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ABSTRACT

Data centers have recently gained significant popularity as a
cost-effective platform for hosting large-scale service appli-
cations. While large data centers enjoy economies of scale
by amortizing initial capital investment over large number of
machines, they also incur tremendous energy cost in terms
of power distribution and cooling. An effective approach for
saving energy in data centers is to adjust dynamically the
data center capacity by turning off unused machines. How-
ever, this dynamic capacity provisioning problem is known
to be challenging as it requires a careful understanding of the
resource demand characteristics as well as considerations to
various cost factors, including task scheduling delay, ma-
chine reconfiguration cost and electricity price fluctuation.
In this paper, we provide a control-theoretic solution to

the dynamic capacity provisioning problem that minimizes
the total energy cost while meeting the performance objec-
tive in terms of task scheduling delay. Specifically, we model
this problem as a constrained discrete-time optimal control
problem, and use Model Predictive Control (MPC) to find
the optimal control policy. Through extensive analysis and
simulation using real workload traces from Google’s compute
clusters, we show that our proposed framework can achieve
significant reduction in energy cost, while maintaining an
acceptable average scheduling delay for individual tasks.

Categories and Subject Descriptors
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1. INTRODUCTION
Data centers today are home to a vast number and a vari-

ety of applications with diverse resource demands and per-
formance objectives. Typically, a cloud application can be
divided into one or more tasks executed in one or more con-
tainers (e.g., virtual machines (VMs)). At run time, sched-
ulers are responsible for assigning tasks to machines. In to-
day’s reality, production data centers such as Google’s cloud
backend often execute tremendous number (e.g., millions)
of tasks on a daily basis [27]. Such extremely large-scale
workload hosted by data centers not only consumes signifi-
cant storage and computing power, but also huge amounts
of energy. In practice, the operational expenditure on en-
ergy not only comes from running physical machines, but
also from cooling down the entire data center. It has been
reported that energy consumption accounts for more than
12% of monthly operational expenditures of a typical data
center [5]. For large companies like Google, a 3% reduction
in energy cost can translate into over a million dollars in
cost savings [19]. On the other hand, governmental agencies
continue to implement standards and regulations to promote
energy-efficient (i.e., “Green”) computing [1]. Motivated by
these observations, cutting down electricity cost has become
a primary concern of today’s data center operators.

In the research literature, a large body of recent work tries
to improve energy efficiency of data centers. A plethora of
techniques have been proposed to tackle different aspects
of the problem, including the control of power distribution
systems [20], cooling systems [8], computer hardware [25],



software components such as virtualization [24] and load-
balancing algorithms [11, 15]. It is known that one of the
most effective approach for reducing energy cost is to dy-
namically adjust the data center capacity by turning off
unused machines, or to set them to a power-saving (e.g.,
“sleep”) state. This is supported by the evidence that an
idle machine can consume as much as 60% of the power
when the machine is fully utilized [11, 15, 17]. Unsurpris-
ingly, a number of efforts are trying to leverage this fact to
save energy using techniques such as VM consolidation [24]
and migration [23]. However, these studies have mainly fo-
cused on improving the utilization of clusters by improving
the “bin-packing” algorithm for VM scheduling. In a pro-
duction data center where resource requests for tasks can
arrive dynamically over time, deciding the number of ma-
chines to be switched off is not only affected by the effi-
ciency of the scheduling algorithm, but also time-dependent
characteristics of resource demand. While over-provisioning
the data center capacity can lead to sub-optimal energy sav-
ings, under-provisioning the data center capacity can cause
significant performance penalty in terms of scheduling delay,
which is the time a task has to wait before it is scheduled
on a machine. A high scheduling delay can significantly
hurt the performance of some services that must be sched-
uled as soon as possible to satisfy end user requests (e.g.,
user-facing applications). On the other hand, tasks in pro-
duction data centers often desire multiple types of resources,
such as CPU, memory, disk and network bandwidth. In this
context, devising a dynamic capacity provisioning mecha-
nism that considers demand for multiple types of resources
becomes a challenging problem. Furthermore, there are re-
configuration costs associated with switching on and off ma-
chines. In particular, turning on and off a machine often
consumes large amount of energy due to saving and load-
ing system states to memory and disk [18]. When turning
off a machine with running tasks, it is necessary to consider
the performance penalty due to migrating (or terminating)
the tasks on the machine. Therefore, the reconfiguration
cost due to server switching should be considered as well.
Finally, another aspect often neglected in the existing lit-
erature is the electricity price. For example, it is known
that in many regions of the U.S., the price of electricity can
change depending on the time of the day. Electricity price is
thus another factor that should be considered when making
capacity adjustment decisions.
In this paper, we present a solution to the dynamic capac-

