on the location, topology, and
electronic structure of the CI originally located at the CASSCF
level. The changes in energy profile along the BLA path can be
interpreted in terms of a valence-bond diagram reporting the
energies of the ψCT and ψDIR configurations/diabatic states
along the path. The transition states are located, roughly, at the
minima of these two diabatic states. At the CASSCF level, the
energies of the ψCT at TSCT and ψDIR at TSDIR (see dashed
curves in Figure 2C) are relatively close (see double arrow in
Figure 2C). As a consequence, the CI point has a “peaked”
shape, and both transition states reside on S0. However, at the
MRCISD+Q level, the ψCT state is largely stabilized with
respect to ψDIR (see double arrow in Figure 2D). Consequently,
the CI moves to larger BLA values and changes shape,
becoming a sloped or intermediate CI.14 In this situation, TSDIR
disappears from S0 and becomes an S1 minimum along the BLA
coordinate.
At the CI, the molecular modes X1 and X2 correspond to the

gradient difference and derivative coupling and define the so-
called branching plane.14 As shown in Figure 3A, it is apparent
that the X1 and X2 modes are primarily related to the RC and
BLA coordinates, respectively.42 With this information, we
compute a set of branching plane structures located along a
small circle centered at the CI. In Figure 3B, we show the
CASSCF/6-31G* S0 energy profile along the circle and the

corresponding charge distribution (to monitor the wave
function character). The plot shows two energy maxima
(MAXDIR and MAXCT) at ca. 80° and 270°. These correspond
to ridges developing toward TSDIR and TSCT. MAXDIR and
MAXCT are roughly oriented in the direction of X2 and feature
a covalent and charge-transfer character, respectively, consistent
with the results of Figure 2. The two minima along the profile
of Figure 3B (ca. 10° and 180°) are associated with the cis-
PSB3 and trans-PSB3 energy valleys (i.e., equilibrium
structures) and are located along X1. In Figure 3C and D, we
show that the changes imposed by the dynamic electron
correlation on the relative stability of S0 and S1 energy are
consistent with the results of Figure 2. For instance, at the
XMCQDPT2 level it is clear that the CI point has shifted so
much that it is not inside the loop anymore and the wave
function character is exclusively dominated by ψCT. Clearly, the
CASPT2 represents an intermediate case where the CI point is
now located on the loop itself at ca. 110°.

MEPCT Path. The energy profiles along MEPCT are shown in
Figure 4A. Of course, the order of the energies at TSCT reflects
the order of the energies seen in Figure 2. Consistently, the
barrier at the TSCT is lowest at the QD-NEVPT2 level, followed
by XMCQDPT2, CASPT2, CASPT2(IPEA=0.25), and MS-
CASPT2(IPEA=0.25), all giving barrier heights similar to the
one computed at the MRCISD+Q level. In all cases, the
dynamic electron correlation decreases the activation energy
along MEPCT. The MEP shows substantially equivalent energy
changes when moving toward cis-PSB3 and trans-PSB3. Thus,
starting at TSCT, one sees that the CASSCF/6-31G* electronic
structure changes from a pure charge-transfer to one where the
covalent character eventually becomes predominant. This
evolution can be monitored by plotting the charge-distribution
along the MEPCT profile (Figure 4B). TSCT has nearly 90% of
its positive charge on the allyl moiety. However, as the
molecule moves away from TSCT, the system quickly loses its
charge-transfer character.
The charge transfer profiles for multireference methods are

also plotted in Figure 4B. We find that, in general, methods that
stabilize the ψCT wave function with respect to ψDIR have a
more extended charge transfer region along MEPCT. CASPT2
has a very limited effect on the charge transfer profile because
(as shown in Figure 2A) it stabilizes the ψCT and ψDIR energy
profiles to an almost equal extent. The fact that the CASPT2
charge transfer profile is slightly reduced compared to CASSCF
may be due to the missing contribution from the relaxation of
the orbital and CI-coefficients in CASPT2, which is expected to
slightly increase ionic character.
At the MS-CASPT2 level, on the other hand, there is a large

