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Abstract

Out-of-date or incomplete drug product labeling information may increase the risk of otherwise preventable adverse

drug events. In recognition of these concerns, the United States Federal Drug Administration (FDA) requires drug

product labels to include specific information. Unfortunately, several studies have found that drug product labeling

fails to keep current with the scientific literature. We present a novel approach to addressing this issue. The primary

goal of this novel approach is to better meet the information needs of persons who consult the drug product label for

information on a drug’s efficacy, effectiveness, and safety. Using FDA product label regulations as a guide, the

approach links drug claims present in drug information sources available on the Semantic Web with specific product

label sections. Here we report on pilot work that establishes the baseline performance characteristics of a

proof-of-concept system implementing the novel approach. Claims from three drug information sources were linked

to the Clinical Studies, Drug Interactions, and Clinical Pharmacology sections of the labels for drug products that contain

one of 29 psychotropic drugs. The resulting Linked Data set maps 409 efficacy/effectiveness study results, 784

drug-drug interactions, and 112 metabolic pathway assertions derived from three clinically-oriented drug information

sources (ClinicalTrials.gov, the National Drug File – Reference Terminology, and the Drug Interaction Knowledge Base)

to the sections of 1,102 product labels. Proof-of-concept web pages were created for all 1,102 drug product labels

that demonstrate one possible approach to presenting information that dynamically enhances drug product labeling.

We found that approximately one in five efficacy/effectiveness claims were relevant to the Clinical Studies section of a

psychotropic drug product, with most relevant claims providing new information. We also identified several cases

where all of the drug-drug interaction claims linked to the Drug Interactions section for a drug were potentially novel.

The baseline performance characteristics of the proof-of-concept will enable further technical and user-centered

research on robust methods for scaling the approach to themany thousands of product labels currently on themarket.

Keywords: Regulatory science, Drug information services, Drug labeling, Linked data, Scientific discourse ontologies,

Drug interactions, Pharmacokinetics, Treatment efficacy, Treatment effectiveness, Comparative effectiveness research

Introduction
The drug product label (also called “package insert”)

is a major source of information intended to help

clinicians prescribe drugs in a safe and effective man-

ner. Out-of-date or incomplete product label informa-

tion may increase the risk of otherwise preventable
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adverse drug events (ADEs). This is because many pre-

scribers and pharmacists refer to drug product labeling

for information that can help them make safe prescrib-

ing decisions [1,2]. A prescribing decision might be

negatively affected if the label fails to provide infor-

mation that is needed for safe dosing, or to prop-

erly manage (or avoid) the co-prescribing of drugs

known to interact. Prescribing decision-making might

also be indirectly affected if 1) the clinician depends

on third-party drug information sources, and 2) these

sources fail to add information that is available in
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the scientific literature but not present in the product

label.

In recognition of these concerns, the US Federal Drug

Administration (FDA) Code of Federal Regulations (CFR)

Title 21 Part 201 Section 57 requires drug labels to

include specific information for FDA-approved drugs

[3]. Mandated information includes clinical studies that

support a drug’s efficacy for its approved indications,

known pharmacokinetic properties, clearance data for

special populations, and known clinically-relevant drug-

drug interactions. Unfortunately, for each of these types

of information, product labeling fails to keep current with

the scientific literature. For example:

• Marroum and Gobburu noted deficiencies in the

pharmacokinetic information provided by product

labels, especially for drugs approved in the 1980s [1],
• Boyce et al. found that the product label provided

quantitative data on age-related clearance reductions

for only four of the 13 antidepressants for which such

data was available [4],
• Steinmetz et al. found that quantitative information

on clearance changes in the elderly was present in

only 8% of 50 product inserts that they analyzed, [5],

and
• Hines et al. noted drug-drug interaction information

deficiencies in 15% of the product labels for drugs

that interact with the narrow therapeutic range drug

warfarin [6].

We present a novel approach to addressing prod-

uct labeling information limitations such as those listed

above. The primary goal of this novel approach is to bet-

ter meet the information needs of persons who consult

the drug product label for information on a drug’s efficacy,

effectiveness, and safety. The approach is based on the

hypothesis that a computable representation of the drug

effectiveness and safety claims present in product labels

and other high quality sources will enable novel methods

for drug information retrieval that do a better job of help-

ing drug experts, clinicians, and patients find complete

and current drug information than current search engines

and bibliographic databases.

Figure 1 is an overview of the system that we envi-

sion. Claims about drugs are currently present in sources

of drug information such as the drug product label,

studies and experiments published in the scientific lit-

erature, premarket studies and experiments reported in

FDA approval documents, and post-market data sources

such as drug effectiveness reviews and drug informa-

tion databases. Many of these sources are available, or

are becoming available, on the Semantic Web. Using

FDA product label regulations as a guide [3], a new

linked data set would be created that links claims present

in drug information sources available on the Seman-

tic Web to relevant product label sections. The linked

data set would create and automatically update claim-

evidence networks [7-11] to make transparent the moti-

vation behind specific claims. Customized views of the

linked dataset would be created for drug experts including

clinicians, researchers, and persons who maintain ter-

tiary drug information resources (i.e., proprietary drug

information products).

The objective of this paper is to report on our

pilot work that establishes the feasibility of the novel

approach and the baseline performance characteris-

tics of a proof-of-concept system. Because there is a

broad range of content written into product labels,

and the novel approach requires synthesizing research

from multiple areas of research, we have organized

this paper to report progress in three complementary

areas:

1. Linking relevant Semantic Web resources to the
product label: We describe a basic proof-of-concept

that demonstrates the Semantic Web technologies

and Linked Data principles [12,13] that we think are

necessary components of a full-scale system. The

proof-of-concept consists of a set of web pages

created using existing Semantic Web datasets, and

demonstrates one possible approach to presenting

information that dynamically enhances particular

product label sections.

2. First steps towards the automated extraction of
drug efficacy and effectiveness claims: Focusing on
drug efficacy and effectiveness studies registered with

ClinicalTrials.gov, we describe the methods and

baseline performance characteristics of a pilot

pipeline that automatically obtains claims from the

scientific literature and links it to the Clinical
Studies section of the product label for psychotropic

drugs.

3. A descriptive summary of challenges to the
automated claim extraction of metabolic pathways:
We provide a descriptive analysis of the challenges to

the automated identification of claims about a drug’s

metabolic pathways in full text scientific articles. The

analysis is based on manual identification of these

claims for a single psychotropic drug.

Results
Linking relevant semantic web resources to the product

label

Twenty-nine active ingredients used in psychotropic drug

products (i.e., antipsychotics, antidepressants, and seda-

tive/hypnotics) that were marketed in the United States at
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Figure 1 The general architecture of a system to provide dynamically enhanced views of drug product labeling using Semantic Web

technologies.

the time of this study were selected as the target for the

proof-of-concept.a These drugs were chosen because they

are very widely prescribed and a number of these “newer”

psychotropic drugs are involved in drug-drug interactions

[14]. Figure 2 shows the architecture of the proof-of-

concept system that we developed for these drugs. As the

figure shows, four data sources were used in the proof-

of-concept. One of the sources (DailyMed) contained the

text content of the three product label sections that were

the focus of this study (Clinical Studies, Drug Interactions,

and Clinical Pharmacology). The other three sources were

chosen because they contain rigorous scientific claims

that we expected to be relevant to pharmacists seeking

information about the efficacy, effectiveness, and safety

of a drug. These three resources, and the claims they

provided, were:

1. LinkedCT:b Drug efficacy and effectiveness studies

registered with ClinicalTrials.gov that have published

results (as indicated by an article indexed in

PubMed) [15,16]

2. National Drug File – Reference Terminology

(NDF-RT):c Drug-drug interactions listed as critical

or significant in the Veteran’s Administration

[17,18]

3. The Drug Interaction Knowledge Base (DIKB):d

Pharmacokinetic properties observed in

pharmacokinetic studies involving humans [19].