ity provisioning problem with the goal of minimizing total
energy cost while maintaining an acceptable task schedul-
ing delay. Different from existing works on server capacity
provisioning problem, we formulate the problem as a con-
vex optimization problem that considers multiple resource
types and fluctuating electricity prices. We then analyze
the optimality condition of this problem and design a Model
Predictive Control (MPC) algorithm that adjusts the num-
ber of servers to track the optimality condition while taking
into account switching costs of machines. Through analy-
sis and simulation using real workload traces from Google’s
compute clusters, we show our proposed solution is capa-
ble of achieving significant energy savings while minimizing
SLA violations in terms of task scheduling delay.
The remainder of the paper is organized as follows. Sec-

tion 2 presents a survey of related work in the research liter-
ature. In Section 3, we present an analysis of real workload

traces for one of Google’s production compute clusters and
illustrate the benefits of our approach. Section 4 describes
the architecture of our proposed system. In Section 5, we
present our demand prediction model and control algorithm.
In Section 6, we provide our detailed formulation for the op-
timal control problem and present our solution based on the
MPC framework. In Section 7, we evaluate our proposed
system using Google workload traces, and demonstrate the
benefits under various parameter settings. Finally, we draw
our conclusions in Section 8.

2. RELATED WORK
Much effort has been made to achieve energy savings in

data centers. Dynamic capacity provisioning is one of the
most promising solutions to reduce energy cost that consists
of dynamically turning on and off data center servers. For
instance, motivated by the time-dependent variation of the
number of users and TCP connections in Windows live mes-
senger login servers, Chen et al. [11] have derived a frame-
work for dynamic server provisioning and load dispatching.
They have proposed a technique to evaluate the number of
needed servers based on the predicted load in terms of users’
login rate and active TCP connections. The load dispatch-
ing algorithm ensures that incoming requests are distributed
among the servers. However, their framework does not con-
sider the cost of switching on and off machines. Guenter
et al. [16] have proposed another automated server provi-
sioning and load dispatching system based on the predicted
demand while considering the cost of transitioning servers
between different power states (e.g., “on”, “off”, “hibernate”).
This cost depends on the transition time, the energy cost
and the long-term reliability of the server. Different from
our work, they analyze the number of requests that can be
satisfied instead of request scheduling delay. Furthermore,
the multi-dimensional aspect of resource demand and fluctu-
ations of electricity prices are not considered in their work.

Kusic et al. [18] have proposed a dynamic resource provi-
sioning framework for virtualized server environments based
on lookahead control. The framework minimizes power con-
sumption by adjusting the number of physical and virtual
machines. It also estimates the CPU share and the work-
load directed to every virtual machine. In addition, their
controller manages to maximize the number of transactions
that satisfy Service Level Agreement (SLA) in terms of av-
erage response time while taking into account the cost of
turning on and off the machines. However, they mainly con-
sider the performance of application servers rather than the
scheduling of VMs. Furthermore, time-dependent variations
of electricity prices are not considered in their framework.
Abbasi et al. [7] have proposed a thermal-aware server pro-
visioning technique and a workload distribution algorithm.
In this approach, active servers are selected using heuristics
in a way that minimizes cooling and computing energy cost.
The workload distribution algorithm ensures that servers’
utilizations do not exceed a threshold in order to satisfy SLA
defined in terms of average response time. However, their
approach does not consider switching cost of machines.

There is also a large body of work that applies control the-
ory to achieve energy savings in data centers. Fu et al. [15]
have proposed a control-theoretic thermal balancing that
reduces temperature differences among servers. Hence, the
controller acts on the utilization of each processor in order to
reduce or increase its temperature. Model predictive control
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Figure 1: Total CPU demand and usage (29 days).
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Figure 2: Total memory demand and usage (29 days).
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Figure 3: Number of ma-
chines available and used
in the cluster.
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is used by Wang et al. [26] to reduce the total power con-
sumption of a cluster by tuning CPU frequency level for the
processor of each server. However, most of previous work
has focused on capacity provisioning from a service provider
perspective, i.e., provisioning server capacities (e.g., number
of web servers) to accommodate end user requests. Existing
solutions to this problem rely on queuing-theoretic models
that consider only a single type of resource (mainly CPU).
In contrast, our approach investigates the problem from the
cloud provider’s perspective, where resource demand and us-
age are multi-dimensional. Our solution considers resource
usage and capacity for multiple resource types, such as CPU
and memory. Furthermore, none of the existing work has
considered additional factors such as the fluctuating elec-
tricity prices. Our approach is also lightweight and indepen-
dent of the scheduling algorithm, making it more suitable for
practical implementation.

3. WORKLOAD ANALYSIS
To motivate the problem and justify our solution approach,

we have conducted an analysis of workload traces for a pro-
duction compute cluster at Google [4] consisting of approxi-
mately 12, 000 machines. The dataset was released on Novem-
ber 29, 2011. The workload traces contain scheduling events
as well as resource demand and usage records for a total of
672, 003 jobs and 25, 462, 157 tasks over a time span of 29
days. Specifically, a job is an application that consists of one
or more tasks. Each task is scheduled on a single physical
machine. When a job is submitted, the user can specify the
maximum allowed resource demand for each task in terms of
required CPU, memory and disk size. At run time, the us-
age of a task measures the actual consumption of each type
of resources. The current Google cluster traces provide task

demand and usage for CPU, memory and disk 1. The usage
of each type of resource is reported at 5 minute intervals.
Our current analysis mainly focuses on CPU and memory,
as they are typically scarce compared to disk. However, we
believe it is straightforward to extend our approach to con-
sider other resources such as disk space.