extension of the MS-CASPT2 charge transfer region as seen in
Figure 4B. This is due to an overestimation of off-diagonal
matrix elements of the effective Hamiltonian and thus to
overestimation of zero-order state mixing.20 This is also
reflected in the MS-CASPT2 energy profile (Figure 4A)
where there is a large stabilization of S0 (and destabilization of
S1 as shown in the SI) as the molecule moves away from TSCT,
resulting in an irregular energy profile.
The rest of the methods (XMCQDPT2, QD-NEVPT2, and

MRCISD) all lead to an extension of the charge transfer region
compared to CASSCF. XMCQDPT2 and MRCISD have
similar charge transfer profiles because they both have a similar
relative stability of the ψCT and ψDIR wave functions (as
indicated by the fact that they display a similar position of the
CI along the BLA coordinate; see Figure 2A). QD-NEVPT2

Figure 3. The CASSCF/6-31G* branching plane of PSB3. (A) Modes
corresponding to the gradient difference vector (GDV) and derivative
coupling vector (DCV). GDV corresponds to the RC (isomerization/
pyramidalization) mode, while DCV represents a BLA mode. (B, C,
and D) The CASSCF, CASPT2, and XMCQDPT2 S0 and S1 energies
(solid lines) and charge transfer character (blue area) along a circle
(radius = 0.002 Å, 1 step every 10°) centered on the CI structure
intercepted along the BLA coordinate. The energies are relative to cis-
PSB3. The charge transfer character is described by the value of the
sum of the Mulliken charges on the allyl fragment (C5H2−C4H−
C3H−). Brown regions correspond to regions dominated by a charge
transfer wave function, while green regions are predominantly
covalent.
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has a more extended charge transfer region due to its
overstabilization of ψCT with respect to ψDIR. MRCISD+Q
would be expected to have a charge transfer profile in between
that of MRCISD and QD-NEVPT2 since it stabilizes ψCT with
respect to ψDIR more than MRCISD does but not to the same
extent as QD-NEVPT2.
Again, these results can be interpreted in terms of a valence-

bond state mixing diagram and focusing on the MEPCT path. In
Figure 4C, we show schematic energy profiles reporting the
change in energy of the ψCT and ψDIR configurations/diabatic
states along the path. The adiabatic S0 and S1 energy profiles
originate from the mixing of the two configurations that also
determine the variation in electronic structure (charge-transfer
vs covalent-diradical) in different regions of the energy profile.

At the CASSCF level, the two states are rather distant in energy
and effectively cross only in a limited region corresponding to
the vicinity of the TSCT structure. As a consequence, upon
relaxation toward cis-PSB3 and trans-PSB3, the S0 electronic
structure rapidly changes character and becomes dominated by
a covalent-diradical electron distribution. This explains why the
CASSCF charge-transfer region of the S0 energy potential
energy surface has a limited extension, as shown in Figure 4B
and schematically illustrated in Figure 4C. The inclusion of
dynamic electron correlation energy leads to the changes
shown in Figure 4D as it stabilizes the ψCT state with respect to
the ψDIR state. As a consequence, the ψCT energy profile is
shifted to lower energies, and ψCT and ψDIR intersect along a
larger region. Consequently, the energy of the TSCT is lowered
with respect to cis-PSB3 and trans-PSB3 (the MEPCT path
becomes the energetically dominating S0 path), and the charge-
transfer region dominates a larger and flatter region of the S0
potential energy surface around the TSCT point (see Figure
4D).

