
Dynamic Elimination of Overflow Tests in a

Trace Compiler

Rodrigo Sol1, Christophe Guillon2, Fernando Magno Quintão Pereira1,
and Mariza A.S. Bigonha1

1 UFMG – 6627 Antônio Carlos Av, 31.270-010, Belo Horizonte, Brazil
{rsol,fpereira,mariza}@dcc.ufmg.br

2 STMicroelectronics – 12 Jules Horowitz St, B.P. 217, 38019, Grenoble, France
christophe.guillon@st.com

Abstract. Trace compilation is a technique used by just-in-time (JIT)
compilers such as TraceMonkey, the JavaScript engine in the Mozilla
Firefox browser. Contrary to traditional JIT machines, a trace compiler
works on only part of the source program, normally a linear path inside
a heavily executed loop. Because the trace is compiled during the inter-
pretation of the source program the JIT compiler has access to runtime
values. This observation gives the compiler the possibility of producing
binary code specialized to these values. In this paper we explore such op-
portunity to provide an analysis that removes unnecessary overflow tests
from JavaScript programs. Our optimization uses range analysis to show
that some operations cannot produce overflows. The analysis is linear in
size and space on the number of instructions present in the input trace,
and it is more effective than traditional range analyses, because we have
access to values known only at execution time. We have implemented
our analysis on top of Firefox’s TraceMonkey, and have tested it on over
1000 scripts from several industrial strength benchmarks, including the
scripts present in the top 100 most visited webpages in the Alexa in-
dex. We generate binaries to either x86 or the embedded microprocessor
ST40-300. On the average, we eliminate 91.82% of the overflows in the
programs present in the TraceMonkey test suite. This optimization pro-
vides an average code size reduction of 8.83% on ST40 and 6.63% on
x86. Our optimization increases TraceMonkey’s runtime by 2.53%.

1 Introduction

JavaScript is the most popular programming language used in the client-side
of web applications [12]. Supporting this statement is the fact that JavaScript
is used in 97 out of the 100 most popular websites in the alexa 2010 report1.
Thus, it is very important that JavaScript programs benefit from efficient exe-
cution environments. Web browsers normally interpret programs written in this
language. However, to achieve execution efficiency, JavaScript programs can be

1 http://www.alexa.com

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 2–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Elimination of Overflow Tests in a Trace Compiler 3

compiled during interpretation – a process called just-in-time (JIT) compila-
tion. There are many ways to perform JIT compilation. TraceMonkey [14], the
Mozilla Firefox 3.1’s JIT compiler, translates the most executed program traces

into machine code. A program trace is a linear sequence of code representing a
path inside the program’s control flow graph.

The Firefox JIT compiler, among many optimizations, does type specializa-
tion on JavaScript programs. For instance, JavaScript sees numbers as double
precision 64-bit values in the IEEE 754 format [8, p.29]; however, TraceMon-
key tries to manipulate them as integer values every time it is possible. Dealing
with integers is much faster than handling floating-point arithmetics, but it is
necessary to ensure that this optimization does not change the semantics of the
program. So, every time an operation produces a result that might exceed the
precision of the integer type, it is necessary to perform an overflow test. In case
the test fails, float-point numbers must replace the original integer operands.

Overflow tests are pervasive in the machine code produced by TraceMonkey, a
performance nuisance already acknowledged by the Mozilla community2. Over-
flow tests impose two major problems. First, because each test may force an
early exit from tracing mode, these tests complicate optimizations that require
code motion, such as partial redundancy elimination and instruction scheduling.
Second, instructions that handle overflows increase code size: about 12.3% of
the x86 code produced by TraceMonkey per script in this compiler’s test suite
implement overflow tests. This extra code is a complication on small devices that
run JavaScript, such as the ST family of microcontrollers3. We have attacked
this issue via a flow sensitive range analysis that proves that some overflow tests
are redundant, and we present the results of this work in this paper. Our anal-
ysis runs in linear time on the number of instructions in the input trace. This
analysis is implemented on top of TraceMonkey; however, it does not depend on
a particular compiler. On the contrary, it works on any JIT engine that uses the
trace paradigm to do code generation.

Our algorithm does range analysis [17,20], i.e, it tries to estimate the lowest
and greatest values that can be assigned to any variable. However, our approach
differs from previous works because we use values known only at runtime in
order to put bounds on the range of values that integer variables might assume
during the program execution. This is a form of partial evaluation [18], yet done
at runtime [4], because our analysis is invoked by a just-in-time compiler while
the target application is being interpreted. By relying on such values we are
able to perform much more aggressive range inferences than traditional static
analyses. In terms of implementation, our analysis is similar to the ABCD al-
gorithm that eliminates array bound-checks [3]; however, there are important
differences. First, our algorithm is simpler, for it runs on a program trace, which
is straight-line code. Because it runs on a trace, our algorithm is linear on the
number of program variables, and not quadratic, as other analyses that keep
def-use chains of variables. Second, we perform the whole analysis at once, in a

2 https://bugzilla.mozilla.org/show bug.cgi?id=536641
3 http://www.st.com/mcu/familiesdocs-51.html

4 R. Sol et al.

single traversal of the input trace, whereas ABCD runs on demand. In addition
to these differences, the fact that we use the runtime value of variables lets us
be less conservative.