In addition to resource demand, the user can also specify
a scheduling class, a priority and placement constraints for
each task. The scheduling class captures the type of the task
(e.g., user-facing or batch). The priority determines the im-
portance of each task. The task placement constraints spec-
ify additional scheduling constraints concerning the machine
configurations, such as processor architecture of the physical
machine [21]. To simplify, we do not consider the scheduling
class, priority and task placement constraints in our model.
The analysis of these factors is left for future work.

We first plot the total demand and usage for both CPU
and memory over the entire duration. The results are shown
in Figure 1 and 2 respectively. The total usage at a given
time is computed by summing up the resource usage of all
the running tasks at that time. On the other hand, the to-
tal demand at a given time is determined by total resource
requirement by all the tasks in the system, including the
tasks that are waiting to be scheduled. From Figure 1 and
2, it can be observed that both usage and demand for each
type of resource can fluctuate significantly over time. Fig-
ure 3 shows the number of machines available and used in
the cluster. Specifically, a machine is available if it can be
turned on to execute tasks. A machine is used if there is
at least one task running on it. Figure 3 shows that the
capacity of this cluster is not adjusted based on resource
demand, as the number of used machines is almost equal
to the number of available machines. Combining the obser-
vations from Figure 1, 2 and 3, it is evident that a large
number of machines can be turned off to save energy. For
instance, we estimated that a perfect energy saving schedule
where the provisioned capacity exactly matches the current
demand can achieve about 22% and 17% percent resource
reduction for CPU and memory, respectively, compared to
provisioning capacity according to the peak demand. This
indicates that there is great potential for energy savings in
this compute cluster using dynamic capacity provisioning.

However, while turning off active machines can reduce
total energy consumption, turning off too many machines
can also hurt task performance in terms of scheduling delay.
Classic queuing theory indicates that task scheduling delay

1Note that the values reported in Google cluster traces were
normalized between 0 and 1.
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Figure 5: System architecture.

grows exponentially with resource utilization. To quantify
this effect, we analyzed the relationship between scheduling
delay experienced by each task and the average utilization of
the bottleneck resource (e.g., CPU) while the task is waiting
to be scheduled. We then plotted the average task schedul-
ing delay as a function of the utilization of the bottleneck
resource, as shown in Figure 4. The error bar in this dia-
gram represents the standard deviation of task scheduling
delay with average utilization at each given value. Indeed,
we found that there is a direct relationship between task
scheduling delay and resource utilization. We also modeled
the relationship through curve fitting. It seems that both
a linear function (i.e., d = a · U + b) or a delay function
for M/M/1 queuing model (i.e., d = a · U

1−U
+ b)) can fit

the curve well. Similar observations have been reported in
recent work [27][21].
The above observations suggest that while the benefits

of dynamic capacity provisioning is apparent for produc-
tion data center environments, designing an effective dy-
namic capacity provisioning scheme is challenging, as it in-
volves finding an optimal tradeoff between energy savings
and scheduling delay. Furthermore, turning off active ma-
chines may require killing or migrating tasks running on
these machines, which will introduce an additional perfor-
mance penalty. The goal of this paper is to provide a so-
lution to this dynamic capacity provisioning problem that
finds the optimal trade-off between energy savings and the
cost of reconfigurations, including cost of turning on and off
machines and killing/migrating tasks.

4. SYSTEM ARCHITECTURE
Our proposed system architecture is depicted in Figure 5.

It consists of the following components:

• The scheduler is responsible for assigning incoming
tasks to active machines in the cluster. It also reports
the average number of tasks in the queue during each
control period to help the controller make informed
decisions.

• The monitoring module is responsible for collecting
CPU and memory usage statistics of every machine in
the cluster. The monitoring is performed periodically.

• The prediction module receives statistics about the us-
age of all resources (CPU and memory) in the cluster
and predicts the future usage for all of them.

• The controller implements a MPC algorithm that con-
trols the number of machines based on the predicted
usage of the cluster and taking into account the recon-
figuration cost.

• The capacity provisioning module gathers the status
information of machines from the controller, and de-
cides which machines in particular should be added or
removed. It then provides the scheduler with the list
of active machines.

It is worth mentioning that different schedulers may adopt
different resource allocation schemes. For example, in a pub-
lic cloud environment such as Amazon EC2, it is necessary
to schedule tasks according to their resource demand (e.g.,
VM size). However, since the actual resource usage of each
task can be much lower than the demand, many advanced
schedulers adjust dynamically resource allocation based on
task usage [22]. Even though our framework is applicable
to both scenarios, in this work, we use the latter case for
illustration, not only because it is more general, but also
because it reflects the behavior of Google cluster schedulers.
In particular, Google’s schedulers intentionally over-commit
resources on each machine [3]. Finally, as an initial effort to-
wards solving this problem, we currently consider that all the
machines in the cluster are homogenous and with identical
resource capacities. It is part of our future work to extend
our model to consider machine heterogeneity (e.g., multiple
generations of machines [21]).

