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Dynamic Ensemble Selection Approach

for Hyperspectral Image Classification

With Joint Spectral and Spatial Information
Bharath Bhushan Damodaran, Student Member, IEEE, Rama Rao Nidamanuri, Senior Member, IEEE,

and Yuliya Tarabalka, Member, IEEE

Abstract—Accurate generation of a land cover map using
hyperspectral data is an important application of remote sensing.
Multiple classifier system (MCS) is an effective tool for hyperspec-
tral image classification. However, most of the research in MCS
addressed the problem of classifier combination, while the poten-
tial of selecting classifiers dynamically is least explored for hyper-
spectral image classification. The goal of this paper is to assess the
potential of dynamic classifier selection/dynamic ensemble selec-
tion (DCS/DES) for classification of hyperspectral images, which
consists in selecting the best (subset of) optimal classifier(s) rela-
tive to each input pixel by exploiting the local information content
of the image pixel. In order to have an accurate as well as com-
putationally fast DCS/DES, we proposed a new DCS/DES frame-
work based on extreme learning machine (ELM) regression and
a new spectral–spatial classification model, which incorporates
the spatial contextual information by using the Markov random
field (MRF) with the proposed DES method. The proposed clas-
sification framework can be considered as a unified model to
exploit the full spectral and spatial information. Classification
experiments carried out on two different airborne hyperspectral
images demonstrate that the proposed method yields a significant
increase in the accuracy when compared to the state-of-the-art
approaches.

Index Terms—Dynamic classifier selection, dynamic ensemble
selection, hyperspectral image classification, markov random field
model, multiple classifier system, spectral-spatial classification.

I. INTRODUCTION

H YPERSPECTRAL image provides detailed spectral

information in numerous narrow contiguous bands of

the electromagnetic spectrum. This capability has led to the

widespread use of hyperspectral images as an important data

source for a range of applications, such as environmental

monitoring, vegetation health monitoring, mineral exploration,

military, and defence, etc. [1]–[3]. Supervised image classifi-

cation has been extensively used to analyze hyperspectral data.

However, several factors such as high dimensionality, spatial
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and spectral redundancy, interclass variability, noisy bands, and

limited labeled samples make the information exploitation of

hyperspectral images a very challenging task [4], [5]. Accurate

hyperspectral image classification depends on the ability of

the chosen classifiers to trade upon the relationship among

available labeled samples, data dimensionality, and informa-

tion classes. There is a high risk that the selected classifier is

suboptimal for a problem and data at hand. Multiple classifier

system (MCS) has been recently explored to improve the per-

formance of hyperspectral image classification by combining

the predictions of multiple classifiers [6]–[8], thereby reduc-

ing the dependence on the performance of a single classifier.

For the MCS to perform better than the single best (SB) clas-

sifier, the classifiers used in the MCS construction have to be

diverse, because combining similar classification results may

not improve accuracy [9].

Diversity in the MCS can be created explicitly and implic-

itly. Explicitly, the diversity in the MCS is created by defining

a diversity measure and optimizing it. Implicitly, diversity can

be introduced by selecting a subset of features [10]–[12], train-

ing samples manipulation, selecting classifiers from different

categories, and different feature extraction methods [13], [14].

However, the diversity constraint alone does not guarantee that

the MCS always performs better. The possibility of inaccu-

rate base classifiers and the incompatible combinations of the

classifiers may instead end up the MCS with the suboptimal

performance. An ensemble pruning approach has been pro-

posed to select reasonably accurate base classifiers [15]–[17].

In this method, instead of combining all the available base clas-

sifiers in the MCS, a subset of classifiers is selected based on the

criteria like diversity measures and performance measures for

decision fusion. This approach has been expanded by propos-

ing a unified framework [18] which consists of both diversity

creation (implicit and explicit) and performance measures of

base classifiers, as well as selecting the classifiers with nonzero

weights by sparse optimization methods [19] to form an effec-

tive MCS. However, the selection of classifiers in this method

is independent of the location of the image pixel in the fea-

ture space; hence, all the classifiers take part in classifying each

image pixel. On the other hand, the optimal subset of classifiers

varies for different spatial locations in the image. Therefore, the

performance of the MCS can be improved by selecting the best

classifier or a subset of classifiers dynamically relative to each

image pixel, known as dynamic classifier/ensemble selection

(DCS/DES) [20]–[22].