In order for the proof-of-concept to link claims from

these three sources to sections from the product labels

for the chosen drugs, we first implemented a Linked Data

representation of all product labels for the psychotropic

drugs used in our study. We constructed the Linked Data

set from the Structured Product Labels (SPLs) available

in the National Library of Medicine’s DailyMed resource.e

A total of 36,344 unique SPLs were transformed into an

RDF graph and loaded into an RDF store that provides a

SPARQL endpoint.f We refer to this resource as “Linked-

SPLs” throughout the remainder of this text. LinkedSPLs

contained product labels for all 29 psychotropic drugs in

this study.

We then created a separate RDF graph with map-

pings between product label sections and claims present

in the three drug information sources. This graph was

imported it into the same RDF store as LinkedSPLs. The

graph has a total of 209,698 triples and maps 409 effi-

cacy/effectiveness study results, 784 NDF-RT drug-drug

interactions, and 112 DIKB pathway claims to the sections

of 1,102 product labels.g Consideringmappings on a label-

by-label basis (see Listing 1), the graph has an average

of 50 mappings per product label (mean:50, median:50).

Twenty-four labels had the fewest number of mappings

(2), and two had greatest number of mappings (135).

Table 1 shows the counts for all mappings grouped by each

drug in the study. The next three sections provide more

detail on the specific mappings created for each product

label section.

Figure 2 The architecture of the proof-of-concept system described in this paper that demonstrates the dynamic enhancement of drug

product labels using Semantic Web technologies.

http://clinicaltrials.gov
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Table 1 Counts of product labels and all linked claims

Drug Number of product labels Number of VANDFRT Number of DIKB inhibits/substrate ClinicalTrials.gov Published results

for products containing DDIs found for of assertions with evidence studies involving the from ClinicalTrials.gov

the drug the drug found for the drug drug studies involving the drug

Significant Critical Evidence for Evidence against

Antidepressants

Amitriptyline 57 16 8 0 0 1 1

Amoxapine 2 15 8 0 0 0 0

Bupropion 111 7 4 2 0 5 44

Citalopram 85 25 9 2* 4* 4 25

Desipramine 15 16 10 0 0 0 0

Doxepin 32 15 9 0 0 0 0

Duloxetine 17 26 8 3 4 4 4

Escitalopram 20 13 3 4* 5* 6 9

Fluoxetine 90 51 14 2 0 8 22

Imipramine 19 18 10 0 0 1 4

Mirtazapine 55 2 5 4 9 1 22

Nefazodone 5 39 20 3 6 0 0

Nortriptyline 29 16 11 0 0 3 24

Paroxetine 60 33 11 2 0 3 40

Selegiline 11 2 47 0 0 1 1

Sertraline 74 28 8 2 0 3 27

Tranylcypromine 2 3 61 0 0 3 71

Trazodone 38 8 10 1 0 2 2

Trimipramine 2 17 10 0 0 0 0

Venlafaxine 66 21 6 3 3 2 2

Antipsychotics

Aripiprazole 15 4 0 2 13 3 3

Clozapine 9 29 2 3 1 3 9

Olanzapine 42 0 1 1 0 5 13

Quetiapine 33 8 0 1 9 4 9

Risperidone 71 13 0 2 1 23 70

Ziprasidone 22 54 23 2* 9* 1 6
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Table 1 Counts of product labels and all linked claims (Continued)

Sedative Hypnotics

Eszopiclone 11 7 0 1 7 1 1

Zaleplon 24 0 0 1 1 0 0

Zolpidem 85 0 0 2 0 0 0

*Citalopram, escitalopram, and ziprasidone were each mapped to one claim for which there was both supporting and refuting evidence in the DIKB. Counts of product labels for each drug and claims that were linked to drug

product labeling from three Linked Data drug information sources.
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Listing 1 The total number of “claim” mappings present in

the proof-of-concept RDF graph by drug product label

PREFIX poc:<http://purl.org/net/nlprepository/dynamic-spl-enhancement-poc#>

SELECT ?spl COUNT(DISTINCT ?mapping) WHERE {

{

## mappings for the Clinical Studies section ##

poc:linkedct-result-map ?spl ?mapping.

?mapping poc:linkedct-result-drug ?drug.

} UNION {

## mappings for the Drug Interactions section ##

poc:ndfrt-ddi-map ?spl ?mapping.

?mapping poc:ndfrt-ddi-drug ?drug.

} UNION {

## mappings for the Clinical Pharmacology section ##

poc:dikb-pk-map ?spl ?mapping.

?mapping poc:dikb-pk-drug ?drug.

}}

GROUP BY ?spl

ORDER BY ?spl

Automatic linking of study abstracts from ClinicalTrials.gov

to the Clinical Studies section

The Clinical Studies section of the product label could be

mapped to the abstract of at least one published result for

22 of the 29 psychotropic drugs (76%) (see Table 1). Seven

drugs (24%) were not mapped to any published result. The

largest number of mappings was for risperidone, with 70

published results mapped to 71 product labels. There was

a considerable difference between the mean and median

number of published results that were mapped when such

a mapping was possible (mean: 19, median: 9).

Automatic linking of VANDF-RT drug-drug interactions to the

Drug Interactions section

The Drug Interactions section of the product label could

be mapped to at least one NDF-RT drug-drug interac-

tion for 27 of the 29 psychotropic drugs (93%). Table 1

shows the counts for all published result mappings for

each drug in the study. The number of mappings to drug-

drug interactions labeled “Significant” in the NDF-RT (see

Section “Methods” for explanation) ranged from 2 (mir-

tazapine and selegiline) to as many as 54 (ziprasidone)

with a mean of 19 and a median of 16. For “Critical” drug-

drug interactions, the number of mappings ranged from

one (olanzapine) to 61 (tranylcypromine) with a mean of

13 and median of 9.

Table 2 shows the counts and proportion of linked

drug-drug interaction claims that were noted as poten-

tially novel to the Drug Interaction section of at least one

antidepressant product label. For these drugs, a poten-

tially novel interaction was an NDF-RT interaction that

1) was not mentioned in the Drug Interaction section of

a product label based on a case-insensitive string match,

and 2) was not listed as an interacting drug based on our

review (prior to the study) of a single manually-reviewed

product label for the listed drug (see Section “Methods”

for further details). At least one potentially novel interac-

tion was linked to a product label for products containing

each of the 20 antidepressants. The largest number of

potentially novel “Significant” interactions was for nefa-

zodone and fluoxetine (31 and 28 respectively), while

tranylcypromine and selegiline had the largest number of

potentially novel “Critical” interactions (33 and 23 respec-

tively). All of the “Significant” drug interactions mapped

to seven antidepressants (35%) were novel, while all of

the “Critical” interactions mapped to five antidepressants

(25%) were novel. These results are exploratory and it is

not known how many of the potentially novel interactions

are truly novel.

Automatic linking ofmetabolic pathways claims from the

drug interaction knowledge base to the Clinical

Pharmacology section

The Clinical Pharmacology section of the product label

could be mapped to at least one metabolic pathway claim

for 20 of the 29 psychotropic drugs (69%). Table 1 shows

the counts for all pathway mappings for every drug in the

study stratified by whether the DIKB provided supporting

or refuting evidence for the mapped claim. Thirteen of the

20 drugs that were mapped to pathway claims with sup-

porting evidence were alsomapped to claims with refuting

evidence. In most cases, these mappings were to different

pathway claims, as only three drugs (citalopram, escitalo-

pram, and ziprasidone) were mapped to individual claims

with both supporting and refuting evidence. Three path-

way claims had both supporting and refuting evidence,

40 pathway claims had only supporting evidence, and 69

claims had only refuting evidence.