We have implemented our analysis on top of TraceMonkey (release from 2010-
10-3), the JIT compiler used by the Firefox web browser, and we have targeted
two different processors, x86 and ST40. We have correctly compiled and run over
one million lines of JavaScript code taken from a vast collection of benchmarks,
including the TraceMonkey’s test suite, and the top 100 webpages according to
the Alexa index. Currently our implementation can only remove overflow tests
from arithmetic operations performed on variables declared locally, i.e, we do
not handle global variables yet. Nevertheless, we recognize 59% of the overflow
tests in the TraceMonkey test suite, which contains over 800 scripts. On average,
our algorithm eliminates 91.82% of the overflow tests that we recognize in these
scripts, providing an average code size reduction of 6.63% on x86, and 8.83% on
ST40. Our research-quality implementation adds 2.53% of time overhead on the
core TraceMonkey implementation (time to compile and run the script) without
other optimizations enabled. However, we speculate that an industrial-strength
implementation of our algorithm will be able to obtain runtime gains. We have
instrumented the Firefox browser, to check the behavior of our algorithm in
actual webpages: on the average we remove 53.5% of the overflow tests per
webpage. This number is lower when compared to the TraceMonkey’s test suite
because there are more global variables in actual webpages.

The remainder of this paper is organized as follows. Section 2 describes the
TraceMonkey JIT compiler. In that section we show, by means of a simple ex-
ample, how a trace is produced and represented. We describe our analysis in
Section 3. Section 4 provides some experimental data that shows that our analy-
sis is effective. We discuss related work in Section 5. Finally, Section 6 concludes
this paper.

2 TraceMonkey in a Nutshell

There exists a number of recent works describing the implementation of trace-
based JIT compilers, such as Tamarim-trace [6], HotpathVM [15], Yeti [27] and
TraceMonkey [14]. In order to explain this new compilation paradigm, in this
section we describe the TraceMonkey implementation. TraceMonkey has been
built on top of SpiderMonkey, the original JavaScript interpreter used by the
Firefox Browser. To produce x86 machine code from JavaScript sources, Trace-
Monkey uses the Nanojit4 compiler. The whole compilation process goes through
three intermediate representations, a path that we reproduce in Figure 1.

1. AST: the abstract syntax tree that the parser produces from a script file.
2. Bytecodes: a stack based instruction set that SpiderMonkey interprets.
3. LIR: the low-level three-address code instruction representation that Nanojit

receives as input.

4 https://developer.mozilla.org/en/Nanojit

Dynamic Elimination of Overflow Tests in a Trace Compiler 5

jsparser jsemitter jsinterpreter JIT

file.js AST Bytecodes
LIR x86

spiderMonkey nanojit

trace

engine

Fig. 1. The TraceMonkey JavaScript JIT compiler

SpiderMonkey has not been originally conceived as a just-in-time compiler, a
fact that explains the seemly excessive number of intermediate steps between the
source program and the machine code. Segments of LIR instructions – a trace

in TraceMonkey’s jargon – are produced according to a very simple algorithm
[14]:

1. each conditional branch is associated to a counter initially set to zero.
2. If the interpreter finds a conditional branch during program interpretation,

then it increments the counter. The process of checking and incrementing
counters is called, in TraceMonkey’s jargon, the monitoring phase.

3. If the counter is two or more, and no trace exists for that counter, then the
trace engine starts translating the bytecodes to a segment of LIR instruc-
tions, while they are interpreted. Overflow tests are inserted into this LIR
segment. The process of building the trace is called recording phase.

4. Once the trace engine finds the original branch that started the recording
process, the current segment is passed to Nanojit.

5. The Nanojit compiler translates the LIR segment, including the overflow
tests, into machine code, which is dumped into main memory. The program
flow is diverted to this code, and direct machine execution starts.

6. After the machine code runs, or in case an exceptional condition happens,
e.g, an overflow test fails or a branch leaves the trace, the flow of execution
goes back to the interpreter.

From bytecodes to LIR: we use the program in Figure 2 (a) to illustrate the
process of trace compilation, and also to show how our analysis works. This
is an artificial program, clearly too naive to find use in the real world; how-
ever, it contains the subtleties necessary to put some strain on the cheap anal-
ysis that must be used in the context of a just-in-time compiler. This program
would yield the bytecode representation illustrated in Figure 2 (b). Notice that
we took the liberty of simplifying the bytecode intermediate language used by
TraceMonkey.

A key motivation behind the design of the analysis that we present in Section 3
is the fact that TraceMonkey might produce traces for program paths while these
paths are visited for the first time. This fact is a consequence of the algorithm
that TraceMonkey uses to identify traces. At the beginning of the interpretation

6 R. Sol et al.

foo (N) {

var sum = 0;

var i = 0;

while (i < N) {

i++;

if (i % 2 != 0) {

sum += i;

} else {

sum -= i;

i = 2147483648;

}

}

print(sum);

}

foo(10);

push 0

st sum

push 0

st i

push i

push N

lt

br

push i

inc

st i

push 2

mod

push 0

ne

br

push sum

push i

add

st sum

push sum

push i

sub

st sum

push 2147483648

st i

goto

push sum

print

1

2

3

4

5

6

7

(a) (b)

Fig. 2. Example of a small JavaScript program and its bytecode representation

process TraceMonkey finds the branch at Basic Block 2 in Figure 2 (b), and
the trace engine increments the counter associated to that branch. The next
branch will be found at the end of Basic Block 3, and this branch’s counter
will be also incremented. The interpreter then will find the goto instruction at
the end of Basic Block 6, which will take the program flow back to Block 2. At
this moment the trace engine will increment again the counter of the branch in
that basic block. Once the trace engine finds a counter holding the value two,
it knows that it is inside a loop, and starts the recording phase, which produces
a LIR segment. However, this segment does not correspond to the first part of
the program visited: in the second iteration of the loop, Basic Block 5 is visited
instead of Basic Block 4. In this case, the segment that is recorded is formed by
Basic Blocks 2, 3, 5 and 6.