In the following sections, we will describe the design of
each component in details.

5. USAGE PREDICTION
In this section, we describe our model for predicting usage

of each resource type. We used the Auto-Regressive Inte-
grated Moving Average (ARIMA) model [9] to predict the
time series Gr

k which represents the usage of resource type r
in all the machines at time k. For convenience, we drop the
superscript r and we write simply Gk in this section.



5.1 One-step Prediction
Knowing the last n observations of Gk, i.e., Gk−n+1,...

Gk, we want to predict Gk+1, which is the expected usage
at time k+1 predicted at time k. The time series Gk follows
an ARMA(n,q) model if it is stationary and if for every k:

Gk+1 = φ0Gk + ..+ φn−1Gk−n+1

+ǫk+1 + θ0ǫk + ..+ θq−1ǫk+1−q, (1)

where the φi and θj are constants estimated from available
data. The terms ǫk are error terms which are assumed to be
independent, identically distributed samples from a normal
distribution with zero mean and finite variance σ2. The
parameters n and q are the number of lags used by the model
(i.e., the number of last measured values of the usage) and
the number of error terms respectively. Equation (1) can
also be written in a concise form as:

Gk+1 =

n−1
∑

i=0

φiL
iGk + ǫk+1 + (

q−1
∑

i=0

θiL
i)ǫk, (2)

where L is the backward shift operator defined as follows:
LiGk = Gk−i. We point out that AR and MA models are
special cases of the ARMA model when q = 0 or n = 0.
The ARMAmodel fitting procedure assumes that the data

are stationary. If the time series exhibits variations, we use
differencing operation in order to make it stationary. It is
defined by:

(1− L)Gk = Gk −Gk−1. (3)

It can be shown that a polynomial trend of degree k is
reduced to a constant by differencing k times, that is, by
applying the operator (1−L)ky(t). An ARIMA(n,d,q) model
is an ARMA(n,q) model that has been differenced d times.
Thus, the ARIMA(n,d,q) can be given by:

(

1−

n−1
∑

i=0

φiL
i

)

(1− L)dGk =

(

1 +

q−1
∑

i=0

θiL
i

)

ǫk (4)

5.2 Multi-step Prediction
In our model, we aim to predict future resource usage over

a time window H ∈ N
+. This requires predicting resource

usage h ∈ N
+ steps ahead from an end-of-sample Gk for all

1 ≤ h ≤ H. Let Gk+h|k denote the hth step prediction of Gk

knowing the last n observations, i.e., Gk−n+1,... Gk. Thus,
we aim to predict Gk+1|k,Gk+2|k....,Gk+h|k. The multi-step
prediction is obtained by iterating the one-step ahead pre-
diction. The hth step prediction Gk+h|k is given by:

Gk+h|k = f(Gk+h−n|k, ..., Gk+h−i|k, ..., Gk+h−1|k), (5)

where Gk−i|k = Gk−i ∀i ∈ [0, n], the function f is the pre-
diction model, n is the number of lags used by the model
and h is the prediction step. Table 1 illustrates how one-step
prediction is iterated to obtain multi-step predictions.

6. CONTROLLER DESIGN
We formally describe the dynamic capacity provisioning

problem in this section. We assume the cluster consists of
Mk ∈ N

+ homogeneous machines at time k. The number of
machines in the cluster can change due to machine failure
and recovery. We assume each machine has d ∈ N types of
resources. For example, a physical machine provides CPU,
memory and disk. Let R = {1, 2, ..., d} denote the set of

Table 1: Example of multi-step prediction (n = 3).

Prediction Inputs of the model Output

step

1 Gk−2|k,Gk−1|k,Gk|k Gk+1|k

2 Gk−1|k,Gk|k,Gk+1|k Gk+2|k

3 Gk|k,Gk+1|k,Gk+2|k Gk+3|k

4 Gk+1|k,Gk+2|k,Gk+3|k Gk+4|k

resource types. Denote by Cr ∈ R
+ the capacity for resource

type r ∈ R of a single machine.
To model the system dynamics, we divide time into inter-

vals of equal duration. We assume reconfiguration happens
at the beginning of each time interval. At interval k ∈ N

+,
the measured usage for resource type r in the cluster is de-
noted by Gr

k. Let xk denote the number of active machines.
Denote by uk ∈ R the change in the number of active ma-
chines. A positive value of uk means more machines will
be turned on, whereas a negative value of uk means some
active machines will be powered off. Therefore, we have the
following simple state equation that calculates the number
of active machines at time k + 1:

xk+1 =xk + uk. (6)

Our objective is to control the number of machines in or-
der to reduce the total operational cost in terms of energy
consumption and penalty due to violating the SLA, while
taking into consideration the cost of dynamic reconfigura-
tion. In what follows, we describe how to model each of the
cost factors in details.