Generation of web pagemashups

The mappings described above were used to gener-

ate web pages that demonstrate one possible way that

users could be presented with information that dynam-

ically enhances product label sections. A total of 1,102

web pages were generated by the proof-of-concept using

a version of LinkedSPLs that was synchronized with

DailyMed content as of October 25, 2012. The web pages

are publicly viewable at http://purl.org/net/nlprepository/

outfiles-poc.h Figures 3, 4 and 5 show examples of the

web pages generated by the proof-of-concept for the three

sections we chose to focus on.

First steps towards the automated extraction of drug

efficacy and effectiveness claims

It is important to note that, for drug efficacy and

effectiveness claims, the proof-of-concept implements

http://purl.org/net/nlprepository/outfiles-poc
http://purl.org/net/nlprepository/outfiles-poc
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Table 2 Counts of potentially novel drug-drug interaction claims

Drug Number of VA-NDFRT DDIs Number of VA-NDFRT DDIs that were potentially novel

found for the drug to at least one product label. N ( % )

Significant Critical Significant Critical

Amitriptyline 16 8 8(50) 3 (38)

Amoxapine 15 8 11 (73) 4 (50)

Bupropion 7 4 5 (71) 3 (75)

Citalopram 25 9 5 (20) 4 (44)

Desipramine 16 10 16 (100) 6 (60)

Doxepin 15 9 15 (100) 9 (100)

Duloxetine 26 8 12 (46) 3 (38)

Escitalopram 13 3 3 (23) 1 (33)

Fluoxetine 51 14 28 (55) 8 (57)

Imipramine 18 10 18 (100) 6 (60)

Mirtazapine 2 5 1 (50) 1 (20)

Nefazodone 39 20 31 (80) 11 (55)

Nortriptyline 16 11 16 (100) 11 (100)

Paroxetine 33 11 15 (46) 5 (45

Selegiline 2 47 1 (50) 23 (49)

Sertraline 28 8 7 (25) 3 (38)

Tranylcypromine 3 61 1 (33) 33 (54)

Trazodone 8 10 8 (100) 10 (100)

Trimipramine 17 10 17 (100) 10 (100)

Venlafaxine 21 6 21 (100) 6 (100)

The number and proportion of VA NDF-RT drug-drug interactions that were noted as potentially novel to the Drug Interaction section of at least one antidepressant

product label. For these drugs, a potentially novel interaction was an NDF-RT interaction that was 1) not mentioned in the Drug Interaction section of a drug’s product

label based on a case-insensitive string match, and 2) not listed as an interacting drug based on our review (prior to the study) of a single manually-reviewed product

label the listed drug.

Figure 3 A Clinical Study section from an escitalopram product label as shown in the proof-of-concept. In this example, an efficacy claim is

being shown that was routed from the abstract of a published result for study registered in ClinicalTrials.gov.
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Figure 4 A Drug Interactions section from an escitalopram product label as shown in the proof-of-concept. In this example, several

“Significant” NDF-RT drug-drug interactions are being shown. The interaction marked as New to Section? was not found by manual inspection of a

single product label for an escitalopram drug product, nor by an automated case-insensitive string search of the Drug Interactions section of the

escitalopram product label.

only one of the two steps that are needed to imple-

ment a fully automated claim extraction process. While

the proof-of-concept retrieves text sources from which

drug efficacy and effectiveness claims can be extracted

(i.e., PubMed abstracts), these claims remain written in

unstructured text. We hypothesized that sentences con-

taining claims could be automatically extracted using a

pipeline that processed the text of the abstracts returned

from the LinkedCT query using an algorithm that auto-

matically identifies sentences stating conclusions. To test

the precision and recall of this approach, we first cre-

ated a reference standard of these conclusion claims for a

randomly chosen subset of psychotropic drugs. We then

evaluated a publicly-available system called SAPIENTA

[20] that can automatically identify conclusion sentences

in unstructured scientific text.

Development of a reference standard of relevant claims

Figure 6 shows the results of identifying relevant and novel

conclusion claims from efficacy and effectiveness stud-

ies routed to the Clinical Studies section via LinkedCT.

Table 3 lists results for each of the nine randomly-

selected psychotropic drugs. A total of 170 abstracts were

routed from PubMed to the Clinical Studies section of

Figure 5 A Clinical Pharmacology section from an escitalopram product label as shown in the proof-of-concept. In this example, an DIKB

metabolic pathway claim with supporting evidence is being shown.
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the products labels for the nine randomly sampled psy-

chotropics. Four of the abstracts were either not clinical

studies, or provided no other text content besides the title.

These were dropped from further analysis. Of the 166

remaining conclusions, two were not interpretable with-

out reading the full text article and 113 were judged to

not be relevant to a pharmacist viewing the Clinical Stud-

ies section. For the remaining 51 relevant conclusions,

the inter-rater agreement prior to reaching consensus was

0.69, reflecting “substantial” agreement according to the

criteria of Landis and Koch [21].

Twelve of the 51 relevant conclusions were judged

to apply to uses of the drug other than those for

which it was approved for by the FDA. Of the 39 rel-

evant conclusions that applied to an approved indica-

tion, 30 were judged to be novel to the Clinical Studies

section of at least one product label for a product con-

taining the drug. Inter-rater agreement prior to reach-

ing consensus on the novelty of these 30 relevant and

novel conclusions was also substantial with a Kappa of

0.72.

Determination of the precision and recall of an automated

extractionmethod

Figure 7 shows the results of determining the base-

line information retrieval performance of the proof-of-

concept system. SAPIENTA processed the same 170

abstracts mentioned in the previous section that were

routed from PubMed to the Clinical Studies section of

the product labels for the nine randomly sampled psy-

chotropics. Of the more than 2,000 sentences in the 170

abstracts, the program automatically classified 266 sen-

tences as Conclusions. In comparison, the conclusion

claims extracted manually from the abstracts consisted

of 318 sentences. Using these sentences as the reference

standard, the recall, precision, and balanced F-measure

for SAPIENTA was 0.63, 0.75, and 0.68 respectively. By

combining these results with the precision of routing Clin-

icalTrials.gov study results to the Clinical Studies section

via LinkedCT results in an overall “pipeline precision” of

0.23.

A descriptive summary of challenges to the automated

extraction of claims about a drug’s metabolic pathways

Although the proof-of-concept made links from claims

about a drug’s metabolic pathways present in the DIKB

resource to the Clinical Pharmacology section of the

product label, the DIKB has claims for only a small sub-

set (<100) of the thousands of drugs currently on the

market. To further investigate the feasibility of auto-

matically extracting claims about a drug’s pharmacoki-

netic properties, we manually traced the evidence for a

small number of claims pertaining to the pharmacoki-

netics of escitalopram that the proof-of-concept linked

from the DIKB to drug product labels. The goal of

this effort was to see if there were particular pat-

terns that we might use in future language analytics

systems.

We found that the inhibition and substrate claims are

derived from two texts, one describing a set of experi-

ments to deduce the metabolic properties (i.e., biotrans-

formation and enzyme inhibition) for escitalopram [22],

and one a product label produced by Forest Labs [23]. As

an example, there are two pieces of evidence against the

claim “escitalopram inhibits CYP2C19” – first, from the

Forest Labs text...

In vitro enzyme inhibition data did not reveal an

inhibitory effect of escitalopram on CYP3A4, -1A2,

-2C9, -2C19, and -2E1. Based on in vitro data,

escitalopram would be expected to have little

inhibitory effect on in vivo metabolism mediated by

these cytochromes.