Because the trace that is monitored by the trace engine is not necessarily
the trace that is recorded into a LIR segment, it is difficult to remove overflow
tests during the recording phase. A conditional test, such as a < N , where N is
constant, helps us to put bounds on the range of values that a might assume.
However, in order to know that N is constant, we must ensure that the entire
recorded segment does not contain commands that change N ’s value. Although
it is not possible to remove overflow tests directly during the recording phase,
it is possible to collect constraints on the ranges of the variables in this step.
These constraints will be subsequently used to remove overflow tests at the

Dynamic Elimination of Overflow Tests in a Trace Compiler 7

push 0

st sum

push 0

st i

push i

push N

lt

br

push i

inc

st i

push 2

mod

push 0

ne

br

push sum

push i

add

st sum

push sum

push i

sub

st sum

push 2147483648

st i

goto

push sum

print

1

2

3

4

5

6

7

Init: load %0 "i"

 load %1 "N"

 %2 = lt %0 %1

 branch %2 Exit

 load %3 "i"

 %4 = inc %3

 %5 = ovf

 branch %5 Exit

 store "i" %4

 %6 = mod %3 2

 %7 = eq %6 0

 branch %7 Exit

 load %8 "sum"

 load %9 "i"

 %10 = sub %8 %9

 %11 = ovf

 branch %11 Exit

 store "sum" %10

 store "i" 2147483648

 goto Init

Fig. 3. This figure illustrates the match between the recorded trace and the LIR seg-
ment that the trace engine produces for it

Nanojit level. Thus, we perform the elimination of overflow tests once the whole
LIR segment has been produced, right before it is passed to Nanojit. Continuing
with our example, Figure 3 shows the match between the recorded trace and the
LIR segment that the trace engine produces for it.

From LIR to x86: Before passing the LIR segment to Nanojit, the interpreter
augments this segment with two sequences of instructions: the prologue and the
epilogue. The prologue contains code to map the values from the interpreter’s
execution environment to the execution environment where the compiled binary
will run. The epilogue contains code to perform the inverse mapping. Nanojit
produces machine code, e.g x86, ARM, ST40, from the LIR segment that it
receives from the interpreter. The overflow tests are implemented as side-exit

code: a sequence of instructions that has two functions: (i) it recovers the state
of the program right before the overflow took place, and (ii) it jumps to the
exit of the trace, returning control back to the interpreter. Figure 4 shows a
simplified version of the x86 code that would be produced for our example trace.
Notice that our analysis has no role at this point of the compilation process –
we include it in this discussion only to give the reader a full picture of the trace
compiler.

8 R. Sol et al.

Init:

load %0 "i"

load %1 "N"

%2 = lt %0 %1

branch %2 Exit

load %3 "i"

%4 = inc %3

%5 = ovf

branch %5 Exit

store "i" %4

%6 = mod %3 2

%7 = eq %6 0

branch %7 Exit

load %8 "sum"

load %9 "i"

%10 = sub %8 %9

%11 = ovf

branch %11 Exit

store "sum" %10

store "i" 2147483648

goto Init

Prologue:

load %11 ITP[i]

store "i" %11

load %12 ITP[N]

store "N" %12

load %13 ITP[sum]

store "sum" %13

goto Init

Exit:

load %14 "i"

store ITP[i] %11

load %15 "N"

store ITP[N] %12

load %16 "sum"

store ITP[sum] %13

return

Prologue:

 pushl ...

 movl ...

 movl ...

 movl ...

 jmp Init

Init:

 leal ...

 incl ...

 jvf RS1

 movl ...

 andl ...

 testb ...

 je Exit

 movl ...

 leal ...

 subl ...

 jvf RS2

 movl ...

 movl ...

 cmpl ...

 jb Init

Exit:

 movl ...

 movl ...

 movl ...

 popl ...

 leave

(LIR) (x86)
RS1:

 movl ...

 movl ...

 movl ...

 movl ...

 jmp Exit

RS2:

 movl ...

 movl ...

 movl ...

 movl ...

 jmp Exit

Fig. 4. The LIR code, after the insertion of a prologue and an epilogue, and the
schematic x86 trace produced by Nanojit

3 Flow Sensitive Range Analysis

The flow sensitive range analysis that we use to remove overflow tests relies on
a directed acyclic graph to determine the ranges of the variables. This graph,
henceforth called constraint graph, has four types of nodes:

Name: represent program variables. Each node contains a counter, which rep-
resents a particular definition of a variable. These nodes are bound to an
integer interval, which represents the range of values that the definition they
encode might assume.

Assignment: denoted by mov, represent the copy of a value to a variable.
Relational: represent comparison operations, which are used to put bounds

on the ranges of the variables. The comparison operations considered are:
equals (eq), less than (lt), greater than (gt), less than or equals (le), and
greater than or equals (ge).

Arithmetic: represent operations that might require an overflow test. We have
two types of arithmetic nodes: binary and unary. The binary operations
are addition (add), subtraction (sub), and multiplication (mul). The unary
operations are increment (inc) and decrement (dec). Division is not handled
because it might legitimately produce floating-point results.

Dynamic Elimination of Overflow Tests in a Trace Compiler 9

The analysis proceeds in two phases: construction of the constraint graph and
range propagation. The remaining of this section describes these phases.