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Flowchart of the proposed spectral–spatial classification method.

The success of DCS depends on an accurate estimation of

classifiers competence for a given image pixel. The classi-

fiers forming a dynamic subset are chosen based on estimating

the accuracy (competence) of each base classifier in a local

region around the image pixel, and the selection is based on

the highest accuracy criterion. The classifier competence can

be computed by local accuracy (LA) estimation methods [22]–

[24] and probabilistic model-based methods [25]. Recently, Du

et al. have studied the capability of DCS for hyperspectral

image classification using LA estimation [26]. However, their

study is limited with two optimal classifiers as the base clas-

sifiers. When the number of base classifiers increases and in

the presence of inaccurate classifiers, the performance of DCS

based on LA is uncertain. Both the LA estimation methods and

a probabilistic model approach compute the distance between

the test pixel and the training (validation) samples. Hence,

these techniques are computationally expensive for large-scale

problems. The regression-based probabilistic model reduces the

computational factor at the cost of the accuracy [25]. However,

in practical situations, the accuracy is an important criterion

in mapping applications. Recently, extreme learning machine

(ELM) has shown good performance in terms of both compu-

tational time and accuracy for the classification and regression

problems [27]. In this paper, we modeled the DCS problem as

the classification problem by mapping the validation samples

to the classifier competence measure based on ELM regres-

sion. The proposed DCS/DES method based on ELM increases

the efficiency in computation time and classification accuracy

for the large-scale problems. Our extensive literature review

reveals that the potential of the DCS/DES approaches for the

hyperspectral image classification is not well studied. Hence,

it is highly desirable to study the potential of the DCS/DES

approaches, and develop an accurate and computationally

efficient DCS/DES methodology for hyperspectral image

classification.

Apart from the spectral content, airborne hyperspectral sen-

sors also provide rich spatial information, which has been

extensively utilized in recent studies for hyperspectral image

classification [28]–[30]. Markov random field (MRF) model is

a powerful method for modeling the spatial contextual infor-

mation, which assumes that the neighboring pixels are likely to

belong to the same class [31]–[33]. Most of the state-of-the-art

studies deal with MRF regularization for a single classifier,

yielding significant improvement in the classification perfor-

mance [32], [34], [35]. The performance of MRF regularization

depends on the accuracy of the classifier’s probability esti-

mates. It has been shown that the combination of several

classifiers yields reliable probability estimates when compared

to the single classifier. Thus, the use of an MCS to derive

the data energy term for the MRF regularization is likely to

improve the classification accuracy. However, only few stud-

ies tested the application of an MRF model to the MCS-based

image classification [36], [37]. Furthermore, DCS/DES over-

comes the structural limitation of a single classifier, as well

as classifier combination or classifier fusion (CF) methods and

provides more reliable probability estimates. Thus, DCS/DES

emerges as a strong candidate to capture the spectral informa-

tion of a hyperspectral image. There are no studies available

in literature which test the application of an MRF model

to the DES based image classification. Hence, the combi-

nation of the DES to extract spectral information with the

MRF model to exploit spatial context into a unified frame-

work would yield a powerful tool for hyperspectral image

classification.

The main contributions of this paper are as follows. 1) We

tested the performance of different DCS and DES methods, and

compared the performance between DCS and DES methods for

hyperspectral image classification. 2) We propose an extended

version of the probabilistic model-based DES based on ELM

approach. 3) We propose a new unified framework to exploit

both spectral and spatial information based on DES and MRF

models for hyperspectral image classification.

The flowchart of the proposed spectral–spatial DES method

is shown in Fig. 1. This framework extracts the spectral infor-

mation by using the DES method and the spatial information

by applying the MRF model. Experiments had been conducted

with two multisite airborne hyperspectral images, and results

showed that proposed method yielded the improved classifi-

cation accuracies when compared to the previously proposed

techniques.

The remainder of this paper is organized as follows.

