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Abstract

Background: A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on

the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the

time point of the experiment.

Results: Two methods are introduced here: dynamic elementary mode analysis (dynEMA) and dynamic elementary

mode regression discriminant analysis (dynEMR-DA). The former is an extension of the recently proposed principal

elementary mode analysis (PEMA) method from steady state to non-steady state scenarios. The latter is a discriminant

model that permits to identify which dynEMs behave strongly different depending on the experimental conditions.

Two case studies of Saccharomyces cerevisiae, with fluxes derived from simulated and real concentration data sets, are

presented to highlight the benefits of this dynamic modelling.

Conclusions: This methodology permits to analyse metabolic fluxes at early stages with the aim of i) creating

reduced dynamic models of flux data, ii) combining many experiments in a single biologically meaningful model, and

iii) identifying the metabolic pathways that drive the organism from one state to another when changing the

environmental conditions.

Keywords: Metabolic network, Elementary mode, Dynamic modelling; Principal component analysis, Principal

elementary mode analysis, Partial least squares regression discriminant analysis, N-way, Cross validation

Background
Data analysis methods are widely used in Systems Biol-

ogy to interpret different kinds of data. In the field of

fluxomics, principal component analysis (PCA) [1] mod-

els have been proposed to obtain a set of key pathways

in metabolic networks, assuming steady state conditions

[2, 3]. Basically, these key pathways are groups of corre-

lated metabolic fluxes measured in different experiments.

Multivariate curve resolution (MCR) [4] was afterwards

proposed to obtain this set of metabolic pathways, exploit-

ing the ability of MCR to include constraints in the

algorithm, driving the model to a more biologically mean-

ingful solution [5].

The drawback of PCA and MCR is that the com-

ponents do not represent metabolic routes connecting
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substrates with end-products, but separate groups of

concatenated reactions in the network. To enhance the

interpretability of PCA and MCR, principal elementary

mode analysis (PEMA) [6] was proposed to build a multi-

variate model using thermodynamically feasible pathways

retrieved directly from the network. In the PEMA model,

fluxes from different experiments are projected into the

most representative set of elementary modes (EMs) from

the metabolic network. The EMs are the simplest repre-

sentations of pathways in the metabolic network. Basi-

cally, each EM connects substrates with end-products

concatenating reactions.

In non-steady state conditions, the state of the net-

work at a particular time point of the biological process is

defined by the concentration of eachmetabolite in the cell,

and metabolites may interact via one or more reactions.

Each reaction is represented by an ordinary differen-

tial equation (ODE) relating chemical compounds. Since

metabolic networks may have hundreds of reactions, it is

hard to build kinetic models requiring kinetic parameters.
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When given the initial concentrations of metabolites and

the full kinetic model (including the values for the kinetic

parameters), the concentration of the metabolites along

time can be simulated to produce a state transition path

or trajectory, i.e. the succession of states adopted by the

network over time [7]. Methodologies commonly applied

when dealing with the aforementioned ODE systems,

however using different data sources, are kinetic mod-

elling [8], dynamic flux balance analysis (DFBA) [9], and

a recently proposed approach combining time-resolved

metabolomics and dynamic FBA (MetDFBA) [10], among

others.

Once the kinetic model is built and the data is gathered,

either simulated or (partially) measured, a comparison

between experimental conditions can be performed to

discover which groups of metabolites, reactions or path-

ways show differences between substrates, environment,

etc. For this purpose, partial least squares regression dis-

criminant analysis (PLS-DA) [11] can be used to find

metabolites that are strongly related to a response variable

(e.g. group of experiments) [12]. The problem with this

approach is that no topological information is included

in the multivariate model. The identified metabolites can

be scattered in the network, not showing clear metabolic

routes, as it happened in PCA with steady state data.

The Goeman’s test was proposed in [13] to tackle the

lack of topological information in the PLS-DA model.

In that case, discrimination between experiments using

metabolite concentrations was investigated using the set

of pathways retrieved from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database [14–16]. The aim

was to find which pathways have a different activation pat-

tern depending on the initial conditions of the experiment

at particular time points. This model includes topolog-

ical information, as metabolites are tested in groups of

KEGG pathways, but these pathways sometimes do not

connect directly substrates with end products, and the

model is not built including all pathways and time points

simultaneously.

To solve the aforementioned drawbacks of PLS-DA and

the Goeman’s global test, a novel framework is proposed

to analyse non-steady state metabolite concentrations,

based on an extension of the PEMA model. For this, we

introduce the concept of dynamic EMs (dynEMs), i.e. EMs

activated partially at each time point of the experiment.