3.1 Construction of the Constraint Graph

We build the constraint graph during the trace recording phase of TraceMonkey,
that is, while the instructions in the trace are being visited and a LIR segment
is being produced. In order to associate range constraints to each variable in the
source program we use a program representation called Extended Static Single

Assignment (e-SSA) [3] form, which is a superset of the well known SSA form [9].
In the e-SSA representation, a variable is renamed after it is assigned a value,
or after it is used in a conditional.

Converting a program to e-SSA form requires a global view of the program,
a requirement that a trace compiler cannot fulfill. However, given that we are
compiling a program trace, that is, a straight line segment of code, the conversion
is very easy, and happens at the same time that the constraint graph is built,
e.g, during the trace recording step. The conversion works as follows: counters
are mantained for every variable. Whenever we find a use of a variable v we
rename it to vn, where n is the current value of the counter associated to v.
Whenever we find a definition of a variable we increment its counter. Considering
that the variables are named after their counters, incrementing the counter of a
variable effectively creates a new name definition in our representation. So far
our renaming is just converting the source program into Static Single Assignment
form [9]. The e-SSA property comes from the way that we handle conditionals.
Whenever we find a conditional, e.g, a < b, we learn new information about the
ranges of a and b. Thus, we redefine a and b, by incrementing their counters.

There are two events that change the bounds of a variable: simple assignments

and conditional tests. The first event determines a unique value for the variable.
The second puts a bound in one of the variable’s limits, lower or upper. These
are the events that cause us to increment the counters associated to variables.
Thus, it is possible to assign unique range constraints to each new definition of
a variable. These range constraints take into consideration the current value of
the variables at the time the variable is found by the trace engine. We determine
these values by inspecting the interpreter’s stack. We have designed the following
algorithm to build the constraint graph:

1. initialize counters for every variable in the trace. We do this initialization
on the fly: the first time a variable name is seen we set its counter to zero,
otherwise we increment its current counter. If we see a variable for the first
time, then we mark it as input, otherwise we mark it as auxiliary. If a variable
is marked as input, then we set its upper and lower limits to the value that the
interpreter currently holds for it. Otherwise, we set the variable boundaries
to undefined values, e.g,] −∞, +∞[.

2. For each instruction i that we visit:
(a) if i is a relational operation, say v < u, we build a relational node that has

two predecessors: variable nodes vx and uy, where x and y are counters.
This node has two successors, vx+1 and uy+1.

10 R. Sol et al.

i0 [0, 0] N0 [10, 10]sum0 [0, 0]

lt

i1 [?, ?] N1 [?, ?]

inc

i2 [?, ?]

sub

sum1 [?, ?]

mov

i3 [?, ?]

2147483648

1

2

3

4

Fig. 5. Constraint graph for the trace in Figure 3. The numbers in boxes denote the
order in which the nodes were created.

(b) For each binary arithmetic operation, e.g, v = t + u, we build an arith-
metic node n. Let the nodes related to variables tx and uy be the prede-
cessors of n, and let vz be its successor.

(c) For each unary operation, say u++, we build a node n, with one prede-
cessor ux, and one successor ux+1.

(d) For each copy assignment, e.g, v = u, we build an assignment node,
which has predecessor ux, and successor vy+1, assuming y is v’s counter.

Figure 5 shows the constraint graph to our running example, assuming that
the function foo was called with the parameter N = 10. Notice that we bound
the input variables to intervals: sum0 ⊆ [0, 0], i0 ⊆ [0, 0] and N0 ⊆ [10, 10].
When constructing the constraint graph, it is important to maintain a list with
the order in which each node was created. This list, which we represent by the
numbers in boxes, will be later used to guide the range propagation phase.

3.2 Range Propagation

During the range propagation phase we find which overflow tests are necessary,
and which ones can be safely removed from the target code. The propagation of
ranges is preceded by a trivial initialization step, when we replace the constraints
of the input variables with] − ∞, +∞[if those variables have been updated
inside the trace. This is the case, for example, of variables sum0 and i0 in the
example from Figure 5. In order to do the propagation of range intervals, we
visit all the arithmetic and relational nodes, in topological order. This ordering
is given by the “age” of the node. Nodes that have been created earlier, during
the construction of the constraint graph are visited first. Notice that we get this
ordering for free, simply storing the arithmetic and relational nodes in a queue
while we create them, during the construction of the constraint graph. If every
variable is defined before being used, then by following the node creation order,

Dynamic Elimination of Overflow Tests in a Trace Compiler 11

Arithmetics

x + (+∞) = +∞ + x = +∞, x �= −∞ x + (−∞) = −∞ + x = −∞, x �= +∞

x × (±∞) = ±∞× x = ±∞, x > 0 x × (±∞) = ±∞× x = ∓∞, x < 0

Increment: x1 = x0 + 1

x0.l + 1 > MAX INT

x1.l = +∞
x0.u + 1 > MAX INT

x1.u = +∞

x0.l + 1 ≤ MAX INT

x1.l = x0.l + 1

x0.u + 1 ≤ MAX INT

x1.u = x0.u + 1

Addition: x = a + b

a.l + b.l < MIN INT

x.l = −∞
a.u + b.u < MIN INT

x.u = −∞

a.l + b.l > MAX INT

x.l = +∞
a.u + b.u > MAX INT

x.u = +∞

MIN INT ≤ a.l + b.l ≤ MAX INT

x.l = a.l + b.l

MIN INT ≤ a.u + b.u ≤ MAX INT

x.u = a.u + b.u

Multiplications: x = a × b

a.l × b.l < MIN INT

x.l = −∞
a.u × b.u < MIN INT

x.u = −∞

a.l × b.l > MAX INT

x.l = +∞
a.u × b.u > MAX INT

x.u = +∞

MIN INT ≤ a.l × b.l ≤ MAX INT

x.l = MIN(a.{l, u} × b.{l, u})