MEPDIR Path. The energy and charge transfer profiles along
MEPDIR are shown in Figure 5A and B, respectively. The effect
of the electron dynamic correlation on the CASSCF/6-31G*
energy profile is similar to the one found for MEPCT. The
barriers (with respect to cis-PSB3) are always decreased with
respect to the CASSCF level, but the magnitude of this change
is substantially smaller than that observed in MEPCT. In the
case of MS-CASPT2(IPEA=0.25), we see the same artifact as in
MEPCT, displaying an extremely rapid decrease in energy when
moving away from the transition state. The other methods all
give a much smoother profile. There is a strong agreement
between the XMCQDPT2, CASPT2, and QD-NEVPT2 in
their energy profile along MEPDIR.
The charge transfer profile along MEPDIR shows that

CASSCF has the widest diradical region, while the MRPT2
methods and MRCISD reduce the size of the diradical region.
In general, we find that methods that extend the charge transfer
profile along MEPCT (Figure 4B) tend to reduce the diradical
region along MEPDIR (Figure 5B) because ψDIR gets
destabilized relative to ψCT. Consistently, note that MS-
CASPT2, which has the widest ψCT region along MEPCT,
displays the narrowest diradical region along MEPDIR (and
interestingly, gains some ψCT character before returning to the
covalent region near the cis and trans equilibrium geometries).
Moreover, since the MEPDIR path intersects with the BLA path
at a BLA coordinate of around 0.025 Å, methods that result in a
CI with a higher BLA than 0.025 Å (i.e., a sloped or
intermediate CI) would still have an S0 state with charge
transfer rather than diradical character at the TSDIR geometry.
Effectively, this moves the corresponding TSDIR minimum
along the BLA coordinate from the S0 state to the S1 state.
These same methods would display an inverted charge transfer
profile along MEPDIR with respect to the other methods (see,
for example, the QD-NEVPT2 charge transfer profile in Figure
5B). This is expected to be the case for all the multireference
methods shown in Figure 2B.
Again, the charge transfer profiles along MEPDIR can be

explained when comparing the valence bond diagrams in Figure
5C and D. At the CASSCF level, the diabatic states do not
cross, and the diabatic and adiabatic states have similar profiles.
Stabilization of the ψCT diabatic state with MRCISD+Q causes
the ψCT state to become lower in energy than the ψDIR state
along part of the MEPDIR path (with the two states being nearly
degenerate at TSDIR).

Figure 4. Energy profiles along the MEPCT coordinate. (A) The S0
energies computed using two-root SA-CASSCF (red), MRCISD
(gray), MRCISD+Q (black), CASPT2 (dark blue), CASPT2-
(IPEA=0.25) (blue), MS-CASPT2(IPEA=0.25) (violet), QD-
NEVPT2 (orange), XMCQDPT2 (green), XMCQDPT2 with a
diagonal fit (pink), and XMCQDPT2/F(Γns) (dark green). The
energies are relative to the reactant (cis-PSB3, point −0.54). The inset
shows an expansion of the region from MEP coordinate −0.02 to 0.02.
(B) The charge transfer character along MEPCT for CASSCF,
MRCISD, XMCQDPT2, CASPT2, MS-CASPT2, and QD-NEVPT2.
(C and D) Schematic valence bond-like state mixing diagrams for the
S0 and S1 energy profiles along MEPCT at the CASSCF and MRCISD
+Q levels of theory, respectively. The diabatic states are represented
with dashed lines. Mixing of the diabatic states produces the adiabatic
states represented with solid lines. Brown regions correspond to
regions dominated by a charge transfer wave function, while green
regions are predominantly covalent.
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Effect of the Geometry Optimization. The analysis
above has consistently been based on structures located using
CASSCF/6-31G* analytical gradients. In this section, we will
investigate the effect of reoptimizing the geometries of the four
stationary points (cis-PSB3, trans-PSB3, TSCT, and TSDIR) at
the CASPT2/6-31G* and XMCQDPT2/6-31G* levels using a
two-root SA-CASSCF wave function as the zeroth-order wave
function and numerical gradients. The high computational cost
prevents a study at the MRCISD+Q level due to the size of our
reference space used. While the CASSCF and MRPT2
structures display very similar dihedral and bending angles,
there are some differences between bond lengths, consistent
with earlier studies.2,6 The structures optimized at the MRPT2
level of theory are shown in Scheme 3. While CASSCF tends to