The dynEMs are used in a discriminant model to identify

which metabolic routes have different activations depend-

ing on the initial conditions, i.e. which pathways discrim-

inate between experimental conditions (as for example

different substrate concentrations). As opposed to PLS-

DA, dynEMR-DA integrates topological information to

make the model more interpretable, as the set of can-

didates are drawn from the elementary mode matrix of

the metabolic network; and, as opposed to Goeman’s test,

includes all metabolic routes connecting substrates with

end-products and all time points of the experiment in the

same discriminant model.

The MATLAB code for dynEMR-DA, related functions

and example data are freely available in http://www.

bdagroup.nl/content/Downloads/software/software.php,

with instructions about how to use the method with

own data. This way, practitioners are guided through the

procedure, from the definition of the inputs, elementary

mode matrix and concentration or flux data (either can

be used), to the outputs, i.e. coefficients for the dynamic

elementary modes to reconstruct the flux data. The

N-way toolbox [17] and efmtool [18] for MATLAB are

required to use dynEMR-DA code.

The structure of the article is as follows. In Meth-

ods, the metabolic models and data sets of S. cerevisiae

are presented and the adaptation of the PEMA model

from a steady to a non-steady state environment is intro-

duced, describing dynEMA, dynEMR-DA and the vali-

dation scheme. In Results, the output of dynEMR-DA

is analysed using simulated and real concentration data.

Finally, some conclusions are drawn in the last section.

Methods

Metabolic networks

Two metabolic models of the well-known baker’s yeast S.

cerevisiae are used here to build the multivariate discrim-

inant models (see Additional file 1 for a list of reactions).

The first one was used in [19] to study the dynamics in gly-

colysis. The metabolic network (see Fig. 1a) has M = 23

metabolites and K = 18 reactions. This metabolic model

has 26 elementary modes.

The second model was proposed in [10], and comprises

M = 12 metabolites and K = 20 reactions, and describes

the glycolysis and the tricarboxylic acid (TCA) cycle (see

Fig. 1b). This second metabolic model has 13 elementary

modes.

Twomodels are used in this article since the metabolites

whose measurements were available in the real case study

were not exactly the same as in the simulated model. Also,

kinetic parameters were only available for the simulated

case study. However, since bothmodels are describing gly-

colysis in the same organism, the results are comparable.

Concentration data

The concentration data used in the first model (Fig. 1a) are

simulated using COmplex PAthway SImulation (COPASI)

software [20]. The initial concentrations of the metabo-

lites match the measurements used in the original paper

[19] (see Table 1). In this case, COPASI is used to sim-

ulate the concentrations from 0 to 60 s in 20 intervals

of 3 s using a deterministic method (LSODA) [21]. The

metabolic fluxes and the set of EMs are also obtained

directly from COPASI.

http://www.bdagroup.nl/content/Downloads/software/software.php
http://www.bdagroup.nl/content/Downloads/software/software.php
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Fig. 1 S. cerevisiaemetabolic models. Model a), from [19], is used for the simulated study, and b), from [13], for the real case study

The aim in the simulated study consists of discrimi-

nating between scenarios using a high versus low initial

concentration of glucose. 64 experiments are simulated

using the data in Table 1, plus 20% noise, that is: c =

(1 + 0.2ǫ)c0, where c is the concentration used in the

analysis, c0 is the concentration given by COPASI and

ǫ follows a Normal distribution with mean 0 and stan-

dard deviation 1. In the first 32 experiments the initial

glucose concentration is set to 10mMol/l (plus noise),

while in the last 32, this concentration is set to 2.5

mMol/l (also adding noise). These two values are indeed

interesting, since they mimic the glucose concentrations

used in the real case study (see paragraph below). The

other common metabolites between metabolic models

have comparable values in both concentration data sets.

The set of EMs is obtained in this case using efmtool

software [18].

In the real case, the concentrations of S. cerevisiae

along 24 time points were obtained experimentally using

liquid chromatography–mass spectrometry (LC-MS)

[22, 23] at the Biotechnology Department of Delft Uni-

versity of Technology (The Netherlands), and were used

afterwards in [13]. 12 different cultures are used in the

present work (see Table 2). Regarding experiments 1 to

8, different initial glucose concentrations in aerobic con-

ditions were used in these cultures: 10 mMol of glucose

were used in the first 4 experiments and 2.3-2.5 mMol in

experiments 5-8. Also, 4 more cultures, experiments 9 to

12, were performed using similar initial glucose concen-

trations as in experiments 5-8 but in anaerobic conditions
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Table 1 Initial concentrations in the simulated study.