Section II gives an overall view of the DCS and the proposed

approaches. In Section III, we report the experimental results

and we discuss and conclude them in Section IV.
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II. METHODOLOGY

In this section, we first describe about different DCS/DES

methods which we propose to apply for hyperspectral image

classification and later these methods are used for compari-

son with our proposed method. Then, we present the proposed

DCS/DES-ELM method and spectral–spatial DES approach.

The term DCS indicates that only the best classifier is selected

relative to each image pixel, whereas DES indicates that the

subset of best classifiers is selected relative to each image pixel.

A. MCS

Let Ψ = {ψ1,ψ2, . . . ,ψL} be the base classifiers forming

an MCS, and each classifier ψl, l = 1, 2, . . . , L be a function

ψl : χ → Ω from an input space χ ⊆ Rn to a set of class labels

Ω = {ω1,ω2, . . . ,ωM} (M is the number of classes). For any

given x ∈ χ, a classifier ψl produces a vector of decision values

d = [dl1, dl2, . . . , dlM ] and x is assigned to the class that has

the maximum probability (decision) value. The base classifiers

have to commit different types of errors in their predications

on different parts of the input space, so that the MCS produces

more accurate results when compared to individual classifiers.

The random subspace method (RSM) is a popular ensemble

generation technique to generate multiple input data sources

from a single input data, thus creating diversity among the

classifiers in an MCS [12].

The RSM partitions hyperspectral image bands into L sub-

sets and each subset contains P
L

number of bands, where

P denotes the number of bands in the original hyperspec-

tral image. Each input data source generated from the RSM

is returned as the input to the learning algorithm ψ. Support

vector machines (SVM) have gained interest in hyperspectral

image classification due to their ability to deal effectively with

high-dimensional data and small training sets [38], [39]. The

performance of SVM varies across different input data sources,

thus introducing diversity in the MCS. Apart from SVM, RSM

also has the capability to mitigate the small sample size problem

and offers good classification accuracies in the heterogeneous

environment. The SVM coupled with the output from the RSM

were used as base classifiers in the MCS. The concept of com-

bining all the base classifiers available in the MCS to obtain

the final classified image, known as classifier combination or

CF method, was extensively explored. Therefore, here we focus

on the DCS/DES approach, which dynamically selects the best

(subset of) classifier(s) for a given image pixel. In the following

section, we describe the various dynamic classifier approaches

that we propose to apply for hyperspectral image classification.

B. DCS and DES Approaches

The basic idea of the DCS is to find the classifier with

the highest probability of being correct for a given unseen

sample. The selection of correct classifiers and hence the suc-

cess of the DCS depends on the estimation of the classifiers

competence for a given sample. The classifier competence

measure is estimated from validation samples (different from

training samples and test samples). Apart from the train-

ing and test samples, validation samples are also generated

for estimating the classifier competence in DCS. Let V =
{(v1, j1) , (v2, j2) , . . . , (vN , jN )} be the validation set con-

taining pairs of validation samples and their corresponding

class labels. A brief description of different methods used to

estimate the classifier competence is given below.

1) DCS/DES by LA Estimate (DCS/DES-LA): The

DCS/DES-LA estimates accuracy of each classifier in a local

surrounding region of the image pixel and selects the classifier

that exhibits higher LA [23]. Let x be an image pixel to be

classified and let us consider k-nearest neighbors of x in

the validation set, denoted as Q (x) ∈ V . Without loss of

generality, we assume that the classifier ψl assigns a class label

ωm to the image pixel x (i.e.,ψl (x) = ωm). Then, the LA

of a classifier ψl (LA is known as the classifier competence

measure) is denoted by

LA (ψl|x) =
Nm

∑M

i=1 Nim

, Q (x) ∈ V |ψl (vj) = ωm,

j =1, 2, . . . , k (1)

where Nm is the number of correctly classified samples by the

classifier ψl to the class ωmin the neighborhood Q (x) ,and
∑M

i=1 Nim is the number of the k-nearest samples of x in V

that have been assigned to the class ωm by the classifier ψl.