give a larger BLA value,2,6 this change is limited with the
exception of the C1−N bond and (to a smaller extent) the
C5−C4 bond (compare Schemes 2 and 3). We plot the
CASSCF, CASPT2, and XMCQDPT2 energies (optimized at
the respective method) along the BLA coordinate in Figure 6A
(CASPT2 displays an artifact near the center of the curve due
to its proximity to the CASSCF CI20,40). We find that while the
position of TSCT along the BLA coordinate is not largely
affected, TSDIR displays the largest variation and moves to lower
BLA values with both CASPT2 and XMCQDPT2. However,
the position of the CI is relatively unaffected by the MRPT2
optimization. We find, consistently with the results of Figure
2A, that the CASPT2 CI is close to the CASSCF CI but has a
slightly higher BLA, while the XMCQDPT2 CI is over 0.01 Å
higher along the BLA coordinate. In spite of the geometrical
differences observed for TSDIR, there is a limited change in the
relative energies with respect to the cis-PSB3 geometry (see
Table 1, where we compare MRPT2 relative energies for
CASSCF and MRPT2 geometries). TSDIR is stabilized with
respect to TSCT after CASPT2 and XMCQDPT2 optimiza-
tions, but in both cases the effect is such that TSCT remains the
lowest in energy (with the XMCQDPT2 TSCT lower in energy
than the CASPT2 TSCT, consistently with the results in Figure
2A). In Figure 6B and C, we display the energy profiles along
MEPCT and MEPDIR coordinates optimized starting from the
TSCT and TSDIR structures at the corresponding MRPT2 levels
(i.e., starting from the MRPT2-optimized transition states, the
path points were generated at the respective MRPT2 level of
theory as well). The results are compared with the MRPT2//
CASSCF MEPCT and MEPDIR in the same figure. We find that
the minimum energy path geometries generated with the
MRPT2//MRPT2 methods are similar to the ones generated at
the MRPT2//CASSCF level. Overall, the results of Figure 6
and Table 1 indicate that the MRPT2//MRPT2 S0 potential
energy surface near the CI is very similar to the MRPT2//
CASSCF one, except that the valleys corresponding to the
MEPCT and MEPDIR paths must be geometrically closer to each
other since the distance between TSCT and TSDIR along the
BLA coordinate is closer at the MRPT2 levels with respect to
the CASSCF level.

Figure 5. Energy profiles along the MEPDIR coordinate. (A) The S0
energies computed using two-root SA-CASSCF (red), MRCISD
(gray), MRCISD+Q (black), CASPT2 (dark blue), CASPT2-
(IPEA=0.25) (blue), MS-CASPT2(IPEA=0.25) (violet), QD-
NEVPT2 (orange), XMCQDPT2 (green), XMCQDPT2 with a
diagonal fit (pink), and XMCQDPT2/F(Γns) (dark green). The
energies are shown relative to the reactant (cis-PSB3, point −0.52).
The inset shows an expansion of the region from MEP coordinate
−0.02 to 0.02. (B) The charge transfer character along MEPDIR for
CASSCF, MRCISD, XMCQDPT2, CASPT2, MS-CASPT2, and QD-
NEVPT2. (C and D) Schematic valence bond-like state mixing
diagrams for the S0 and S1 energy profiles along MEPDIR at the
CASSCF and MRCISD+Q levels of theory, respectively. The diabatic
states are represented with dashed lines. Mixing of the diabatic states
produces the adiabatic states represented with solid lines. Brown
regions correspond to regions dominated by a charge transfer wave
function while green regions are predominantly covalent.