Experimental conditions taken from [19]

Metabolite Initial concentration (mMol/l)

GLCi 0.087

Prb 5

G6P 3.085

F6P 0.75247

Glyc 0

PHOS 10

Trh 0

F16P 0.836

TRIO 0.5177

NAD 0

BPG 0.111

NADH 0.044

P3G 0.825

P2G 0.13771

PEP 0.1404

PYR 0.884031

ACE 0.0474837

CO2 1

SUCC 0

GLCo 110

ETOH 0

GLY 0.15

X 0

(see Availability of data and materials section for more

information on these data).

The aim in the real case study consists of discriminat-

ing between i) high and low glucose concentrations (i.e.

experiments 1-4 vs 5-8), and ii) aerobic and anaerobic

conditions (experiments 5-8 vs 9-12).

Notation

Scalar values are represented here as italic capital letters

(e.g. N) and indices will appear as italic lower-case let-

ters (e.g. j). Vectors are represented as bold lower-case

letters (e.g. v). Data matrices are represented as bold cap-

ital letters (e.g. X). Superindex T denotes the transpose of

a matrix. Observations or individuals within matrices are

represented by rows, while variables are represented as

columns. 3-dimensional arrays will be denoted as under-

lined bold capital letters (e.g. X). The mathematical oper-

ator × is used here to denote the size of the modes of

a matrix (e.g. Y is a N × M matrix). No mathematical

operator is used for products between scalars, vectors and

matrices. Operator ◦ denotes the Hadamard element-wise

product between vectors or matrices. Finally, operator ⊗

denotes the Kronecker tensor product between vectors or

matrices, that is:

X ⊗ Y =

[

x11 x12
x21 x22

]

⊗ Y =

[

x11Y x12Y

x21Y x22Y

]

(1)

Squares and rectangles are used in figure drawings as a

representation of matrices.

Dynamic elementary mode analysis (dynEMA)

Any steady state flux distribution x = (x1, . . . , xK ) can be

decomposed as a positive linear combination of a set of E

EMs [24]:

x =

E
∑

e=1

λepe (2)

where K is the number of fluxes (matching the number of

reactions in the network), pe = (pe1 , . . . , peK ) is the eth

EM, λe is the positive weighting factor of the eth EM, and

E is the number of EMs needed to reconstruct the flux

distribution x. The set of E EMs is a subset of the complete

set of Z EMs of the metabolic network.

Figure 2a shows an example of this modelling using

a small network with M = 5 metabolites and K =

8 reactions. There are Z = 3 EMs in the network:

(1,1,1,1,0,0,0,0), (1,1,0,0,1,1,0,0) and (1,1,0,0,1,0,1,1). Let

us assume that there is only flux on reactions 1 to 6. A lin-

ear combination of the first E = 2 EMs will reconstruct

the flux carried by the reactions in the system in Fig. 2b.

In this case, all reactions in each EM are multiplied by the

same value. The weighting factors correspond to the flux

shown in the graphics beside reactions.

WhenN flux distributions are considered, coming from

different experiments or cultures, a PEMA model can be

built:

Table 2 Experiments used for the real case study. More details in

Availability of data and materials section and in [13, 22, 23]

Experiment
number

Aerobic/anaerobic Conditions

1 Aerobic 10 mM glucose

2 Aerobic 10 mM glucose

3 Aerobic 10 mM glucose

4 Aerobic 10 mM glucose

5 Aerobic 2.5 mM glucose

6 Aerobic 2.5 mM glucose

7 Aerobic 2.3 mM glucose

8 Aerobic 2.3 mM glucose

9 Anaerobic Glucose deprivation (feed off)

10 Anaerobic 1 mM glucose

11 Anaerobic 3 mM glucose

12 Anaerobic 3 mM glucose + 3 mM acetaldehyde
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Fig. 2 a Small metabolic network. b Steady state flux distribution. In b), the flux carried by each reaction is shown. Reactions 7-8 have no flux

X = �PT + F (3)

whereX is theN ×K flux data matrix, P is the K ×E prin-

cipal elementary mode (PEM) matrix, formed by a subset

of E EMs; � is the N × E weighting matrix; and F is the

N × K residual matrix. A schematic representation of a

PEMA model is shown in Fig. 3.

Non-steady state flux distributions cannot be decom-

posed as linear combinations of EMs, as in steady state.

When the biological system has not reached yet the steady

state, the system is not in equilibrium and fluxes can

Fig. 3 Schematic representation of data matrices in the PEMA model

change over time. However, the EMs are indeed the sim-

plest pathways along which the non-steady state fluxes

have to flow, but not in a constant fashion. Thus, the EMs

must be modified or adapted to fit this dynamical sys-

tem. These are the so-called dynamic elementary modes

(dynEMs).