MIN INT ≤ a.u × b.u ≤ MAX INT

x.u = MAX(a.{l, u} × b.{l, u})

Fig. 6. Range propagation for arithmetic nodes. Decrements and subtractions are
similar to increments and additions. We use a.{l, u} × b.{l, u} as a short form for
(a.l × b.l, a.l × b.u, a.u × b.l, a.u × b.u).

the propagation of ranges guarantees that whenever we reach an arithmetic,
relational or assignment node, all the name nodes that point to it have been
visited before.

Each arithmetic and relational node causes the propagation of ranges in a par-
ticular way, always preserving the invariant that the lower bound of an interval
is less than or equal its upper bound. Figure 6 shows the updating rules that we
use for some arithmetic nodes. We use standard IEEE extended arithmetics [16],
except that, to improve our analysis, we assume that the result of multiplying
infinity and zero is zero. Furthermore, we let the sum of]−∞, x[plus]+∞, +∞[
to be] − ∞, +∞[, and vice-versa. We denote the interval [l, u] associated to a

12 R. Sol et al.

Less than with constant: (a1, N1) ← (a < N)?, when a.l ≤ N.l = N.u

a1.u = MIN(a.u, N.u − 1) N1.l = N.l

a1.l = a.l N1.u = N.u

General less than: (a1, b1) ← (a < b)?, when [a.l, a.u] ∩ [b.l, b.u] �= ∅

a1.u = MIN(a.u, b.u − 1) b1.l = MAX(b.l, a.l + 1)

a1.l = a.l b1.u = b.u

Equal to constant: (a1, N1) ← (a = N)?, when a.l ≤ N.l = N.u ≤ a.u

a1.l = N.l N1.l = N.l

a1.u = N.u N1.u = N.u

General equals: (a1, b1) ← (a = b)?, when [a.l, a.u] ∩ [b.l, b.u] �= ∅

a1.l = MAX(a.l, b.l) b1.l = MAX(a.l, b.l)

a1.u = MIN(a.u, b.u) b1.u = MIN(a.u, b.u)

Fig. 7. Range propagation for two relational nodes. The value of variable N is not
updated inside the trace.

node a by a.l and a.u. Although we state the range propagation rules using in-
finity precision arithmetics, our actual implementation uses wrapping semantics,
i.e: if x + 1 > x, then x = +∞. Only arithmetic nodes might cause overflows;
and each of our five types of arithmetic nodes might produce overflows in differ-
ent ways. For instance, if we find an increment of [−∞, v.u], then we keep the
overflow associated to this node, as long as v.u+1 ≤ MAX INT. Figure 7 shows
the updating rules for some relational nodes. These nodes are not associated to
any overflow test, but they help us to constrain the range of intervals bound to
program variables. As an optimization, we do not update the ranges of variables
that are not defined inside the trace. This is the case, for instance, of Variable
N in the program of Figure 2 (a). Notice that we do not perform range updates
that break the invariant v.l ≤ v.u.

After range propagation we have a conservative estimate of the intervals that
each integer variable might assume during program execution. This information
allows us to go over the LIR segment, before it is passed to Nanojit, removing
the overflow tests that our analysis has deemed unnecessary. Figure 8 shows
this step: we have removed the overflow test from the inc operation, because it
receives as input a node bound to the interval] − ∞, 9]; hence, its result will
never be greater than 10. However, our analysis cannot prove that the test in
the sub operation is also unnecessary, although that is the case.

Dynamic Elimination of Overflow Tests in a Trace Compiler 13

...

load %3 "i"

%4 = inc %3

%5 = ovf

branch %5 Exit

store "i" %4

...

load %8 "sum"

load %9 "i"

%10 = sub %8 %9

%11 = ovf

branch %11 Exit

store "sum" %10

...

i0]- ,+ [N0[10,10]sum0]- ,+ [

lt

i1]- ,9] N1[10,10]

inc

i2]- ,10]

sub

sum1]- ,+ [i3[2147483648,2147483648]

This test can be

removed, because

variable i is in

the range [- , 9]

This test cannot be

removed, because

we do not know

the range of sum
1
.

mov

2147483648

Fig. 8. Once we know the ranges of each variable involved in an arithmetic operation
we can remove the associated overflow test, if it is redundant

3.3 Complexity Analysis

The proposed algorithm has running time linear on the number of instructions of
the source trace. To see this fact, notice that the constraint graph has a number
of conditional and arithmetic nodes proportional to the number of instructions
in the trace. During our analysis we traverse the constraint graph one time,
at the range propagation phase, visiting each node only once. We do not have
to preprocess the graph beforehand, in order to sort it topologically, because
we get this ordering from the sequence in which instructions are visited in the
source trace. Our algorithm is also linear in terms of space, because each type of
arithmetic node has a constant number of predecessors and successors. This low
complexity is in contrast to the complexity of many graph traversal algorithms,
which are O(E), where E is the number of edges in the graph. These algorithms
have a worst case quadratic complexity on the number of vertices, because E =
O(V 2). We do not suffer this drawback, for in our case E = O(V).