...and second, from the Moltke et al. paper:

CYP2C19. R- and S-CT were very weak inhibitors,

with less than 50 percent inhibition of S-mephenytoin

hydroxylation even at 100micM. R- and S-DCT also

were weak inhibitors. R- and S-DDCT were moderate

inhibitors, with mean IC50 values of 18.7 and

12.1micM, respectively. Omeprazole was a strong

inhibitor of CYP2C19, as was the SSRI fluvoxamine

(see Table 2).

The claim “escitalopram is a substrate of CYP2C19” is

motivated by the following evidence in Moltke et al.:

At 10micM R- or S-CT, ketoconazole reduced reaction

velocity to 55 to 60 per cent of control, quinidine to 80

per cent of control, and omeprazole to 80 to 85 per

cent of control (Figure 6). When the R- and S-CT

concentration was increased to 100 M, the degree of

inhibition by ketoconazole increased, while inhibition

by quinidine decreased (Figure 6). These findings are

consistent with the data from heterologously expressed

CYP isoforms.

The validity of this claim depends on an assumption

(“omeprazole is an in vitro selective inhibitor of enzyme

CYP2C19”) which is a separate DIKB claim, supported by

a draft FDA guidance document [24].

The next claim is that escitalopram’s primary clearance

route is not by renal excretion and it is derived from the

following sentence in the Forest Laboratories text:

Following oral administrations of escitalopram, the

fraction of drug recovered in the urine as escitalopram

and S-demethylcitalopram (S-DCT) is about 8 per cent
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Figure 6 A flow diagram of the process and results of identifying relevant and novel conclusions from efficacy and effectiveness studies

routed to the product label Clinical Studies section via LinkedCT.

Table 3 Relevance and novelty of conclusion claims based onmanual validation

Drug ClinicalTrials.gov Published results from ClinicalTrials.gov

studies involving the drug studies involving the drug

N Relevant N ( % ) Novel (indication) Novel (off-label use)

Antidepressants

Citalopram 4 25 5 (20) 5

Duloxetine 4 4 4 (100) 3

Escitalopram 6 9 3 (33) 1 2

Mirtazapine 1 22 1 (5) 1 0

Nortriptyline 3 24 2 (8) 1 1

Venlafaxine 2 2 2 (100) 1 1

Antipsychotics

Olanzapine 5 13 7 (54) 6 1

Risperidone 23 70 26 (37) 21 5

Sedative Hypnotics

Eszopiclone 1 1 1 (100) 0 1

The relevance and novelty of conclusion claims linked from three Linked Data drug information sources to the product labeling for nine randomly selected

psychotropic drugs.
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and 10 per cent, respectively. The oral clearance of

escitalopram is 600 mL/min, with approximately 7 per

cent of that due to renal clearance.

The connection between the evidence and the claim

requires the domain knowledge that renal excretion is

roughly the same as the fraction of dose recovered in

urine.

Finally, the evidence for claims pertaining to escitalo-

pram’s metabolites again comes from the Forest Labs

text:

Escitalopram is metabolized to S-DCT and

S-didemethylcitalopram (S-DDCT).

From these examples, we ascertained four issues that

present major challenges for the automated extraction of

drug claims from a text source:

Self-referencing and anaphora. In narrative text,

coherence is often created by creating anaphoric

co-reference chains - where entities at other

locations in the text are referred to by pronouns

(it, they) and determiners (these, this). This makes

sentences such as these very easy for humans to read:

R-CT and its metabolites, studied using the same

procedures, had properties very similar to those of

the corresponding S-enantiomers.

However, automatically identifying the entities

referred by these referents “its metabolites”,

“the same procedures”, “similar properties”, and

“the corresponding S-enantiomers” is a non-trivial

task.

Use of ellipsis Often statements are presented in a

compact manner, where the full relations between

drugs and proteins are omitted, as in this

example:

Based on established index reactions, S-CT and

S-DCT were negligible inhibitors (IC50 > 100

µM) of CYP1A2, -2C9, -2C19, -2E1, and -3A, and

weakly inhibited CYP2D6 (IC50 = 70 - 80 µM)

A computational system would need to “unpack” this

statement to read the following list of relations (a

total of 12 statements).

• S-CT (escitalopram) was a negligible inhibitor

((IC50>100 µM) of CYP1A2

Figure 7 Determining the baseline information retrieval performance of the proof-of-concept system.



Boyce et al. Journal of Biomedical Semantics 2013, 4:5 Page 12 of 21

http://www.jbiomedsem.com/content/4/1/5

• S-CT (escitalopram) was a negligible inhibitor

((IC50>100 µM) of CYP2C9
• ...

Domain knowledge is needed to be able to

resolve anaphora. The metabolites referred to in

the phrase “R-CT and its metabolites”, above, which

is referred to six times in the text, are not explicitly

described in the text. For even a human to be able to

define what they are it is necessary that they know

that the following sentence contains a definition of

the metabolites studied:

Transformation of escitalopram (S-CT), the

pharmacologically active S-enantiomer of

citalopram, to S-desmethyl-CT (S-DCT), and of

S-DCT to S-didesmethyl-CT (S-DDCT), was

studied in human liver microsomes and in

expressed cytochromes (CYPs).

Interestingly, this information is given only in the

abstract of the paper.

Key components are provided in other papers. As

with textual coherence, inter-textual coherence,

embedding the current text in the corpus of known

literature, is an important function of the text. In

certain cases key elements of the paper, such as the

methods, are entirely described through a reference,

e.g.:

Average relative in vivo abundances [... ] were

estimated using methods described in detail

previously (Crespi, 1995; Venkatakrishnan et al.,

1998 a,c, 1999, 2000, 2001; von Moltke et al., 1999

a,b; Störmer et al., 2000).

There is of course no way to ascertain what methods

were used without (computational) access to these

references; even so it might well not be obvious or

easy to identify the relevant methods in the

referenced texts.

Discussion
To the best of our knowledge, this is the first study

to demonstrate how claims about drug safety, efficacy,

and effectiveness present in Semantic Web resources

can be linked to the relevant sections of drug product

labels. While we focused on only three drug information

resources and a relatively small set of marketed drugs, the

resulting Linked Data set contains a considerable number

of claims that might help meet pharmacist information

needs. We emphasize that this was a pilot study and our

results are exploratory.

It is noteworthy that the labels for all 1,102 drug

products containing the drugs in our study could be linked

to at least one claim, and that, on average, 50 claims could

be linked to each product label. This suggests that there

are ample claims available on the Semantic Web that can

be linked to drug product labeling. One concern is that,

while the approach might do a good job of linking more

information with the product label, it might be poor at

providing the right kind of information. Our analysis of

a relatively simple automated approach that combines a

routing strategy with an existing scientific discourse anal-

ysis program (SAPIENTA) found that about one in five

efficacy/effectiveness conclusion claims would be relevant

to the Clinical Studies section of a psychotropic drug

product, the majority of which would provide the phar-

macist with new information about an indicated use of the

drug (Figure 6).

We also found evidence that if we performed this

endeavor at scale, many relevant and novel drug-drug

interaction claims would be found that could be linked

to the Drug Interactions section of the product label. At

least one potentially novel interaction was linked to all 20

antidepressants, and there were several cases where all

of the drug-drug interactions linked to the Drug Interac-

tions section for an antidepressant were potentially novel.

However, these results require further validation to ensure

that differences in how the drugs are referred to between

drug information sources, and between product labels, are

properly accounted for. For example, an NDF-RT inter-

action between digoxin and nefazodone was incorrectly

marked as potentially novel to nefazodone product labels

because the NDF-RT referred to digoxin by “digitalis”, a

broad synonym for drugs derived from foxglove plants

that are used to treat cardiac arrhythmias.