To adapt an EM, there is not only a single coefficient

multiplying the EM (� values in PEMA):

λepe = (λepe1 , ..., λepeK ) (4)

but a different coefficient multiplying each reaction acti-

vated by the EM:

αej ◦ pe = (αej,1pe1 , . . . αej,K peK ) (5)

where αej includes the coefficients that adapt reactions 1

to K in the selected eth dynamic EM to reproduce the

metabolic fluxes at time point j, and ◦ is the Hadamard

element-wise product of matrices.

Thus, a single non-steady state flux distribution x at

time point j can be decomposed as:

xj =

E
∑

e=1

αej ◦ pe (6)

Consider now a set of non-steady state flux distribu-

tions, which can be obtained from a single experiment

measuring the concentration of the metabolites at J con-

secutive time points. Figure 4 shows an example of this

scenario using the previous small network. Let us assume

that there are fluxes only in reactions 1 to 4. In this case,

only E = 1 EM is needed. However, at each time point

(j = 1, . . . , 4) the flux at each reaction (k = 1, . . . , 8) is dif-

ferent. High values are registered at the beginning of the

experiment in the first reaction (Fig. 4a). Afterwards, the
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Fig. 4 Small metabolic network with non-steady state fluxes from time point 1 to 4 (a) to d), respectively). Graphics show the flux carried by each

reaction, which changes depending on the time point. The first subindex of the weighting factor αej,k indicates the EM E = 1. The other two

subindices indicate time point j = 1, .., 4 and reaction k = 1, .., 8

flux reaches all metabolites in the EM (Fig. 4b-c). Finally,

the experiment reaches the steady state at the last time

point (Fig. 4d), and all fluxes in the reactions are similar.

Considering non-steady state flux distributions along J

time points, the set of active dynEMs can be obtained,

in a PEMA/PCA-like fashion, from the new dynamic

elementary mode analysis (dynEMA) model:

X = (IJ ⊗ 1TE )[A ◦ (1J ⊗ PT)]+F (7)

where A is the EJ × K coefficients matrix, IJ is the J × J

identify matrix, P is the K × E principal elementary mode

(PEM) matrix, 1E and 1J represent column vectors of E

and J ones respectively, F is the J × K residual matrix

(containing the fluxes not explained by the set of dynamic

elementary modes) and ⊗ is the Kronecker matrix prod-

uct. In this case, X is a J × K data matrix representing

the non-steady state fluxes from a single experiment along

J time points; while in the PEMA model, X is a N × K

matrix representing the steady state fluxes of N different

experiments. Figure 5 shows a representation of dynEMA

model.

The coefficients matrix A in the previous equation is,

in fact, a E × K × J 3-way matrix unfolded reaction-wise,

and each entry in the matrix αejk represents the coefficient

multiplying reaction k of EM e to reconstruct the flux at

time point j. Using this modelling it is possible to study the

time evolution of a dynEM, i.e. how the dynEM is adapted

or dynamically used along all measured time points for a

given experimental condition.

This system of equations is solved similarly to PEMA.

The candidates for first dynEM are selected from the com-

plete K×Z EMmatrix in a step-wise fashion. After select-

ing an EM, the coefficients multiplying it (thus creating

the dynEM) are obtained solving Eq. 7 using non-negative

least squares. Once all EMs are evaluated, the dynEM

explaining most variance in data (as in PEMA) is classi-

fied as the first dynEM (1st column of PEM matrix P).

Afterwards, this first dynEM is set, and the search for the
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Fig. 5 Schematic representation of data matrices in the dynEMA model

second one starts, recalculating the coefficients in matrix

A for both the first and the second dynEMs at each evalu-

ation. In this way, the dynEMA model is built in a greedy

way, explaining as much variance as possible at each step.

Regarding the number of dynEM extracted, this

depends on the aim of the analysis, as explained in [6] with

the PEMA model. For example, when the aim is to iden-

tify the main dynamic behaviour, one dynEM is enough. If

the aim is to identify the main dynEM utilizing one par-

ticular section of the network, the model needs as many

dynEMs as required to represent those reactions. Alterna-

tively, one can extract as many dynEMs needed to reach

certain percentage of explained variance (e.g. 95%).

The dynEMA model is useful to identify the dynEMs

active in an experiment and how each dynEM is used in

the culture at different time points of the experiment.

Dynamic elementary mode regression discriminant

analysis (dynEMR-DA)

When the aim is to establish differences between environ-

mental or experimental conditions, e.g. presence/absence

of a compound or case/control studies, a discriminant

model is needed. For this, dynamic elementary mode

regression discriminant analysis (dynEMR-DA) is pro-

posed here. This model focuses on finding which are

the dynEMs with a strongly different time evolution or

performance between conditions. In essence, dynEMR-

DA is a two-step procedure. First, it projects the flux

data into the space defined by each single dynEM.

Then, fits a NPLS-DA [25] model with discriminant

purposes.