6.1 Modeling SLA penalty cost
In our model, the SLA is expressed in terms of an upper

bound d̄ on the average task scheduling delay. Thus, in
order to meet the SLA, the average task scheduling delay
dk at time k should not exceed d̄. As suggested in Section
3, the average task scheduling delay is correlated with the
cluster resources’ utilization, and more particularly with the
utilization of the bottleneck resource. Therefore, we define
the bottleneck resource b ∈ R at time k ∈ N

+ as the resource
that has the highest utilization. In our model, the utilization
of resource r ∈ R in the cluster at time k ∈ N

+ is given by:

Ur
k =

Gr
k

xkCr
. (7)

Therefore, the utilization of the bottleneck resource b can
be calculated as:

Ub
k = max

r∈R
{Ur

k} . (8)

Then the average scheduling delay at time k ∈ N can be
expressed as:

dk = qb(U
b
k), (9)

where qb(U
b
k) denotes the average latency given current uti-

lization Ub
k for the bottleneck resource b. The function qb(·)

can be obtained using various techniques, such as queue the-
oretic models, or directly from empirical measurements as
described in Section 3.

We adopt a simple penalty cost model for SLA violation.
Specifically, if the delay bound is violated, then there will



be a SLA penalty cost PSLA
k proportional to the degree of

violation. Therefore, the penalty function PSLA
k (·) can be

rewritten as:

PSLA
k (Ub

k) = Nkp
SLA(q(Ub

k)− d̄)+, (10)

where pSLA represents the unit penalty cost for violating the
delay upperbound, and Nk is the weight factor representing
the severity of the violation at time k (e.g., Nk can be the
number of requests in the scheduling queue at time k).

6.2 Modeling the total energy cost
In the research literature, it is known that the total energy

consumption of a physical machine can be estimated by a
linear function of CPU, memory and disk usage [16, 7, 11,
14]. Thus, the energy consumption of a machine at time k
can be expressed as:

ek = Eidle +
∑

r∈R

αrUr
k. (11)

Let ppower
k denote the electricity price at time k. Then, for a

given number of machines xk, the total energy cost P power
k

at time k can be expressed as

P power
k (xk) = ppower

k xkek

= ppower
k xk(Eidle +

∑

r∈R

αr Gr

xkCr
). (12)

6.3 Formulation of the optimization problem
As mentioned previously, our objective is to control the

number of servers so as to minimize the total operational
cost, which is the sum of SLA penalty cost PSLA

k (Ub
k) and

energy cost P power
k (xk). At the same time, we need to en-

sure that the number of active machines in the cluster must
not exceed Mk, the total number of physical machines in the
cluster. This can be formulated by the following optimiza-
tion problem:

min
xk∈R+

Nkp
SLA

(

q

(

max
r∈R

{

Gr

xkCr

})

− d̄

)+

+ ppower
k xk

(

Eidle +
∑

r∈R

αr Gr

xkCr

)

(13)

s.t. 0 ≤ xk ≤Mk,

where (x)+ = max (x, 0). Notice that ppower
k xk·

∑

r∈R
αr Gr

xkC
r

does not depend on xk at time k, thus it can be omit-
ted in the optimization formulation. In addition, define

wk = maxr{
Gr

k

Cr }, we can further simplify the problem to:

min
0≤xk≤Mk

Nkp
SLA

(

q

(

wk

xk

)

− d̄

)+

+ ppower
k xkEidle. (14)

Assuming that q(wk

xk
) is a decreasing function of xk (namely,

the average queuing delay decreases as the number of ma-
chines increases), we can see that the optimal solution x∗

k

of this problem satisfies x∗
k ≤

wk

q−1(d̄)
, since if x∗

k ≥
wk

q−1(d̄)
,

(q(wk

xk
)− d̄)+ = 0, in this case we can decrease x∗

k to wk

q−1(d̄)

to reduce energy cost while maintaining (q(wk

xk
) − d̄)+ = 0.

Therefore, we can further simplify the problem to:

min
0≤xk≤

wk

q−1(d̄)

Nkp
SLA(q(

wk

xk

)− d̄) + ppower
k xkEidle (15)

In order to solve this optimization problem, we use the
Karush-Kuhn-Tucker (KKT) approach [10]. The Lagrangian
function is

L(xk, γ) =Nkp
SLA

(

q

(

wk

xk

)

− d̄

)

+ ppower
k xkEidle

+ γ(xk −
wk

q−1(d̄)
) + µ (0− xk) . (16)

The KKT conditions are:

dL

dx
= ppower

k Eidle −Nkp
SLAwk

dq
(

wk

xk

)

dx

(

1

x2
k

)

+ γ − µ = 0,

µxk = 0,

γ(
wk

q−1(d̄)
− xk) = 0,

0 ≤ xk ≤
wk

q−1(d̄)
, µ, γ ≥ 0.