A manual inspection of potentially novel interactions

linked to several antidepressant product labels by co-

investigator JRH (a pharmacist and drug-interaction

expert) suggested that several of the linked interactions

would complement product label information. For exam-

ple, the NDF-RT interaction between escitalopram and

tapentadol was potentially novel to all 20 escitalopram

product labels. While no explanation for this NDF-RT

interaction is provided in the resource, it is possibly

based on the potential for tapentadol to interact in an

additive way with selective serotonin reuptake inhibitors

(SSRIs). This interaction might increase the risk of an

adverse event called “serotonin syndrome.” The labels

for all SSRIs appear to provide a generally-stated class

based interaction between SSRIs and other drug affect-

ing the serotonin neurotransmitter pathway. However,

one would have to know that tepentadol fits in this

category. Another example is the NDF-RT interaction

between metoclopramide and escitalopram. As with the

other example, this interaction was potentially novel to
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all escitalopram product labels and no explanation was

provided in the NDF-RT resource. The possible rea-

son that the NDF-RT notes the interaction is that esc-

italopram is a weak inhibitor of the Cytochrome P450

2D6 metabolic enzyme which is a potentially important

clearance pathway for metoclopramide. Thus, the drug

combination might increase the risk of metoclopramide

toxicity in some patients leading to adverse events such as

Tardive Dyskinesia.

Manual inspection also identified examples of poten-

tially novel NDF-RT interactions that might not be

mentioned in the label due to indeterminate evidence.

Three NDF-RT interactions involved amoxapine as an

object drug and rifampin, rifabutin, and rifapentine

as precipitant drugs. No explanation was accessible

from the NDF-RT resource and no clear mechanism

was apparent based on the drugs’ metabolic proper-

ties. For example, while rifampin is a known inducer

of certain Cytochrome P450s (especially Cytochrome

P450 3A4), we were unable to find evidence of an

induction interaction between rifampin and amoxap-

ine by searching a rifampin product label [25]. Sim-

ilarly, no results were returned from the PubMed

query RIFAMPIN AMOXAPINE INTERACTION. The

same was true for searches conducted for rifabutin

and rifapentine. Thus, while it is possible that these

interactions are missing from the product label, it is

also possible that insufficient evidence for the clini-

cal relevance of the interaction justifies their exclu-

sion.

The concern that drug-drug interactions are often

based on poor evidence (such as single case reports

or predictions) was raised at a recent multi-stakeholder

conference focusing on the drug-drug interaction evi-

dence base [26]. Another concern raised at the con-

ference was that there is currently no standard criteria

for evaluating the evidence for interactions. This leads

to considerable variation in the drug-drug interac-

tions listed across drug information sources [14]. In

future work we plan to develop methods that construct

more complete claim-evidence networks for drug-drug

interactions that go beyond establishing the potential

for the interaction [27], to also provide evidence of

the potential risk of harm in patients with specific

characteristics.

Inspection of the 113 non-relevant abstracts for pub-

lished results (see Figure 6) suggests that our approach

to identifying studies that were about a specific drug

returned many false positives. We think that this issue

is primarily due to how we linked the published results

from studies registered in ClinicalTrials.gov to the drugs

included in our study. In LinkedCT, entities tagged

in ClinicalTrials.gov as “interventions” for a study are

mapped to entities tagged as “drugs” in DrugBank using

a combination of semantic and syntactic matching that

has been shown to notably improve the linkage results

compared with matching by strings tokens alone [28].

However, many studies have multiple interventions. For

example, study NCT00015548 (The CATIE Alzheimer’s

Disease Trial)i lists three antispychotics and one antide-

pressant as interventions. As a result, the published results

for NCT00015548 that we linked to product labels for the

antidepressant drug (citalopram) included many results

that were actually about the effectiveness of one of the

antipsychotic drugs. Changing how we address this issue

should result in a significant improvement in the pipeline

precision of the automated system. One possibility would

be to exclude published results that do not mention

an indicated or off-label use of the drug (e.g., “depres-

sion” in the case of citalopram). Future work should

focus creating and validating a weighted combination of

such filters.

The manual analysis of metabolic pathway claims per-

taining to escitalopram found several factors that might

complicate automated extraction (complex anaphora, co-

reference, ellipsis, a requirement for domain knowledge,

and recourse to external documents via citations). These

offer some pointers to future work on automated extrac-

tion. However, it is also useful to consider how new inno-

vations in science publishing might enable the author of

a scientific paper to annotate a claim written into his/her

scientific article. To be feasible, this requires usable tools

and a set of simple standards that make annotation dur-

ing the publishing process efficient. Efforts along these

lines are currently being pioneered by groups such as the

Neuroscience Information Frameworkj.

We approached this proof-of-concept primarily think-

ing about a pharmacist’s information needs, but as

Figure 1 shows, there are other potential stakehold-

ers such as regulators, pharmacoepidemiologists, the

pharmaceutical industry, and designers of clinical deci-

sion support tools. The FDA has recently set challeng-

ing goals for advancing regulatory science [29] mak-

ing the agency a particularly important stakeholder for

future work. One regulatory science application of the

approach might be to identify possible quality issues

in drug product labels. For example, Listing 2 shows

a direct query for all NDF-RT drug interactions that

are potentially novel to the Drug Interactions section of

any bupropion product label. The result of this query

makes it evident that there are three NDF-RT interac-

tions (bupropion/carbamazepine, bupropion/phenelzine,

and bupropion/tamoxifen) that are potentially novel to

some bupropion product labels but not others. Assum-

ing that the interactions are truly novel (which is

not validated at this time), this finding might indicate

inconsistency across product labels that could require

further investigation.
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Listing 2 A query for all NDF-RT drug interactions that are

potentially novel to the Drug Interactions section of

bupropion product labels

PREFIX poc:<http://purl.org/net/nlprepository/dynamic-spl-enhancement-poc#>

SELECT ?label COUNT(DISTINCT ?spl) WHERE {

poc:ndfrt-ddi-map ?spl ?ddiMap.

?ddiMap poc:ndfrt-ddi-drug "bupropion".

?ddiMap poc:ndfrt-ddi-label ?label.

?ddiMap poc:ndfrt-ddi-severity ?severe.

OPTIONAL{?ddiMap poc:ndfrt-ddi-potentially-novel ?novel.}

FILTER (BOUND(?novel))

}

GROUP BY ?label

ORDER BY ?label

Doctors and patients might also benefit from dynam-

ically enhanced product label information. For example,

the proof-of-concept linked numerous NDF-RT drug-

drug interactions involving Ioflupane I-123 to the labels

for SSRI drugs. In all cases, these were marked as poten-

tially novel to the Drug Interactions section of the label.

Ioflupane I-123 is used to help radiologists test adult

patients for suspected Parkinsonian syndrome using a

brainscan. The concern here is that the SSRIs might alter

the ability of Ioflupane to bind to dopamine transporters,

possibly reducing the effectiveness of the brainscan [30].

Radiologists and patients, in addition to pharmacists,

might benefit from knowledge of this interaction. With

the current trend for participatory medicine, patients are

playing a greater role in their health and we think that

its important in future work to consider how the novel

approach could be used to help them avoid adverse drug

reactions by self monitoring (or monitoring for someone

whose care they manage).

Limitations

There are some potential limitations to this study.

While we evaluated the relevance and novelty of the

efficacy/effectiveness conclusion claims, our evaluation

included only a small number of randomly-selected drugs.