To build a dynEMR-DA model, the set of different

experiments are combined in a single X 3-way matrix (see

Fig. 6). In X we consider N experiments, measuring K

fluxes along J time points. Therefore, it is mandatory to

have the same time points in all experiments.

The algorithm of dynEMR-DA has the following steps:

1 For each EM in the metabolic network (candidate to

dynEM):

(a) Unfold reaction-wise the N × K × J Xmatrix

in Fig. 6 in a two-way JN × K matrix X.

(b) Calculate the coefficients matrix A using the

dynEMA model:

X =
(

IJN ⊗ 1TE

) [

A ◦
(

1JN ⊗ pT
)]

+ F

(8)

wherep denotes the candidate EM from step 1.

(c) Reconstruct the flux data X̂ using the

dynEMA model:

X̂ =
(

IJN ⊗ 1TE

) [

A ◦
(

1JN ⊗ pT
)]

(9)

(d) Fold the reconstructed data to build again a

three-way data structure X̂

(e) Fit an NPLS-DA model between the

reconstructed data and the y data, where y

denotes the class of experiments (having 1s

and 0s).
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Fig. 6 dynEMR-DA procedure. XH and XL denote the flux data matrices of two different experimental conditions

2 The dynEM whose NPLS-DA model explains most

variance in y is classified as the first dynEM.

3 Check the predictions of NPLS-DA model. If the

current model discriminates perfectly, stop. If not,

set the first dynEM and repeat steps 1-3 to extract

the second dynEM following the dynEMR-DA

procedure.

NPLS-DA was proposed for studying N-dimensional

data structures with discriminant purposes. NPLS is the

natural extension of PLS to N-way structures, which tries

to maximize the covariance between the X and Y data

arrays. Y is denoted as y when one variable is predicted.

NPLS-DAmodels in this paper have been computed using

the N-way toolbox for MATLAB [17].

The dynEMR-DA algorithm can select many dynEMs

until attaining a perfect discrimination. However, in prac-

tice, individual dynEMs are able to discriminate between

two experimental conditions, so there is no need of con-

sidering two dynEMs simultaneously active to obtain a

discriminant model. Moreover, some dynEMs are dis-

criminating between initial conditions, but some of their

reactions are not used at any time point of the experiment

(so the flux does not flow through the metabolic path-

way from the beginning to the end). These dynEMs do

not represent actual metabolic pathways, so they should

be removed when they are selected.

Triple cross-validation (3CV)

Proper validation of multivariate models is a subtle issue

in Systems Biology. When enough data are available,

single cross-validation procedures may lead to too opti-

mistic models, especially when the aim is discrimination

between classes. As commented in [26], when discrimi-

nant models, such as PLS-DA, are used on datasets with

much more variables than samples, the models cannot be

built as accurately as when there are more samples than

variables. Then, the high number of variables can lead to

chance discriminations, i.e. models that give good results

because a variable had by chance lower values in all sam-

ples from one group. To avoid this sometimes spurious

results, double cross validation (2CV) was proposed [26].

Using this procedure, a subset of the original data is used

to model fitting, another subset to decide the complexity

of the model (e.g. number of components of a multivari-

ate model), and finally, a third subset is used for validation.

This kind of models are especially useful for (N)PLS-DA

model validation [26, 27].

In this work, though, we need an extra round of val-

idation. dynEMR-DA models involve the projection, as

first step, of the flux data into the space defined by each

single dynEM. Afterwards, an NPLS-DA model is fitted,

determining at the end which dynEMs are discriminat-

ing between groups. Therefore, we propose here a triple

cross validation (3CV) scheme (see Fig. 7). This procedure

consists of the following steps:

1 Divide the data set in four groups: calibration, test,

selection, and validation. The latter is left out of the

analysis until the final external validation.

2 Fit a dynEMR-DA model using the calibration set,

using a maximum of K components (as many as

fluxes).

3 Project the test set, first to the corresponding

dynEM, and then to each of the K NPLS-DA

calibration models. At this point, the minimum

number of components, A, needed to classify each

experiment in its corresponding class, is selected.

4 Project the selection set into the previous

dynEMR-DA model with A NPLS-DA components

and evaluate the predictive power of each dynEM.

5 Steps 2-4 are repeated three times, changing the roles

of the subsets. That is, the models are built using, in

steps 2 to 4 respectively: calibration-test-selection,

test-selection-calibration and

selection-calibration-test sets.

6 The dynEMs with perfect classification rates using

the selection set in the three rounds are used finally



Folch-Fortuny et al. BMC Systems Biology  (2018) 12:71 Page 9 of 15

Fig. 7 3CV procedure. 75% of the samples from both classes (red and blue) are used in the calibration, projection and test sets (25% in each). The

remaining 25% of samples are used in validation set

for validation, so the discrimination power of each

dynEM is evaluated with completely external data.