4 Experimental Results

We have implemented our algorithm on top of TraceMonkey, revision 2010-
10-01. Our implementation handles the five arithmetic operations described in
Section 3.1, namely additions, subtractions, increments, decrements and mul-
tiplications. We perform the range analysis described in Section 3 during the
recording phase of TraceMonkey, that is, while a segment of JavaScript byte-
codes is translated to a segment of LIR. We have also modified Nanojit to remove
the overflow tests, given the results of our analysis. Our current implementation

14 R. Sol et al.

has some shortcomings, which are all due to our limited understanding of Trace-
Monkey’s implementation, and that we are in the process of overcoming:

– we cannot read values stored in global variables, a fact that hinders us from
removing overflows related to operations that manipulate these values.

– We cannot recognize when TraceMonkey starts tracing constructs such as
foreach{...}, while(true){...} and loops that range on iterators.

The benchmarks. We have correctly compiled and executed over one million
lines of JavaScript code that we took from three different benchmark suites:

Alexa top 100: the 100 most visited webpages, according to the Alexa in-
dex5. This list includes Google, Facebook, Youtube, etc. We tried to follow
Richards et al.’s methodology [12], manually visiting each of these pages
with our instrumented Firefox. Notice that we present results for only 80 of
these benchmarks, because we did not find overflow tests in 20 webpages.

Trace-Test: the test suite that is used in TraceMonkey6. This collection
of scripts includes popular benchmarks, such as Webkit’s Sunspider and
Google’s V8. Many scripts do not contain arithmetic operations; thus, we
show results only for the 224 scripts that contains at least one overflow test.

PeaceKeeper: an industrial strength benchmark used to test browsers7.

The hardware. We have used our modified TraceMonkey compiler in two dif-
ferent hardware: (i) x86: 2GHz Intel Core 2 Duo, with 2GB of RAM, featuring
Mac OS 10.5.8. (ii) ST40-300: a real-time processor manufactured by STMicro-
electronics. The ST40 runs STLinux 2.3 (kernel 2.6.32), has a 450MHz clock,
provides 200MB of physical memory and 512MB of virtual memory. This target
is a two level cache architecture with separated 32KB intruction and 32KB data
L1 caches on top of a 256KB unified L2 cache.

How effective is our algorithm? Figure 9 shows the effectiveness of our
algorithm when we run it on the Alexa webpages and the Trace-Test scripts.
We have ordered the scripts on the x-axis according to the effectiveness of our
algorithm. We present static numbers, in the sense that we have not instrumented
the binary traces to see how many times each overflow test is executed. On the
average, we remove 91.82% of the overflows tests from the scripts in Trace-Test,
and 53.50% of the overflow tests from the Alexa webpages. This is the geometric
mean; that is, we are very effective in removing overflow tests from most of the
scripts. In particular, we remove most of the overflow tests used in counters that
index simple loops. However, the arithmetic mean is much lower, because of the
outliners. Three of these scripts, which are part of SunSpider (included in Trace-
Test) deal with cryptography and manipulate big numbers. They account for
8,756 tests, out of which we removed only 347. In absolute terms we remove 961

5 http://www.alexa.com/
6 http://hg.mozilla.org/tracemonkey/file/c3bd2594777a/js/src/

trace-test/tests
7 http://service.futuremark.com/peacekeeper/index.action

Dynamic Elimination of Overflow Tests in a Trace Compiler 15

Fig. 9. The effectiveness of our algorithm in terms of percentage of overflow tests
removed per script. (Top) Alexa; geo mean: 53.50%. (Bottom) Trace-test; geo mean:
91.82%. Hardware: same results for ST40 and x86. The 224 scripts are sorted by average
effectiveness. We removed 700/859 overflow tests for PeaceKeeper (one script).

out of 11,052 tests in the Trace-Test benchmark, and 2,680 out of 11,126 tests
in the Alexa benchmark. The arithmetic mean, in this case, is 8.7% for Trace-
Test, and 24.08% for Alexa. Figure 9 does not contain a chart for PeaceKeeper,
because this benchmark contains only one script. We removed 700 tests out of
the 859 tests that we found in this script.

What is the code size reduction due to the elimination of overflow

tests? On the x86 target, TraceMonkey uses eight instructions to implement
each overflow test, which includes the branch-if-overflow instruction, load in-
structions to reconstruct the interpreter state and an unconditional jump back
to interpreter mode. On the ST40 microprocessor, TraceMonkey uses 10 in-
structions. We eliminate all these instructions after removing an overflow test.
Figure 10 shows the average size reduction that our algorithm obtains on each
target. On the average, we shrink each script by 8.83% on the ST40, and 6.63%
on the x86. On most of the scripts the size reduction is modest; however, there
are cases in which our algorithm decreases the binaries by over 60.0%. Notice
that by using integers instead of floating-point numbers TraceMonkey already
reduces the size of the binaries that it produces. For instance, on the ST40, Trace-
Monkey obtains an average 31.47% of size reduction with the floating-point to
integer optimization.

What is the effect of our algorithm on TraceMonkey’s runtime? Fig-
ure 11 shows that, on the average, our algorithm has increased the runtime of

16 R. Sol et al.

Fig. 10. Size reduction per script in two different architectures. (Top) ST40; geo mean:
8.83%. (Bottom) x86; geo mean: 6.63% Benchmark: Trace-Test. The 224 scripts are
sorted by average size reduction.