It is possible that the performance characteristics we

found for the nine psychotropics are not generalizable to

all psychotropic drug products, or to products containing

drugs from other classes. A similar potential limita-

tion exists for drug-drug interactions. Due to resource

limitations, we could only examine the potential novelty

of interactions linked to antidepressant drug products

and the results might be different for other drugs or drug

classes.

We linked claims from three information sources that

we expected to be relevant to pharmacists seeking infor-

mation about the efficacy, effectiveness, and safety of a

drug. However, the drug information sources we chose

might not be representative of all sources of drug claims

on the Semantic Web because we chose sources known to

be clinically oriented. Due to the hypothesis-driven nature

of basic and translational science, we expect that infor-

mation sources designed to support these user groups

might provide a smaller proportion of claims that would

be relevant to pharmacists and other clinicians. A scaled

approach may require labeling each included drug infor-

mation resource with meta-data describing its purpose

and construction. This would enable claims to be filtered

to meet the needs of various user groups.

Finally, the results of our evaluation of SAPIENTA

may have been influenced by how we defined conclusion

claims. The SAPIENTA system labels any given sentence

with one of 11 possible core scientific concept tags (of

which Conclusion is one), and so is designed to identify

all likely Conclusion sentences. However, the research

librarian who helped to produce the reference standard

extracted consecutive sentences that he judged were part

of a conclusions section, rather than attempting to identify

every sentence that reported a conclusion. Thus, some of

the SAPIENTA Conclusion sentences that were judged

to be false positives might have contained informative

conclusions. A similar issue is that our evaluation was per-

formed on abstracts rather than full text articles. While

SAPIENTAwas originally trained on full text articles from

a different scientific domain, its performance in this task

might have been influenced by the concise and structured

organization of biomedical abstracts. Future work should

examine the approach’s “pipeline precision” using full text

articles and a less section-based approach to defining

conclusion claims.

Related work

In recent years, the field of biological text mining has

focused on automatically extracting biomedical entities

and their relationships from both the scientific literature

and the product label. The goal of much of this work

has been to facilitate curation of biological knowledge

bases [31,32]. While it seems that very little research has

been directed toward the extraction of claims about a

drug’s effectiveness or efficacy, there has been a grow-

ing interest in the recognition of drug entities, and the

extraction of drug side-effects and interactions. With

respect to the dynamic enhancement of drug product

labeling, these methods can be divided into those that

1) identify claims present in product labeling and 2)

produce claims that may be linkable to the product

label.

Methods that identify claims present in product labeling

Duke et al. developed a program to extract adverse

events written into the product label that was found
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to have a recall of 92.8% and a precision of 95.1%

[33]. Comparable work by Kuhn et al. associated 1,400

side effect terms with more than 800 drugs [34]. In

previous work co-author RDB produced a manually-

annotated corpus of pharmacokinetic drug-drug inter-

actions and high-performance algorithm for extracting

drug-drug interactions from drug product labels [35].

The corpus was built by two annotators who reached

consensus on 592 pharmacokinetic drug-drug interac-

tions, 3,351 active ingredient mentions, 234 drug prod-

uct mentions, and 201 metabolite mentions present in

over 200 sections extracted from 64 drug product labels.

The drug interaction extraction algorithm achieved an

F-measure of 0.859 for the extraction of pharmacoki-

netic drug-drug interactions and 0.949 for determining if

the modality of the interactions (i.e., a positive interac-

tion or confirmation that no interaction exists). Efforts

on product labels outside of the United States include

Takarabe et al. who describe the automated extraction of

over 1.3 million drug-interactions from Japanese product

labels [36]. Also, Rubrichi and Quaglini reported excellent

performance (macro-averaged F-measure: 0.85 vs 0.81)

for a classifier they designed to assign drug-interaction

related semantic labels to text of the drug interaction

section of Italian “Summary of Product Characteristics”

documents [37].

Methods that produce claims thatmay be linkable to the

product label

Multiple translational researchers have produced new

algorithms for identifying drug-drug interactions and

metabolic pathways. Segura-Bedmar constructed a drug-

drug interaction corpus [38] consisting of documents

from DrugBank annotated with drug-drug interactions.

This corpus was the focus of ten research papers pre-

sented at the recent “Challenge Task on Drug-Drug Inter-

action Extraction” held at the 2011 SemEval Conference

[39]. The best performing system in this challenge

achieved an F-measure of 0.657 [40]. A second round

of this challenge is being held in 2013 with a corpus

expanded to include drug-drug interactions from MED-

LINE. Percha et al. built on work done by Coulet et al. [41]

on extracting and characterizing drug-gene interactions

from MEDLINE to to infer new drug-drug interactions

[42].

Recent work by Duke et al used a template based

approach to extract metabolic pathways from the sci-

entific literature, and then used the extracted metabolic

pathways to make drug-interaction predictions [43].

While similar to the work of Tari et al. [44], Duke et al.

went further by developing a pipeline for gathering phar-

macoepidemiologic evidence of the association of the

predicted drug interactions with specific adverse events.

Their approach of linking population data on the risk

of specific adverse events in patients exposed to specific

drug-drug interactions is groundbreaking, and has the

potential to address the challenge of knowing with any

confidence how risky a potential drug-drug interaction

will be for a particular patient population [26]. By linking

drug-drug interaction claims with data on exposure and

adverse events, clinicians may be better able to assess the

risk of allowing their patient to be exposed to a poten-

tial interaction. We would like to integrate this and similar

research in our future work on the dynamic enhance-

ment of the Drug Interactions section of the product

label.

Conclusions
We have demonstrated the feasibility of a novel approach

to addressing known limitations in the completeness and

currency of product labeling information on drug safety,

efficacy, and effectiveness. Our evaluation of a proof-of-

concept implementation of the novel approach suggests

that it is potentially effective. The baseline performance

characteristics of the proof-of-concept will enable further

technical and user-centered research on robust methods

for scaling the approach to themany thousands of product

labels currently on the market.

Methods
Linking relevant semantic web resources to the product

label

SPLs are documents written in a Health Level Seven stan-

dard called Structured Product Labeling that the FDA

requires industry to use when submitting drug prod-

uct label content [45]. More specifically, an SPL is an

XML document that specifically tags the content of each

product label section with a unique code from the Logi-

cal Observation Identifiers Names and Codes (LOINC�)

vocabulary [46]. The SPLs for all drug products marketed

in the United States are available for download from the

National Library ofMedicine’s DailyMed resource [47]. At

the time of this writing, DailyMed provides access to more

than 36,000 prescription and over-the-counter product

labels.

The SPLs for all FDA-approved prescription drugs were

downloaded from the National Library of Medicine’s

DailyMed resource. We created an RDF version of the

data using a relational-to-RDF mapping approach. This

approach was chosen because it allows for rapid prototyp-

ing of RDF properties and tools are available that provide a

convenient method for publishing the data in human navi-

gable web pages. Custom scripts were written that load the

content of each SPL into a relational database. The rela-

tional database was then mapped to an RDF knowledge

base using the D2R relational to RDF mapper [48]. The
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mapping from the relational database to RDF was derived

semi-automatically and enhanced based on our design

goals, and a final RDF dataset was generated which is

hosted on a Virtuoso RDF serverk that provides a SPARQL

endpoint.

Listing 3 shows the SPARQL query used to retrieve

content from the Clinical Studies, Drug Interactions, and

Clinical Pharmacology sections of the product label data

for each psychotropic drug.

Listing 3 Queries for product label content andmetadata

present in the “LinkedSPLs” RDF graph

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dailymed:<http://dbmi-icode-01.dbmi.pitt.edu/linkedSPLs/vocab/resource/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

## Get metadata for the SPLs of all products containing a drug ##

SELECT ?label ?splId ?version ?setId ?org ?date ?homepage

WHERE {

?splId rdfs:label ?label.