This prediction is performed substituting the

selection group by these validation samples in the

three models previously fitted.

A 2CV strategy is used for the NPLS-DA section of

the dynEMR-DA models, but an extra validation round is

needed to assess the performance of the selected dynEMs

in terms of discrimination. Therefore, the 3CV procedure

is built basically replacing the validation step, in the origi-

nal 2CV, by the selection step, and performing the external

validation in the last step.

Results

Simulated flux data

The metabolic model of S. cerevisiae in Fig. 1a is used

in this section to assess the performance of dynEMR-

DA on simulated data. 64 experiments are simulated

using COPASI, with the initial concentrations described

in Methods (see Table 1). Thus, 32 experiments have

a high initial concentration of glucose and 32 a low

concentration. The fluxes derived from the concentration

data, and also the set of EMs of the metabolic model, are

also obtained using COPASI.

To validate the discriminant models, the 3CV scheme

is used here, using the N-way Toolbox for MATLAB

[17] to fit the NPLS-DA models. 8 experiments of each

class selected at random (16 in total) are used for cal-

ibration. 16 more experiments are used to select the

number of NPLS-DA components. And 16 more are used

as selection samples. As described in Fig. 7, the first 3

subsets are used as calibration, test and selection sets,

and then the roles change, i.e. test-selection-calibration

and selection-calibration-test (steps 2-4 described in

3CV). Finally, 16 additional experiments are used as

validation set.

When applying the dynEMR-DA procedure described

in the previous section, only one dynEM (from the

whole set of 26 EMs) is able to discriminate perfectly

between both experimental conditions: dynEM 8. Finally,

the remaining 16 cultures are used for the final valida-

tion of this dynEM (see Fig. 7). Again, all experiments are

correctly classified in the dynEMR-DA model.
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Figure 8a shows dynEM8. This mode covers the whole

glycolytic pathway, starting from glucose (GLCo), pro-

ducing all the intermediate products until reaching pyru-

vate (PYR), acetate (ACE) and finally ethanol (ETOH).

The coefficients multiplying the EM are visualized in

Fig. 8b-e. The first three time points (3, 6, and 9 s) reveal

changes in the coefficients. Afterwards, changes are small.

At 36 s, the system reaches the steady state, when fluxes

do not change any more.

The differences between both experimental conditions

can be seen in Fig. 8b-e (blue versus red bars). The usage of

all reactions in the dynEM, i.e. the coefficients inAmatrix,

are higher in the high glucose concentration experiments

than in the low glucose. This implies that these scenarios

take advantage of the higher amount of glucose to carry

more flux through the glycolysis until reaching ethanol.

It is worth mentioning that the system is close to steady

state from the first time point. However, we used this set

up to have a simulated case as close as possible to the real

case, in order to find out i) whether there are differences

between the initial concentrations of glucose, and ii) if the

discriminant dynEM resembles the real case one(s) (see

next section).

Real flux data

High vs low initial glucose concentrations

To assess the performance of dynEMR-DA in a real case

study, a set of cultures of S. cerevisiae are used to dis-

criminate between experiments using a high or a low

initial glucose concentration. Unfortunately, the number

of available cultures is low for this case study (4 in each

class), so no 3CV, neither 2CV, is possible. Therefore,

single CV is applied here: 3+3 experiments are used for

dynEMR-DA model building and selection of NPLS-DA

components, and the remaining 1+1 experiments are used

for validation. This procedure is repeated 4 times, leaving

out a couple of cultures each time.

The dynEMR-DA model has to be built using fluxes,

not concentrations. Therefore, we computed the fluxes

based on the changes in the concentrations between two

consecutive time points solving an optimization problem

(similarly as in [10]). Specifically, the objective function

in this formulation makes the fluxes smooth along time

(penalizing the sum of the differences between fluxes in

consecutive time points) and small (penalizing the sum of

squared fluxes), and the constraints force them to fulfil the

stoichiometric equations.

a b

d

c

e

Fig. 8 Simulated study. a dynEM8 depicted on the metabolic model. b-e dynEM8 coefficients at 3, 6, 9 and 36 s (first 3 times points and when the

fluxes reach the steady state). Blue (red) lines show the mean of the coefficients for the high (low) glucose experiments
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In the actual data set,M = 12 metabolites are measured

in 24 time points within 2 min (1 measurement every 3 s).

The metabolic network (see Fig. 1b) has K = 20 reactions.