Scheme 3. The Structures of cis-PSB3, trans-PSB3, TSCT, and
TSDIR All Optimized at the MRPT2 Level of Theory, As Well
As the Structure of the CI Intercepted by the BLA Scans in
Figure 6Aa

aBond lengths, as well as the central isomerization angle, are labeled
for both the CASPT2 and XMCQDPT2 levels of theory
(XMCQDPT2 in parentheses).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct3003139 | J. Chem. Theory Comput. 2012, 8, 4069−40804076



Remarks on the CASPT2//CASSCF/6-31G* Level. The
CASPT2//CASSCF/6-31G* protocol has been widely used for
evaluating vertical and 0−0 excitation energies as well as
ground and excited state reaction barriers. For instance, this
methodology has been used in quantum-mechanics/molecular-
mechanics computation to investigate the spectroscopy of
different proteins yielding absorption maxima with errors of a
few kcal/mol with respect to experimentally determined
values.10,43−47 Here, we use the PSB3 results to assess the
validity of this protocol by comparing CASPT2//CASSCF/6-
31G* relative energies with the corresponding quantities
computed at the CASPT2(IPEA=0.25)/ANO-VDZP and
CASPT2(IPEA=0.25)/ANO-VTZP levels using the CASPT2/
6-31G* geometry.
The results in Table 2 indicate that the success of the

CASPT2//CASSCF/6-31G* protocol in predicting vertical
excitation energies can be attributed to a cancellation of errors.
Larger basis sets would red-shift the computed excitation
energy. We also find that optimizing the ground state reactant
at the CASPT2 level rather than the CASSCF level before
evaluating the excitation energy also red-shifts the absorption,
consistent with a recent study.48 On the other hand, the more
accurate CASPT2(IPEA=0.25) level (i.e., the use of the IPEA
shift), in all cases, leads to blue-shifting. The data in Table 2
show that, for PSB3, the red-shifting and blue-shifting effects
counterbalance each other when using CASPT2(IPEA=0.25)
and large basis sets such as ANO-VTZP and more so when also
using the CASPT2 optimized geometry. This is consistent with
findings in a previous study on adenine,49 and with data
presented in ref 6. As a result, we find that the computed
CASPT2//CASSCF/6-31G* value is close to experimentally
determined absorption maxima available for a PSB3 derivative50

which, however, have been recorded in methanol and
dichloromethane.
The cancellation effects do not appear to operate when

evaluating the reaction barriers or the relative stability of TSCT
and TSDIR. In this case, it appears to be more accurate to use
the CASPT2(IPEA=0.25)//CASSCF/6-31G* level. In fact, this
level produces barriers and stabilities close to the ones
computed at the CASPT2(IPEA=0.25)/ANO-VTZP level
using the CASPT2/6-31G* optimized geometry. The failure
of the cancellation effect in this case can be understood by
considering the nature of the wave function characterizing S0
and S1 at cis-PSB3 and of the wave functions characterizing
TSDIR and TSCT. A simple analysis reveals that the S1 wave
function of cis-PSB3 and trans-PSB3, which is dominated by a
charge-transfer configuration, has a certain percentage of
diradical character with respect to the closed-shell character
of the ground state. Since the IPEA shift is known to increase
the energy of open-shell states,26 it is evident that the
CASPT2(IPEA=0.25) level blue-shifts the absorption (opposite
of the basis set effect that stabilizes charge-transfer states with
respect to the ground state). In contrast, when computing the
relative transition state stability, the situation is inverted. In fact,
in this case, TSDIR has an almost purely diradical character state,
while TSCT is closed-shell such that the IPEA shift and basis set
effect go in the same direction. Therefore, we find that the
IPEA shift increases the TSDIR barrier, while the improvement
of the basis set primarily stabilizes the TSCT barrier.