The classifier which exhibits the highest LA is selected as the

adaptive classifier for image pixel x:

l = argmaxi LA (ψi,x) . (2)

However, in this approach, all the neighboring samples are

given equal significance and probability values of the classifiers

have not been considered. The validation samples that are closer

to the image pixel may have more impact than the samples that

are farther away. The classifiers probability values are weighted

based on the distance to the neighboring samples, to improve

the estimation of LA [22], labeled as posterior LA (PLA). The

PLA is estimated as

PLA (ψl, x) =

∑

vj∈ωm
P (ωm|vj ,ψl)wj

∑M

i=1

∑

vj∈ωi
P (ωm|vj ,ψl)wj

,

Q (x) ∈ V |ψl (vj) = ωm (3)

where vj ∈ Q (x) , P (ωm|vj ,ψl) is the posterior probability

value of the validation sample vj assigned to the class ωm

by the classifier ψl and wj = 1/dj , dj is the Euclidean dis-

tance between the image pixels x and vj . The classifier that

has the maximum PLA is selected for classifying the image

pixel x similar to (2). In order to select a subset of T classi-

fiers, the classifier competence values (PLA, LA) are arranged

in descending order and the first T classifiers are selected.

The classification process is then performed by using weighted

Bayesian average methods [40] and is called DES

P (ωi/x) =
∑T

t=1
ηtpt (ωi/x) , i = 1, 2, . . . ,M. (4)

The class label is obtained as x ∈ ωm,m = argmaxi
P (ωi/x), where ηt is the weight of the classifier ψt [for

instance, it is obtained as ηt = PLA (ψt,x)], and pt (ωi/x) is

the resulting posterior probability of class ωi for a classifier ψt.



2408 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

2) DCS/DES With Modified LA (DCS/DES-MLA): This

approach is similar to DCS/DES-LA, except that the LA is esti-

mated using weighted nearest neighbors of the image pixel x.

Motivated by the performance of the distance weighted k-

NN classifier, Smits [24] used generalized Dudani’s weighting

scheme for scaling distance with the sth nearest neighbor for

scaling the distances as

wr (x) =

⎧

⎨

⎩

dk − dr
ds − d1

ds ̸= d1, s = 3k

1, otherwise

(5)

where dk is the distance between kth sample and the image

pixel x, and dr is the distance between the rth of the kth nearest

neighbor and the image pixel x. The MLA is then estimated as

MLA (ψl,x) =
1

k

∑

j∈N(x)|ψl(x)=ωm

wj . (6)

The classifier which exhibits the maximum LA is cho-

sen to classify each image pixel. If a subset of classifiers is

selected, then classification is performed similar to (4) with

ηt = MLA (ψt,x). Furthermore, we modified (6) by incorpo-

rating classifiers posterior probability values of the neighboring

samples for better LA estimation

MPLA (ψl,x) =

∑

vj∈ωm
p (ωm|vj ,ψl) .wj

∑M

i=1

∑

vj∈ωi
p(ωm|vj ,ψl).wj

,

Q (x) ∈ V |ψl (vj) = ωm (7)

where wj is the weight obtained from (5), and p (ωm|vj ,ψl)
is the posterior probability value of the validation sample vj

assigned to the class ωm.

3) DCS/DES-Beta Probabilistic Model (DCS/DES-Beta):

The third employed method to estimate the classifier com-

petence is based on the beta probabilistic model [25]. The

classifier competence is modeled as the probability of correct

classification of a random reference classifier (RRC). The RRC

produces a randomized vector of class supports, such that its

expected value is equal to the vector of class supports produced

by the classifier ψl for each of the samples vj , j = 1, 2, . . . , N
in the validation set. The RRC depends on the beta probability

distribution with the parameters αm,βm,m = 1, . . . ,M . The

parameters αm and βm are derived from the vector of class

supports produced by the classifier ψl.

Let ωj be an original class label of the sample vj ∈ V ,

and the classifier ψl produces a vector of class supports

as [d1 (vj), d2 (vj), . . . , dM (vj)]. The estimation of classifier

competence can be summarized as

1) estimate the parameters of beta distribution as αm =
Mdm (vj),βm = M [1− dm (vj)];

2) construct the RRC and compute its conditional probabil-

ity of correct classification as

Pc (RRC|vj) =

∫ 1

0

b(u,αmj (vj),βmj (vj))

[

∏M

m=1,m ̸=ωj

B (u,αm (vj),βm (vj))

]

du (8)

where b (u,αmj (vj),βmj (vj)) is the beta probability dis-

tribution and B (u,αm (vj),βm (vj)) = ∫u0 b (w,αm (vj),
βm (vj)) dw is the beta cumulative distribution function.