We need to consider three cases: (1) γ > 0, (2) µ > 0,
and (3) γ = 0 and µ = 0. The first two cases correspond
to boundary conditions whether x∗

k = wk

q−1(d̄)
or x∗

k = 0. In

the third case, assuming q(·) is convex and differentiable, we
can solve x∗

k using the first condition. For instance, q(U) =
a · U

1−U
+ b (which is the case for M/M/1 queuing model),

we can obtain

x∗
k = wk +

√

NkpSLAawk

ppower
k Eidle

. (17)

The above equation reveals many insights. First, the op-
timal number of servers x∗

k depends mainly on the cluster
utilization, which is captured by the variable wk. Second,
x∗
k is also dependent on the electricity price and the SLA

violations. In particular, it increases either when the elec-
tricity price drops down or when the SLA penalty cost rises.
Therefore, it can be seen that equation (17) tries to strike
a balance between saving electricity cost and SLA penalty
cost in a dynamic manner.

6.4 Capacity provisioning module
The capacity provisioning module takes as input the num-

ber of machines that should be added or removed from the
cluster, and determines which machine should be turned on
or off. The decision of switching on a particular machine can
be made based on different criteria such as its usage and its
location in the cluster. However, choosing which machine
to power off is more complicated since some tasks could be
running on it. Thus, more criteria should be considered such
as the number of running tasks on the machine, their priori-
ties, the cost of migrating or killing those tasks as well as the
resource usage in the machine. For simplicity, define ct as
the cost for migrating (or terminating) the task t, depending
on the scheduling policy applied to task t. For example, if
task t is an interactive task such as a web server, it is better
to migrate the server to another machine to minimize the
service down time. On the other hand, if the task t belongs
to a MapReduce job, it is more cost-effective to simply ter-
minate the task and restart it on a different machine [12].
We define the cost of powering off a particular machine i,
1 ≤ i ≤Mk at time k as

cik =
∑

t∈Si
k

ct, (18)



Algorithm 1 MPC Algorithm for DCP

91: Provide initial state xk, k ← 0
92: loop
93: At the end of control period k:
94: Predict Nk+h|k, wk+h|k, p

power

k+h|k for time h ∈ {1, H}

95: Solve tracking problem to obtain u(k + h|k) for hori-
zons h ∈ {0, · · · , H}

96: Perform the reconfiguration using the capacity provi-
sioning module according to u(k|k)

97: k ← k + 1
98: end loop

where Si
k denotes the set of tasks running on the machine i

at time k ∈ N. It is clear that cik increases with the number
of tasks and their costs. Consequently, the capacity provi-
sioning module turns off machines having the lowest cost cik.

6.5 Designing the MPC controller
The goal of our controller is to adjust the number of ma-

chines to minimize the violation of KKT conditions, while
taking into consideration the reconfiguration cost. As Nk,
wk, p

power
k can change over time, we adopt the well-known

MPC framework to design an online controller for this prob-
lem. The MPC algorithm is illustrated by Algorithm 1. It
can be intuitively described as follows: At time k, the pre-
diction module is responsible for predicting the future values
of Nk, wk, p

power
k for a prediction window H. The controller

will then solve an optimal control problem that will deter-
mine the optimal decisions for the entire window H. As only
the first step is required, the controller will only carry out
the first control decision. The procedure will repeat at the
beginning of every time interval k, k + 1, and so on.
More formally, we can define Nk+h|k,wk+h|k, p

power

k+h|k as the

values of Nk, wk, p
power
k predicted for time k + h, given the

historical values up to time k. We also define

ek+h|k = xk+h|k − x∗
k+h|k, (19)

as the tracking error at time k, the objective of the controller
is to solve the following program:

min
uk∈R

Jk =

H
∑

h=1

Q(ek+h|k)
2 +R(uk+h|k)

2 (20)

s. t. xk+h+1|k = xk+h|k + uk+h|k, ∀0 ≤ h ≤ H − 1

ek+h|k = xk+h|k − x∗
k+h|k, ∀1 ≤ h ≤ H

0 ≤ xk+h|k ≤ N, ∀1 ≤ h ≤ H

where H is the horizon of interest. The first term represents
the tracking error, the second term represents the control
penalty. The tracking error aims to reduce the error be-
tween the actual and the optimal number of machines. The
second term is the control penalty which takes into account
the cost of adding or removing machines. Thus, Jk can be
interpreted as a plan of action for next H time intervals. Q
and R are weight factors that will control the stability and
convergence rate of the controller. If Q is much bigger than
R, then the controller will place a higher weight on maximiz-
ing power savings and adjust number of servers aggressively.
On the other hand, if R is large compared to Q, then the
controller will adjust the capacity less aggressively to mini-
mize reconfiguration cost. A standard way to determine the
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Figure 6: Electricity price of Houston, TX over 24
hours.

values of Q and R is to normalize both terms. In our case,
we normalize them by converting both terms into monetary
cost. Define r̄ = 1

2
(cavg,on + cavg,off ) where cavg,on and

cavg,off are the average cost for turning on and off servers,
respectively. Similarly, we define q̄ = 1

2
(cavgover+cavgunder) where

cavgover is average cost introduced per machine due to provi-
sioning, and cavgunder is average cost introduced per machine
due to underprovisining, respectively. Even though it is pos-
sible to compute analytically the values of cavg,on, cavg,off ,
cavgover, cavgunder, it is more practical to estimate their values
through empirical measurement. Notice that we set q̄ and r̄
to the average penalty cost of both positive and negative er-
rors, because in practice, the number of occurrences of both
positive and negative errors will likely to be the same, if the
capacity provisioned by our controller only fluctuates within
a fixed range. Finally, although we can set (Q,R) = (q̄2, r̄2)
to ensure both terms are in the unit of dollar2, to simplify

our model, we set (Q,R) = (1, r̄2

q̄2
) in our experiment so that

we only need to control R to achieve different trade-offs be-
tween solution optimality and reconfiguration cost.