TraceMonkey by 2.56% on the x86. This time includes parsing, interpreting,
JIT compiling and executing the scripts. Our algorithm increases the time of
JIT compilation, but decreases the time of script execution. So far the cost, in
time, is negative for two reasons: a prototype implementation and a low benefit
optimization. Figure 11 shows that running our analysis without disabling over-
flows tests increases TraceMonkey’s runtime by 4.12%. Furthermore, the effects
of avoiding the overflows tests are negligible. Most of the time, the impact of
an overflow test is the cost of executing the x86 instruction branch-if-overflow;
however, this instruction is normally predicted as not taken. If we disable ev-
ery overflow test without running the analysis, then we improve the runtime by
1.56% on the scripts that finish correctly. The noise in the chart is due to short
runtimes – the slowest script executes for 0.73s, and the fastest for 0.01s.

Why sometimes we fail to remove overflows? We have performed a man-
ual study on the 42 smallest programs from Trace-Test in which we did not
remove overflow tests. Each of these tests contains a loop indexed by an induc-
tion variable. Figure 12 explains our findings. In 69% of the traces, we failed to
remove the test because the induction variable was bounded by a global variable.
As we explained before, our implementation is not able to identify the values of
global variables; hence, we cannot use them in the estimation of ranges. In 17%
of the remaining cases the trace is produced after a foreach control structure,
which our current implementation fails to recognize. Once we fix these omissions,
we will be able to remove at least one more overflow test in 36 out of these 42

Dynamic Elimination of Overflow Tests in a Trace Compiler 17

No analysis, no overflow test

Analysis removing ovf tests

Analysis not removing ovf tests

Fig. 11. Impact of our algorithm on TraceMonkey’s runtime. Benchmark: Trace-Test.
Hardware: x86. The 224 scripts are sorted by average runtime increase. We run each
test 8 times, ignoring smallest and largest outliers. Zero is TraceMonkey’s runtime
without our analysis and with overflow tests enabled.

Fig. 12. The main reasons that prevent us from removing overflow tests

scripts analyzed. There was only one script in which our algorithm legitimately
failed to remove a test: in this case the semantics of the program might lead to
a situation in which an overflow, indeed, happens.

What we gain by knowing the runtime value of variables? We perform
more aggressive range estimations than previous range analyses described in the
literature, because we are running alongside a JIT compiler, a fact that gives
us the runtime value of variables, including loop limits. Statically we can only
rely on constants to start placing bounds in variable ranges. Non-surprisingly, a
static implementation of our algorithm removes only 472 overflow tests from the
Trace-Test, which corresponds to 37% of the tests that we remove dynamically.

Why are effectiveness results so different for Trace-Test and Alexa?

Figure 9 shows that our algorithm is substantially more effective when applied
on the programs in Trace-Test than on the programs in the Alexa top 100 pages.
This happens because most of the scripts in the Trace-Test benchmark suite
are small, and contain only simple loops controlled by locally declared variables,
which our algorithm can recognize. In order to compare the two test suites,
we have used our instrumented Firefox to produce the histogram of assembly

18 R. Sol et al.

Fig. 13. A histogram of the bytecodes present in Trace-Test and PeaceKeeper, com-
pared to the bytecodes present in the Alexa collection. X-axis: instructions i ordered
by their frequency in the Alexa collection.

instructions that TraceMonkey generates for each benchmark. Figure 13 shows
the results of our findings. We have produced this chart by plotting pairs (i, f(i)),
which we define as follows:

1. let I be the list formed by the 100 most common SpiderMonkey bytecodes
found in the Alexa benchmark. We order the bytecodes i according to a(i),
the frequency of occurrences of i in the Alexa collection.

2. For each bytecode i ∈ I and benchmark B ∈ {Trace-Test, PeaceKeeper}, we
let b(i) be i’s frequency in B, and we let f(i) = a(i) − b(i).

The closer to zero the values of f(i), more similar is the frequency of i in the Alexa
collection and in the other benchmark. Using this rough criterion, we see that
PeaceKeeper is closer to Alexa than Trace-Test. Summing up the absolute values
of f(i), we find 0.24 for PeaceKeeper and 0.75 for Trace-Test. Coincidentally, our
analysis is more effective on Trace-Test than on PeaceKeeper.

5 Related Work

Just-in-time compilers are old allies of programming language interpreters. Since
the seminal work of John McCarthy [19], the father of Lisp, a multitude of JIT
compilers have been designed and implemented. A comprehensive survey on
just-in-time compilation is given by John Aycock [1].

The optimization that we propose in this paper is a type of partial evaluation
at runtime. Partial evaluation is a technique in which a compiler optimizes a pro-
gram, given a partial knowledge of its input [18]. Variations of partial evaluation
have been used to perform general code optimization [22,23]. This type of par-
tial evaluation in which the JIT compiler uses runtime values to produce better

Dynamic Elimination of Overflow Tests in a Trace Compiler 19

binaries is sometimes called specialization by need [21]. Implementations that use
this kind of technique include Python’s Psyco JIT compiler [21], Matlab [7,10]
and Maple [4]. Partial evaluation has been used in the context of just-in-time
compilation mostly as a form of type specialization [7,5,14]. That is, once the
compiler proves that a value belongs into a certain type, it uses this type directly,
instead of resorting to costly boxing and unboxing techniques.

The competition between popular browsers has brought renewed attention to
trace compilation. However, the idea of focusing the compilation effort on code
traces, instead of whole methods, has been known at least since the work of
Bala et al. [2], or even before if we consider trace scheduling [11]. Traces have
been independently integrated on JIT-compilers by Gal [13] and Zaleski [27].
Currently, there are many trace-based JIT-compilers [6,14,15,27]. For a formal
overview of trace compilation, we recommend the work of Guo and Palsberg [26].