The classifier competence (C) for each validation sample is

estimated as

C (ψl,vj) =Pc (RRC|vj), j = 1, 2, . . . , N ;

l =1, 2, . . . , L. (9)

The classifier competence is computed for all the validation

samples, which essentially indicates which classifier is most

suited for the validation samples. In order to choose the opti-

mal classifier for a given image pixel, the classifier competence

set is generalized to the entire feature space as follows:

c (ψl,x) =

∑N

j=1 C (ψl, vj) exp
(

−dist(x,vj)
2
)

∑N

j=1 exp
(

−dist(x,vj)
2
) (10)

where dist is the Euclidean distance between the image pixel

x and the validation samples. The most competing classifier is

selected for each pixel similar to (2). If the subset of competent

classifiers is selected, then image pixels are classified by using

(4). Criterion (10) is known as potential model (DCS/DES-beta

potential). This method eliminates the necessity of finding the

nearest neighbors for each image pixel x; instead, it weights the

validation samples that are closer to x with high weights and

the validation samples that are farther away with low weights.

However, it is required to compute N distances for each image

pixel, yielding high computational complexity, especially when

the image size is large.

In order to reduce the computational complexity, the clas-

sifier selection problem can be formulated as the regression

problem. Let us consider L classifiers as L classes; the objec-

tive is to learn a function that selects a classifier for each of the

image pixels. In other words, the classifier selector is a func-

tion f : V → C that maps from the validation data set to the

competence set of validation samples.

Let {(v1, C (ψl,v1)), . . . , (vj , C (ψl,vj))} , l = 1, . . . , L
be pairs of a validation sample and its corresponding classifier

competence value of the classifier ψl. For simplicity, let

C (ψl) = [C (ψl,v1) , C (ψl,v2) , . . . , C (ψl,vN )], now

f (V ;βl) = βl
t
V ⇒ βl

t
V = C (ψl) (11)

where βl is the parameter to be estimated for the classifier

ψl. The classifier competence of the image pixel x can be

obtained by

c (ψl,x) = βl
tφ (x) (12)

and the parameter βl can be obtained by pseudoinverse as

βl =
(

Φ
t
Φ
)−1

Φ
tC (ψl) (13)

where Φ = [φ (v1), . . . ,φ (vn)] and φ (v) is the polynomial

transformation of the sample v as
∑r

i=0 v
i, r = 2, 3, 5. We

empirically set r = 3. The classifier that has the maximum

competence value in (12) is selected to classify the image pixel
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Fig. 2. Flowchart of the proposed DCS/DES-ELM and DES-ELM+MRF method.

x. We call this method as the DCS-beta least square regression

(DCS-beta-LSR). When a subset of classifiers is considered,

then the classification is performed by applying (4), and we call

it DES-beta-LSR.

C. Proposed DCS/DES-ELM Method and Spectral–Spatial

DES Approach (DES-ELM +MRF )

In this section, we propose an extended version of the

probabilistic model-based DCS/DES based on ELM approach.

Furthermore, this proposed method is regularized with MRF

model to develop spectral–spatial DES approach for hyper-

spectral image classification. The flowchart of the proposed

DCS/DES-ELM and spectral-spatial DES is shown in Fig. 2

The performance of the DCS/DES-beta-LSR depends on the

feature transformation of the validation and input samples. It

has been shown that the DCS/DES-beta-LSR has a suboptimal

performance compared to the DCS/DES-beta potential model

[25]. Hence, it would be beneficial to have a DCS/DES

approach which is independent of feature transformation.

Recently, ELM has demonstrated its superior capability to

offer better generalization ability and fast training speed for

classification and regression problems [27], [41], [42]. In this

paper, we propose DCS/DES based on ELM for accurate and

fast hyperspectral image classification, labeled as DCS/DES-

ELM. The ELM method has the inherent ability to transform

the input samples. In addition to that, the performance of the

ELM is independent of its parameters, and a wide variety of

transformation functions can be used.