?splId dailymed:subjectXref <%s>. ## The URI to the drug in DrugBank ##

?splId dailymed:versionNumber ?version.

?splId dailymed:setId ?setId.

?splId dailymed:representedOrganization ?org.

?splId dailymed:effectiveTime ?date.

?splId foaf:homepage ?homepage.

}

## Get the three sections of interest for a specific SPL ##

##(substituting an ?splid value from the above query for %s) ##

SELECT ?textClinicalStudies ?textDrugInteractions ?textClinicalPharmacology

WHERE {

OPTIONAL {<%s> dailymed:clinicalStudies ?textClinicalStudies }

OPTIONAL {<%s> dailymed:drugInteractions ?textDrugInteractions}

OPTIONAL {<%s> dailymed:clinicalPharmacology ?textClinicalPharmacology }

}

Automatic linking of study abstracts from ClinicalTrials.gov

to the Clinical Studies section

We wrote a custom Python scriptl that queried the

Linked Data representation of SPLs for the Clinical Stud-

ies sections of each of the drugs included in this study

(see Listing 4). For each returned section, the script

queried the LinkedCT SPARQL endpoint for clinical stud-

ies registered with ClinicalTrials.gov that were tagged in

LinkedCT as 1) related to the drug that was the active

ingredient of the product for which the section was writ-

ten, and 2) having at least one published result indexed

in PubMed. The former criterion was met for a study if

LinkedCT provided an RDF Schema seeAlso property

to DrugBank for the drug. The latter criterion was

met if LinkedCT had a trial_results_reference

property for the study. The result of this process was

a mapping from the meta-data for each published

result to the Clinical Studies section from a product

label.

Listing 4 LinkedCT Query for study results indexed in

PubMed

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX linkedct: <http://data.linkedct.org/vocab/resource/>

SELECT ?trial, ?title, ?design, ?completion, ?reference

WHERE {

?trial a <http://data.linkedct.org/vocab/resource/trial>;

linkedct:trial_intervention ?inter;

linkedct:study_design ?design;

linkedct:official_title ?title;

linkedct:completion_date ?completion;

linkedct:trial_results_reference ?reference.

?inter rdfs:seeAlso <%s>. ## the URI to the drug in DrugBank ##

}

Automatic linking of VANDF-RT drug-drug interactions to the

Drug Interactions section

We extended the custom Python script to query the

Linked Data representation of SPLs for the Drug Interac-

tions sections of each of the drugs included in this study.

For each returned section, the script queried the Bio-

Portal SPARQL endpoint for drug-drug interactions in

the NDF-RT resource involving the drug that was identi-

fied as the active ingredient of the product for which the

section was written (see Listing 5). The NDF-RT labels the

drug-drug interactions that it provides “Critical” or “Sig-

nificant” reflecting judgment by members of the national

Veteran’s Administration (VA) formulary on the poten-

tial importance of the interaction [18]. Because they are

considered to have a greater potential for risk, those inter-

actions labeled “Critical” are less modifiable by local VA

formularies than interactions labeled “Significant.” The

script queried for interactions tagged with either label.

The result of this process was a mapping between the con-

tent of the Drug Interactions section from a product label

to a list of one or more NDF-RT drug-drug interactions.

Listing 5 BioPortal Query for NDF-RT drug-drug

interactions

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos:<http://www.w3.org/2004/02/skos/core#>

PREFIX ndfrt:<http://purl.bioontology.org/ontology/NDFRT/>

SELECT DISTINCT ?s ?label ?severity

FROM <http://bioportal.bioontology.org/ontologies/NDFRT>

WHERE {
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?s ndfrt:NDFRT_KIND ?o;

skos:prefLabel ?label;

ndfrt:SEVERITY ?severity. FILTER (regex(str(?o), “interaction”, “i”))

?s ndfrt:has_participant ?targetDrug.

?s ndfrt:STATUS “Active”∧∧xsd:string.

?targetDrug skos:prefLabel “%s”@EN. ## Preferred label for the drug in the

NDF-RT ##

}

The script was expanded to test how many NDF-

RT interactions might be novel to the Drug Interac-

tions section of each drug product label. A potentially

novel interaction was defined as an NDF-RT interac-

tion that was 1) not mentioned in the Drug Interaction

section of a product label based on a case-insensitive

string match, and 2) not listed in a reference set of

interactions created prior to the study as part of work

done for [4]. The reference set listed pharmacokinetic

and pharmacodynamic interactions derived by manu-

ally inspecting a single product label for each antide-

pressant drug. The reference set (Additional file 1:

Table S4) was created by two reviewers who were

both informaticists specializing in drug information.

Interactions involving drug classes were expanded to

include all drugs in the class using class assignments

in the NDF-RT terminology. The reference set did not

include interactions from antipsychotic or sedative hyp-

notic drug product labels. For these drugs, only the

first criterion mentioned above was used to identify a

potentially novel interaction.

Automatic linking ofmetabolic pathway claims from the

Drug Interaction Knowledge Base to the Clinical

Pharmacology section

We extended the custom Python script once more to

query the Linked Data representation of SPLs for the

Clinical Pharmacology sections of each of the drugs

included in this study. For each returned section,

the script queried the DIKB SPARQL endpoint for

claims about the pharmacokinetic drug properties of

the active ingredient of the product for which the

section was written (see Listing 6). The DIKB pro-

vides meta-data on the sources of evidence for each

claim and uses terms from the SWAN scientific dis-

course ontology [8] to label each evidence source

as one that either supports or refutes the claim.

The script queried for pharmacokinetic drug prop-

erty claims with either supporting or refuting evidence

sources. The result of this process was a mapping

between the content of the Clinical Pharmacology

section from a product label to a list of one or more

pharmacokinetic drug property claims and associated

evidence sources.

Listing 6 Queries to the DIKB for pharmacokinetic drug

property claims

PREFIX swanco: <http://purl.org/swan/1.2/swan-commons#>

PREFIX dikbD2R: <http://dbmi-icode-01.dbmi.pitt.edu:2020/vocab/resource/>

## The enzymes that the drug is a substrate of ##
SELECT ?asrtId ?enz ?evFor ?evAgainst
WHERE {

?asrtId dikbD2R:object <%s>. ## Drug URI in the DIKB ##
?asrtId dikbD2R:slot dikbD2R:substrate_of.
?asrtId dikbD2R:value ?enz.
OPTIONAL {?asrtId swanco:citesAsSupportingEvidence ?evFor }
OPTIONAL {?asrtId swanco:citesAsRefutingEvidence ?evAgainst }

}

## The enzymes that the drug inhibits ##

SELECT ?asrtId ?enz ?evFor ?evAgainst

WHERE {

?asrtId dikbD2R:object <%s>. ## Drug URI in the DIKB ##

?asrtId dikbD2R:slot dikbD2R:inhibits.

?asrtId dikbD2R:value ?enz.

OPTIONAL {?asrtId swanco:citesAsSupportingEvidence ?evFor}

OPTIONAL {?asrtId swanco:citesAsRefutingEvidence ?evAgainst }

}

Generation of web pagemashups

The same Python script used to generate mappings was

extended to write a single web page for each drug product

that included the text content of three sections mentioned

above. A link was placed above each section that enabled

users to view the claims that had been mapped to that

section in a pop-up window. The pop-ups showing claims

linked to theDrug Interactions section provide a cue to the

user when the linked interactions were potentially novel

to the label (see above for further detail). Similarly, the

popups for claims linked to the Clinical Pharmacology

section cued the user when a specific metabolic path-

way claim may be novel to the product label based on a

simple string search of the text of the Clinical Pharma-

cology section for the metabolic enzyme reported in the

linked claim.