Our algorithm to remove overflow tests is a type of range analysis [17,20].
Range analysis tries to infer lower and upper bounds to the values that a vari-
able might assume during the program execution. In general these algorithms
rely on theorem provers, an approach deemed too slow to a JIT compiler. Bodik
et al. [3] have described a specialization of range analysis that removes array
bound checks, the ABCD algorithm, that targets JIT compilation. Zhendong
and Wagner [25] have described a type of range analysis that can be solved in
polynomial time. Stephenson et al. [24] have used a polynomial time analysis to
infer the bitwidth of each integer variable used in the source program. Contrary
to our approach, all these previous algorithms work on the static representation
of the source program. Such fact severely constraints the amount of informa-
tion that these analysis can rely on. By knowing the runtime value of program
variables we can perform a very extensive, yet fast, range analysis.

6 Conclusion

This paper has presented a new algorithm to remove redundant overflow tests
during the JIT compilation of JavaScript programs. The proposed algorithm
works in the context of a trace compiler. Our algorithm is able to find very
precise ranges for program variable by inspecting their runtime values. We have
implemented our analysis on top of TraceMonkey, the JIT compiler used by the
Mozilla Firefox browser to speed up the execution of JavaScript programs. We
have submitted our implementation to Mozilla, as a Firefox patch, available at
http://github.com/rodrigosol/Dynamic-Elimination-Overflow-Test. In
terms of future work, we would like to improve the performance and effective-
ness of our implementation. For instance, currently we can only read the runtime
values of local variables, a limitation that we are working to overcome.

Acknowledgments. This project has been made possible by the cooperation
FAPEMIG-INRIA, grant 11/2009. Rodrigo Sol is supported by the Brazilian
Ministry of Education under CAPES and CNPq. We thank David Mandelin
from the Mozilla Foundation for helping us with TraceMonkey.

20 R. Sol et al.

References

1. Aycock, J.: A brief history of just-in-time. ACM Computing Surveys 35(2), 97–113
(2003)

2. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: PLDI, pp. 1–12. ACM, New York (2000)

3. Bodik, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM, New York (2000)

4. Carette, J., Kucera, M.: Partial evaluation of maple. In: PEPM, pp. 41–50. ACM,
New York (2007)

5. Chambers, C., Ungar, D.: Customization: optimizing compiler technology for self, a
dynamically-typed object-oriented programming language. SIGPLAN Not. 24(7),
146–160 (1989)

6. Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich,
B., Franz, M.: Tracing for web 3.0: trace compilation for the next generation web
applications. In: VEE, pp. 71–80. ACM, New York (2009)

7. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing matlab through
just-in-time specialization. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp.
46–65. Springer, Heidelberg (2010)

8. ECMA Committe. ECMAScript Language Specification. ECMA, 5th edn. (2009)
9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

10. Elphick, D., Leuschel, M., Cox, S.: Partial evaluation of MATLAB. In: Pfenning, F.,
Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 344–363. Springer, Heidelberg
(2003)

11. Fisher, J.A.: Trace scheduling: A technique for global microcode compaction.
Trans. Comput. 30, 478–490 (1981)

12. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of javascript programs. In: PLDI, pp. 1–12 (2010)

13. Gal, A.: Efficient Bytecode Verification and Compilation in a Virtual Machine.
PhD thesis, University of California, Irvine (2006)

14. Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M.R.,
Bebenita, M., Change, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI, pp. 465–478. ACM, New York (2009)

15. Gal, A., Probst, C.W., Franz, M.: Hotpathvm: an effective jit compiler for resource-
constrained devices. In: VEE, pp. 144–153 (2006)

16. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. Comput. Surv. 23, 5–48 (1991)

17. Harrison, W.H.: Compiler analysis of the value ranges for variables. IEEE Trans.
Softw. Eng. 3(3), 243–250 (1977)

18. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation, 1st edn. Prentice Hall, Englewood Cliffs (1993)

19. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Communications of ACM 3(4), 184–195 (1960)

20. Patterson, J.R.C.: Accurate static branch prediction by value range propagation.
In: PLDI, pp. 67–78. ACM, New York (1995)

21. Rigo, A.: Representation-based just-in-time specialization and the psyco prototype
for python. In: PEPM, pp. 15–26. ACM, New York (2004)

Dynamic Elimination of Overflow Tests in a Trace Compiler 21

22. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for java.
TOPLAS 25(4), 452–499 (2003)

23. Shankar, A., Sastry, S.S., Bod́ık, R., Smith, J.E.: Runtime specialization with op-
timistic heap analysis. SIG. Not. 40(10), 327–343 (2005)

24. Stephenson, M., Babb, J., Amarasinghe, S.: Bidwidth analysis with application to
silicon compilation. In: PLDI, pp. 108–120. ACM, New York (2000)

25. Su, Z., Wagner, D.: A class of polynomially solvable range constraints for inter-
val analysis without widenings. Theoretical Computeter Science 345(1), 122–138
(2005)

26. Guo, S.y., Palsberg, J.: The essence of compiling with traces. In: POPL. ACM,
New York (2011) (page to appear)

27. Zaleski, M.: YETI: a gradually extensible trace interpreter. PhD thesis, University
of Toronto (2007)

	Dynamic Elimination of Overflow Tests in a Trace Compiler
	Introduction
	TraceMonkey in a Nutshell
	Flow Sensitive Range Analysis
	Construction of the Constraint Graph
	Range Propagation
	Complexity Analysis

	Experimental Results
	Related Work
	Conclusion
	References