■ CONCLUSIONS AND PERSPECTIVES

Our computations demonstrate that the low-lying cross
sections of the S0 CASSCF potential energy surface of PSB3

Figure 6. (A) The CASSCF, CASPT2, and XMCQDPT2 energies
plotted along a BLA coordinate. The interpolated structures were
generated from TSCT and TSDIR optimized at the respective level of
theory. The energies are relative to cis-PSB3 optimized at the same
level of theory. The positions of the optimized transition states along
the BLA coordinate are marked with gray circles. CASPT2 displays an
artifact near the center of the curve due to its proximity to the
CASSCF CI. (See also text; B and C) The MRPT2 energies along the
MEPCT and MEPDIR paths computed using MRPT2 numerical
gradients (solid lines) and their energies along the same path
computed at the CASSCF level of theory (dashed lines).

Table 1. The Relative MRPT2 Energies of trans-PSB3, TSCT,
and TSDIR Computed at the MRPT2 and CASSCF
Optimized Geometriesa

energy CASPT2 CASPT2 XMCQDPT2 XMCQDPT2

geometry CASSCF CASPT2 CASSCF XMCQDPT2

trans-PSB3 (kcal/
mol)

−3.1 −3.1 −2.8 −2.8

TSCT (kcal/mol) 49.3 49.4 46.9 46.9

TSDIR (kcal/mol) 50.6 50.3 50.5 50.0
aThe single point energy calculations and optimizations were
performed with the 6-31G* basis set. The energies are relative to
cis-PSB3.
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investigated in this work are qualitatively different when
computed with methodologies accounting for dynamic electron
correlation. In general, both MRCISD+Q and all MRPT2
implementations point to a large stabilization of the region
dominated by the charge-transfer configuration (ψCT) with
respect to the region dominated by a covalent-diradical
structure (ψDIR). The stabilization of the charge-transfer region
is also reflected by its extension along the RC coordinate. A
similar effect is seen when one augments the basis set with
polarization and diffuse functions, which allows for a better
description of the charge distribution of the charge transfer
configuration.
The rather dramatic change in shape of the CASSCF energy

surface (Figure 7A) with respect to electron correlated surfaces

(Figure 7B) suggests that the relaxation dynamics occurring
immediately after the decay at the CI could be qualitatively
different in these two situations. The peaked CI of the CASSCF
energy surface would probably favor a “ballistic” decay where
the majority of the population would hop during the first
approach to the CI region. The same surface suggests that after
decay the population will mainly be collected in a covalent/
diradical region favoring reconstitution of the central double
bond. In contrast, the MRCISD+Q energy surface featuring a
sloped-intermediate CI would probably drive a less straightfor-
ward decay process. As a consequence, while our study
indicates that CASSCF may still be used to study the
mechanism of the photochemical process in question (e.g.
CASSCF minima, transition states, CI and MEPs provide
correct information on the character of the reaction coordinates

driving the isomerization of PSB3), caution must be exercised
when drawing quantitative and statistical conclusions from a set
of semiclassical trajectory calculations,15,51−53 especially in
terms of reaction time scales and branching of the excited state
population after the decay. One remarkable feature is the
flattening and widening of the charge transfer region, which
suggests that a larger number of trajectories will be collected in
this region, thus producing longer-lived transient species with
the features of an intramolecular twisted charge-transfer state.
In principle, similar changes may also have an impact on our
understanding of the dynamics associated with the photo-
isomerization of visual pigments. The PSB5 model incorporat-
ing five conjugating double bonds (and therefore closer to
rPSB) has the TSDIR and TSCT transition states separated by 0.7
kcal/mol on the CASSCF energy surface.8,9 In this situation, it
is likely that the charge-transfer state becomes, as indicated by
our shorter model, stabilized by the dynamic electron
correlation yielding similar dramatic effects on the ground
state relaxation dynamics even when embedded in a protein
cavity. Of course, as previously reported,54−57 the protein
environment and the solvent may have important additional
effects on the relative stability of the charge transfer and
diradical/covalent regions of the S0 potential energy surface.
This has recently been shown for bovine rhodopsin via
CASPT2//CASSCF/MM computations.54 More studies in this
direction are needed to fully evaluate the magnitude of these
effects.
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