7. EXPERIMENTAL EVALUATION
We have implemented our system shown in Figure 5 and

evaluated the quality of our solution using trace-driven sim-
ulations. In our experiment, we set the CPU and memory
capacity of each machine to 1. This represents a majority of
machines in the Google cluster2. In our simulation we imple-
mented a greedy First-Fit (FF) scheduling algorithm, which
is used by many cloud computing platforms such as Euca-
lyptus [2]. In our simulations, we set Eidle to 200 Watts,
αr to 121 and 0 for CPU and memory, respectively, similar
to the values used in [18]. For electricity price, we used the
electricity prices for the city of Houston, Texas, obtained
from a publicly available source [6]. Figure 6 shows the fluc-
tuation of electricity price over a duration of 24 hours. It
can be observed that the electricity price is generally higher
during day time. The fluctuation sometimes can be as large
as 20% compared to the average electricity price over the 24
hours. Finally, we set d̄ to 10 seconds as an upperbound on
task scheduling delay.

7.1 Prediction performance
In our first experiment, we assess the performance of the

multi-step prediction for resource usages. We first describe
the prediction procedure and the performance criteria. Then

2The values of CPU and memory capacity reported in Google
traces were normalized to the configuration of the largest machine.
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Figure 7: Prediction of resource usage in the Google
cluster - one-step prediction - ARIMA(2, 1, 1).
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Figure 8: Effect of the number of lags on usage pre-
diction - One-step prediction (h = 1).

we study the effect of the number of lags and the prediction
horizon on the prediction accuracy.
To evaluate the quality of our prediction technique, the

available traces (e.g., measured CPU or memory usage) are
divided into a training data set and a validation data set.
Training data are used to identify the model parameters n,
d, q and the coefficient φi and θj . For given n and q, the
coefficients φi, i ≤ n and θj , j ≤ q are estimated using
the RPS toolkit [13]. The validation data set is then used
to assess the accuracy of the prediction model. The per-
formance metric used to evaluate the prediction accuracy is
the relative squared error (RSE). It is calculated for every
prediction step h as:

RSEh =

∑T

k=1

[

Gk −Gk+h|k

]2

∑T

k=1 [Gk − µ]2
(21)

where T is the size of the validation data set and µ is the
average of Gk over the T time intervals. The advantage of
the RSEh is that it neither depends on the used scale nor
on the size of data. Having the RSEh lower than 1 means
that the predictor is outperforming the use of the average of
the data as prediction for Gk (Gk+h|h = µ). In addition, the
smaller is the RSEh , the more accurate is the prediction.
The RSE can also be seen as the ratio of the mean squared
error divided by the variance of validation data set.
Since our model exploits the predicted usage of the cluster

in terms of CPU and memory to proactively add and remove
servers, we assess the prediction model accuracy. We applied
the ARIMA model to the real data collected at the Google
cluster and we evaluated the effect of the number of lags
used as input for the prediction model (n) and the effect
of the prediction horizon (h) on the multi-step squared er-
ror (RSEh). Memory and CPU usage are measured every
five minutes. Hence, a one-step prediction is equivalent to
predict the cluster usage in the next five minutes.
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Figure 9: Performance of multi-step prediction
- ARIMA(2, 1, 1).

Figure 7 shows the one-step prediction of the CPU and
memory usage compared to the real usage. The graph shows
that the predicted values are always close to the real ones
even during peaks. The prediction relative squared error
RSE1 is close to zero which proves that the ARIMA(2,1,1)
provides an accurate prediction of the usage either for CPU
(RSE1 ≈ 0.062) or memory (RSE1 ≈ 0.086).

Figure 8 depicts the effect of increasing the number of lags
used in the ARIMA model to predict CPU and memory
usage. Regarding CPU usage prediction (Figure 8(a)), it
is apparent from the results that starting from the second
lag (n = 2), the prediction error becomes stable around
RSE1 ≈ 0.062. If we now turn to memory usage prediction,
Figure 8(b) shows the prediction error remains almost stable
regardless of the number of lags used for the ARIMA model
(RSE1 ≈ 0.086). Consequently, there is no improvement of
the prediction performance beyond two lags (n = 2). This
result is interesting since a small number of lags reduces the
ARIMA model complexity and allows to implement it online
with minimal overhead and high accuracy.