Thus, the optimization problem to solve is:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minxjk
∑22

j=1

∑20
k=1(xj+1,k − xj,k)

2 +
∑23

j=1

∑20
k=1 x

2
j,k

s.t. SXT = dCT

dj

X ≥ 0

X0 initial solution

(10)

where X = {xjk} is the 23 × 20 (time points × reac-

tions) flux data matrix. The quadratic optimization prob-

lem needs an initial guess on X, i.e. X0. This guess is

obtained solving SXT
0 = dCT

dj
using non-negative least

squares. Indices k and j denote flux number and time

point, respectively, S denotes the 12 × 20 stoichiometric

matrix (metabolites× reactions), andC is the 24×12 con-

centration matrix (time points × metabolites). It is worth

noting that, since fluxes are computed based on the differ-

ences between concentrations at consecutive time points,

there is one time point less in the flux data matrix (J = 23)

than in the concentration data (24).

The objective function used in the optimization prob-

lem resembles the MOMA function (minimize the

squared difference of the reaction rates with steady state)

used in [10], with the difference that we minimize the flux

differences between consecutive time points.

In this case, only dynEM9 (from the set of 20 EMs) is

able to discriminate the left out experiments. This dynEM

can be visualised, jointly with the coefficients in matrix

A, in Fig. 9. The differences between high and low glu-

cose are also clear in this example. The usage of this

dynEM is stronger in scenarios with a high initial glucose

concentration than with a low concentration.

The results in this example follows the scheme

described in Fig. 4. In both experiments (high and low),

the fluxes are higher in the first steps of glycolysis (3, 6,

and 9 s) and lower at the end. As time goes by, fluxes in

the last part of the glycolysis increase. This shows that the

flux data cannot be modelled in the same way at the first

time points as when the culture reaches the steady state,

therefore it necessitates to use of dynEMs to model non-

steady state flux data, instead of applying a PEMA-based

approach.

It is worth noting the similarity between the dynEM

identified here and dynEM8 of the simulated case study.

Both dynEMs are describing the same phenomena, the

glycolysis until reaching pyruvate. They are not exactly

the same because the metabolic models are different:

acetate and ethanol were not measured in experimen-

tal conditions. However, when comparing the simulated

and the actual data, the dynEM discriminating between

experimental conditions is basically the same one.

Finally, it is difficult to assess when the system reaches

the steady state in the real case study. In the simulated

case, steady state was reached clearly at 36 s (since fluxes

did not change anymore). In the real case, after 24 s (see

Fig. 9) fluxes do not change significantly. However, since

measurement error is present in the real case, it is diffi-

cult to asses whether the steady state was reached at 24 s

or afterwards.

Aerobic vs anaerobic conditions

For the second real case study, four cultures performed in

aerobic conditions versus four more in anaerobic condi-

tions are compared. As in the previous example, fluxes are

calculated from the real concentration data using the opti-

mization framework (see Equation 10); also, a single cross

validation procedure is applied here.

In this case study, dynEM8 is able to discriminate

between both experimental conditions. The dynEM and

the coefficients at 3, 6, 9 and 24 s (when system seems

to reach steady state) can be visualized in Fig. 10. Again,

the differences between both classes can be seen in the

plots; the anaerobic experiments having higher coeffi-

cients. This behaviour has been outlined also in the lit-

erature [28–31]. To satisfy the redox balances, the flux is

deviated from glycolysis to the production of glycerol (in

our case, after reaction 4, flux is going through reactions 5

and 6). Glycerol is produced by reduction of the glycolytic

intermediate dihydroxyacetone phosphate to glycerol 3-

phosphate (g3p) followed by a dephosphorylation of g3p

to glycerol. Despite glycerol does not appear explicitly in

the network, because this metabolite was not measured in

all original experiments, it is likely that the flux flowing

through g3p produce glycerol at the end, as suggested in

the literature.

Comparison to other state-of-the-art techniques

NPLS-DA

As in [6], it is worth to compare the approach of an

elementary-mode based projection model to a classical

projection method, which in this case, is NPLS-DA. To

perform this comparison, the real case studies presented

in the two previous subsections have been modelled using

NPLS-DA algorithm.

Figure 11 shows the loadings of the fluxes using the

high versus low initial glucose data. The model in this

case has 3 components, explaining 92 and 95% of vari-

ance in flux and discriminant variables, respectively. This

number of components corresponds to the most parsimo-

nious model needed to correctly classify all experiments.

Firstly, it is difficult to extract from the loading plots

which fluxes are the most important for discrimination,

as no clear threshold can be drawn in the plot. Secondly,
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a b c

d e

Fig. 9 Real case study. a dynEM9 depicted on the metabolic model. b-e dynEM9 coefficients at 3, 6, 9 and 24 s (when system is close to steady

state). Blue (red) lines show the coefficients for the high (low) glucose experiments

even varying this hypothetical threshold, the significant

fluxes (those with high absolute loading coefficient) repre-

sent disconnected reactions through the network and do

not correspond to physical pathways, since no topological

information is included in the model. The NPLS-DA load-

ings are the elementary modes in dynEMR-DA, therefore

interpretation is more straightforward, as they represent

real pathways.