The Rialto Javascript widget library was used to gen-

erate the web pages and popups.m All code and data for

the proof-of-concept is archived at the Swat-4-med-safety

Google Code project.o

First steps towards the automated extraction of drug

efficacy and effectiveness claims

Development of a reference standard of relevant claims

Figure 6 provides a flow diagram of the process for iden-

tifying relevant and novel conclusions from efficacy and

effectiveness studies routed to the product label Clinical

Studies section via LinkedCT. Nine psychotropic drugs

were selected randomly from the 29 psychotropic drugs

used to create the proof-of-concept. Any study registered

in ClinicalTrials.gov that was associated with one of the

nine drugs in LinkedCT, and that had published results
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(see Listing 4), was included in the development of the ref-

erence standard. Abstracts for papers publishing results

from a study were retrieved from PubMed using the

PubMed identifier found in the URI values assigned to the

trial_results_reference property in the query

shown in Listing 4.

We then manually identified conclusions from each

abstract. A single research librarian with training in drug

information retrieval identified conclusions written into

the abstract. Abstracts describing clinical studies tend

to share a similar structure consisting of brief introduc-

tion, methods, conclusions, and results sections. There-

fore, the librarian extracted consecutive sentences that

he judged were part of a conclusions section rather than

attempting to annotate every sentence that reported a

conclusion.

Once these conclusion claims were manually extracted,

two reviewers (the librarian and co-author RDB) inde-

pendently determined which of them would be poten-

tially relevant to the Clinical Studies section of a product

label for each drug in our study. The criteria for “poten-

tially relevant” was based on the language of section

“(15)/14 Clinical studies” of CFR 201 which states that

this section of the label should describe at least one clin-

ical efficacy study for each labeled indication. Because

pharmacists would be the target users for the system

that we envision, we expanded the relevance criteria

to include:

1. any study involving a population different from the

average where it was shown that the drug should be

used slightly differently in order to be safe or

effective, and

2. efficacy or effectiveness studies for the off-label uses

mentioned in a widely-used drug information source

[49].

The reviewers made relevance judgements independently

and based only on information in the abstract. The agree-

ment of two reviewers over random chance (Kappa) was

calculated before the reviewers reached consensus on

a final set of relevant conclusions. Disagreements were

resolved by co-investigator JRH who is also a pharmacist.

The same pharmacist reviewed the consensus judgments

and noted if each potentially relevant conclusion refers to

the efficacy/effectiveness of the drug for an labeled indi-

cation, or an off-label use mentioned in a widely-used

drug information source [49]. Another round of review

was done by JRH and the research librarian focusing on

the novelty of relevant claims. These reviewers compared

each relevant conclusion with the text of the Clinical Stud-

ies section from a single product label for the intervention

drug. The label sections were sampled by convenience in

the first week of August 2012. As was done for relevance

judgements, Kappa was calculated before the reviewers

reached consensus on a final set of novel conclusions.

Finally, descriptive statistics and counts were derived for

the following:

• The number of potentially relevant conclusions

present in PubMed abstracts that could be routed via

ClinicalTrials.gov.

• The number of potentially relevant conclusions that

would be novel to the Clinical Studies section.

• The number of potentially relevant conclusions that

deal with off-label uses of a drug.

Determination of the precision and recall of an automated

extractionmethod

Figure 7 shows a flow diagram of the process we imple-

mented for determining the baseline information retrieval

performance of a fully automated extraction method that

could be implemented in the proof-of-concept system. A

publicly available online system called SAPIENTA [20]

was used to automatically annotate sentences in the same

text sources that were used to create the reference stan-

dard. The tool annotated each sentence with one of 11

core scientific concepts (Hypothesis, Motivation,

Background, Goal, Object, Method, Experiment,

Model, Result, Observation, Conclusion). The

system uses Conditional Random Field models [50]

that have been trained on 265 papers from chem-

istry and biochemistry, and makes classification deci-

sions according to a number of intra-sentential fea-

tures as well as features global to the document

structure.

The sentences automatically classified by SAPIENTA

as Conclusions were compared with the conclusions

manually-extracted by the research librarian to determine

the precision and recall of SAPIENTA for identifying con-

clusion sentences. We also calculated an overall “pipeline

precision” which combined the precision of the LinkedCT

queries for retrieving text sources from which drug effi-

cacy and effectiveness claims can be extracted with the

precision of SAPIENTA for automatically extracting con-

clusion sentences. “Pipeline recall” was not evaluated

because it would have required a systematic search for

articles relevant to the efficacy and effectiveness for

each study drug, something that was not feasible for

this study.

Endnotes
aThe 29 active ingredients used for this study were:

amitriptyline, amoxapine, aripiprazole, bupropion,

citalopram, clozapine, desipramine, doxepin, duloxe-

tine, escitalopram, eszopiclone, fluoxetine, imipramine,

mirtazapine, nefazodone, nortriptyline, olanzapine,

paroxetine, quetiapine, risperidone, selegiline, sertraline,
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tranylcypromine, trazodone, trimipramine, venlafaxine,

zaleplon, ziprasidone, and zolpidem.
bLinkedCTmaintained by co-author OH and is available

at http://linkedct.org/.
cThe NDF-RT is maintained by the Veteran’s Admin-

istration. A publicly available version of the resource is

present in the Bioportal at http://purl.bioontology.org/

ontology/NDFRT.
dCo-author RDB maintains the DIKB, it is accessible at

http://purl.org/net/drug-interaction-knowledge-base/.
eThe DailyMed website is located at http://dailymed.

nlm.nih.gov/dailymed/.
fSample product label data in LinkedSPLs can be viewed

at http://purl.org/net/linkedspls. The SPARQL endpoint

is at http://purl.org/net/linkedspls/sparql.
gThe graph has 161 metabolic pathway mappings but

49 are to the same claims with different evidence items.

Thus, there are 112 unique metabolic pathway claims.
hPlease note that the proof-of-concept web pages work

for Internet Explorer 7.0 and 8.0, Mozilla 5.0, Firefox ≥

2.0, and Google Chrome Version 22. They are known to

not work on Safari, Internet Explorer 9.0, and versions of

Internet Explorer (≤ 6.0).
iThis study is viewable in ClinicalTrials.gov at http://

clinicaltrials.gov/ct2/show/NCT00015548.
jThe home page for the Neuroscience Information

Framework is http://www.neuinfo.org/.
kWe use an Open Source version of Virtuoso http://

virtuoso.openlinksw.com/ available as an Ubuntu

package.
lThe exact script used for this study is located at https://

swat-4-med-safety.googlecode.com/svn/trunk/analyses/

pilot-study-of-potential-enhancements-07162012/

scripts.
mThe homepage for the Rialto project is http://rialto.

improve-technologies.com/wiki/.
oThe Swat-4-med-safety Google Code project is locate

at http://swat-4-med-safety.googlecode.com.

Additional file

Additional file 1: Table S4. The full list of drug-drug interactions (DDIs)

affecting drugs indicated for the treatment of depression. The list was

created based on a search conducted in the summer of 2011 using a

convenience sample of package inserts available at that time. One package

insert was retrieved for each of the included antidepressants. Whenever

possible, package inserts were retrieved from the Physician’s Desk

Reference (PDR). In cases where we could find no relevant package insert

in the PDR, one was retrieved from the National Library of Medicine’s

DailyMed website. RDB and RG identified statements referring to

pharmacokinetic DDIs and pharmacodynamic DDIs. Pharmacokinetic DDIs

needed to report a quantitative effect on AUC and/or Cl of an

antidepressant. All pharmacodynamic DDIs that could be identified from

package insert text were included.
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