We also conducted more experiments to examine the im-
pact of the horizon h on the prediction performance. Since
using more than two lags does not reduce the prediction er-
ror, we only considered two lags as input for the ARIMA
model (i.e., n = 2). As expected, when we increase the pre-
diction horizon, the prediction error grows for both CPU
and memory usage (Figure 9). What is interesting in these
results is that the error remains small (RSEh ≤ 1) for mul-
tiple prediction steps. In particular, the prediction error
RSEh remains below 1 for 400 steps ahead (≈ 33 hour) for
CPU usage and for 50 steps ahead (≈ 250 min) for memory
usage. We also mention that increasing the number of er-
ror terms (q) for the ARIMA model does not improve the
prediction performance. In summary, these results suggest
that we can apply ARIMA(2,1,1) using two lags to predict
12 steps ahead (equivalent to one hour), and this ensures
that the prediction error does not exceed 0.3 and 0.5 for
CPU and memory, respectively (Figure 9).

7.2 Controller performance
We conducted several experiments to evaluate the perfor-

mance of our controller. In our experiment, we set the con-
trol frequency to once every 5 minutes to match Google’s
Cluster measurements frequency [4]. Typically, a high con-
trol frequency implies fast response to demand fluctuations.
However, it also incurs a high computational overhead. How-
ever, we found the computational overhead of both demand
prediction algorithm and controller to be almost negligible,
thus, once every 5 minutes is a reasonable control frequency.
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Lastly, we set Q = 1 in our experiments. Thus, the recon-
figuration cost can be controlled by properly adjusting the
value of R.
In our experiments, we first evaluated the response of our

system to usage fluctuation. The number of active servers
provisioned over the 24-hour duration is shown in Figure 11
(for R = 0.1). Figure 10 show the capacity and the usage
of the cluster. It can be observed that the controller ad-
justs the number of servers dynamically in reaction to usage
fluctuation, while avoiding rapid change in the number of
active machines. The cumulative distribution function of
task scheduling delay is shown in Figure 12. It can be seen
that more than 60% of tasks are scheduled immediately.
We performed several other experiments for comparison

purpose. In the first experiment, the number of machines
is provisioned statically according to peak usage (i.e., 4100
machines). In the remaining experiments, we applied our
controller using different values of R. Figures 13 and 14
show the corresponding average scheduling delay and en-
ergy consumption for different values of R compared to the
static provisioning. It can be observed that the static pro-
visioning achieves the lowest scheduling delay since it sig-
nificantly overprovisions the cluster capacity. On the other
hand, dynamic provisioning with R = 0.5 causes a signifi-
cant scheduling delay although it allows to reduce the energy
consumption (up to 50%). Furthermore, setting R to a small
value (e.g., 0.02) does not achieve significant energy reduc-
tion. Through experiments, we found that setting R = 0.225
achieves our desired SLA objective of keeping the average
scheduling delay around 10 seconds while reducing the en-
ergy consumption by 18.5%. Figure 15 shows the actual
energy cost per hour, taking into consideration the fluctua-
tion of the electricity price. It can be seen that our dynamic
capacity provisioning mechanism reduces 7 dollars per hour
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Queuing Delay.
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in energy costs, which implies 20% reduction in energy cost,
while achieving the desired scheduling delay (for R = 0.225).
Furthermore, depending on the desired average scheduling
delay (Figure 13), our proposed approach can reduce total
operational cost by about 18.5− 50% (Figure 15).

8. CONCLUSION
Data centers have become a cost-effective infrastructure

for data storage and hosting large-scale service applications.
However, large data centers today consume significant a-
mounts of energy. This not only rises the operational ex-
penses of cloud providers, but also raises environmental con-
cerns with regard to minimizing carbon footprint. In this
paper, we mitigate this concern by designing a dynamic ca-
pacity provisioning system that controls the number of ac-
tive servers in the data center according to (1) demand fluc-
tuation, (2) variability in energy prices and (3) the cost of
dynamic capacity reconfiguration. Our solution is based on
the well-established Model Predictive Control framework,
and aims to find a good trade-off between energy savings
and capacity reconfiguration cost. Simulations using real
traces obtained from a production Google compute clusters
demonstrate our approach achieves considerable amount of
reduction in energy cost. As such, we believe our approach
represents an initial step towards building a full-fledged ca-
pacity management framework for cloud data centers.

There are several promising directions we can pursue in
the future. First, our current approach assumes that ma-
chines are homogenous. While this is applicable to many
situations (cloud providers often buy large quantities of iden-
tical machines in bulk), recent literature suggests that pro-
duction data centers often consists of multiple types (some-
times multiple generations) of machines. Extending our cur-
rent solution to handle machine heterogeneity requires care-
ful consideration of scheduling capability of each type of
machine. Another interesting problem is to understand the
interplay between the scheduler and the capacity controller.



We believe it is possible to further reduce the cost of energy
consumption and reconfiguration (i.e., task preemption and
migration cost) if the scheduler and the capacity controller
can cooperate tightly at a fine-grained level (e.g., interac-
tion of server consolidation algorithms with our capacity
controller).
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