Figure 12 shows the results for the aerobic versus

anaerobic case study. Here, 6 components are needed,

explaining 98 and 99% of variance in flux and discrim-

inant variables, respectively. As in the high versus low

initial glucose example, loading plots are very difficult to

interpret.

The computation time with these case studies is 17 s

(dynEMR-DA model) versus 0.5 s (NPLS-DA model). In

the dynEMR-DA algorithm, as many NPLS-DAmodels as

EMs (in this model, 13) are fitted to find the most discrim-

inant one, therefore it is clear that one single NPLS-DA

model will be faster than dynEMR-DA. However, the time

needed to interpret the output of NPLS-DA is longer than

the pathway-oriented result that dynEMR-DA provides.

dynEMR-DA, as opposed to NPLS-DA, can be strongly

affected by the size of the EMs matrix. When having

several hundreds of EMs, a pre-selection of EMs can be

performed to speed up the analysis. One strategy would

be to study the reactions that are active in all EMs and

include only those EMs with different active reactions (i.e.

coefficient different from zero). For example, if many ele-

mentary modes use the same reactions with the same

directionality for the reversible ones, only one EM can

be included in the set of EMs to test. Another possibil-

ity would be to use the set of extreme pathways of the

network instead of the EMs [24].

Goeman’s global test

The Goeman’s global test was applied in [13] to find

which KEGG pathways show differences between experi-

mental conditions. The output in that case was a p-value

indicating which pathways were different depending on

the groups at discrete time points. Their results showed

that glycolysis and TCA cycle were significant but not

for all time points when comparing high versus low ini-

tial glucose. For the aerobic versus anaerobic case, both

the glycolysis and TCA were significant for all time

points.

This approach is not directly comparable to dynEMR-

DA, as all pathways are tested simultaneously in dynEMR-

DA, instead of individual pathway testing. No EM

containing TCA was significant here, which can be also

due to i) all time points are used simultaneously in

dynEMR-DA, instead of discrete time point analysis (4
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a b c

d e

Fig. 10 Real case study. a dynEM8 depicted on the metabolic model. b-e dynEM8 coefficients at 3, 6, 9 and 24 s (when reaching steady state). Blue

(red) lines show the coefficients for aerobic (anaerobic) experiments

time points in [13]), and ii) the dynEMs containing TCA

might not show differences between experimental condi-

tions in the non-TCA section of the dynEM.

Finally, authors stated in the Goeman’s test article [13]

that a dynamic model would be more suitable for this type

of data, which is what was pursued here.

Discussion and conclusions
The approach for dynamic elementary mode modelling

proposed here permits decomposing non-steady state

flux distributions into a set of active dynEMs. This way,

dynEMA can be used to study the active dynEMs in an

experiment, or a set of experiments, extending the PEMA

Fig. 11 NPLS-DA loading plots for the fluxes (high versus low intial glucose data)
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Fig. 12 NPLS-DA loading plots for the fluxes (aerobic versus

anaerobic data)

model to a dynamic environment. For discrimination pur-

poses, themain interest in this article, dynEMR-DA allows

identifying which dynEMs have different patterns of acti-

vation depending on the culture initial conditions.

Actual and simulated concentration data of S. cerevisiae

have been used here to evaluate dynEMR-DA. When

changing the amount of glucose present in the experi-

ment in both data sets, dynEMR-DA is able to identify

that the dynEM flowing through the glycolytic pathway

from glucose to pyruvate is discriminating between high

and low initial glucose concentration experiments. Even

considering two differentmetabolicmodels, for data avail-

ability reasons, the results of dynEMR-DA seem coherent

between case studies. When analysing data from aerobic

versus anaerobic conditions, dynEMR-DA indicates that

the most discriminant dynEM drives the initial glucose

concentration to the glycerol production. Previously pub-

lished research confirms the results obtained using this

new methodology.

The framework presented here will serve to create

reduced dynamic models of flux data while preserv-

ing biological and thermodynamical meaning, as a tool

to analyse non-steady state flux distributions in many

experiments and to identify the hidden metabolic pat-

terns that drive the organism from one state to another

when changing the environmental conditions. dynEMA

and dynEMR-DA have potential applications in biopro-

cess engineering to understand the small changes in cell

metabolism at early stages of cultures.

Additional file

Additional file 1: An additional file is provided with the detailed

metabolic models. (PDF 105 kb)
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