The DCS/DES-ELM approach can be modeled as

∑R

i=1
βigi (wi,vj) =C (ψl,vj) ⇒ h (vj)β = C (ψl,vj) ,

j =1, 2, . . . , N (14)

where R is number of the hidden nodes, h (vj) = [g1 (w1,vj) ,
. . . , gR (wR,vj)] is the output row vector of hidden layer for

input vj , gi (wi,vj) is the output of the transformation function

in the ith hidden node [radial basis function (RBF) is used as

the transformation function, and the input weights wi are ran-

domly chosen], β = [β1, . . . ,βR]
t

is the output weight between

the hidden layer nodes and the output nodes, and C (ψl,vj) is

competence value of the jth validation sample of the classifier

ψl obtained from (9).

For all the validation samples j, (14) can represented as

Hβl = C (ψl) (15)

where H =

⎡

⎢

⎣

h (v1)
...

h (vN )

⎤

⎥

⎦
, the parameter βl is the weight vec-

tor of the hidden layer matrix and classifier competence value

of the validation samples for the classifier ψl, and this can be

obtained as

βl =
(

H
t
H

)−1
H

tC (ψl) . (16)

The classifier competence for an image pixel x is com-

puted as

c (ψl,x) =
(

H
t
H

)−1
H

tC (ψl)h (x) . (17)

The competence values are arranged in the descending order

and the first T classifiers are selected as adaptive classifiers for

the image pixel x. Then, classification is performed by com-

puting the weighted Bayesian average (4), with ηt = c (ψt,x),
and we call it as DES-ELM. The class label is obtained as

x ∈ ωm,m = argmaxi P (ωi/x) (Fig. 2).

Spectral–Spatial DES approach: In the proposed method,

the spatial contextual information is incorporated into the
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DES-ELM classification by using the MRF-based regulariza-

tion model. The DES method is only regularized with MRF

model, as the DES method provides better class posterior prob-

ability estimates than the DCS method. In the MRF framework,

the classification task is formulated as an energy minimization

problem on the graph of image pixels. The energy to opti-

mize is computed as a sum of spectral and spatial energy terms

and assumes that a pixel belonging to a specific class tends to

have neighboring pixels belonging to the same class. The MRF

model can be written as

ω̂ = argminω

(

−
∑

i∈S
logP (ωi/xi)

+ γ
∑

j∈N(xi)
(1− δ(ωi,ωj))

)

(18)

where δ (·) is the Kronecker function [δ (ωi,ωj) = 1 for ωi =
ωj ; δ (ωi,ωj) = 0 forωi ̸= ωj ], N (xi) is the neighboring pix-

els of xi, ω̂ is the resulting class labels from the MRF

regularization, S is the set of all image pixels, and γ is a pos-

itive constant parameter that controls the importance of spatial

smoothing. The first term P (ωi/xi) characterizes the spectral

information and it is derived from the DES-ELM by employ-

ing (4). The second term is expressed by using a Potts model,

which favors spatially adjacent pixels to belong to the same land

cover class [43]. This MRF regularization is solved by applying

an efficient α-expansion graph-cut-based algorithm described

in [44].

III. EXPERIMENTAL RESULTS

A. Hyperspectral Image Description

In order to study the potential of DCS/DES for hyperspectral

image classification, we adopted two benchmark hyperspec-

tral images with different land cover settings (one in the urban

area and one in the agricultural area) captured by two different

sensors (ROSIS and AVIRIS).

ROSIS University: The first hyperspectral data set was col-

lected over the University of Pavia, Italy by the ROSIS airborne

hyperspectral sensor in the framework of HySens project man-

aged by DLR (German national aerospace agency). The ROSIS

sensor collects images in 115 spectral bands in the spec-

tral range from 0.43 to 0.86µm with a spatial resolution of

1.3 m/pixel. After the removal of noisy bands, 103 bands were

selected for experiments. The image contains 610× 340 pixels

with nine classes of interest. Fig. 3 shows a false color compos-

ite (FCC) image and its corresponding ground truth map.

AVIRIS Indian Pines: The second hyperspectral image was

collected by the AVIRIS sensor over the Indian Pines site in the

Northwestern Indiana. The AVIRIS sensor collects images in

220 spectral bands in the spectral range from 0.43 to 0.86µm
at 20-m spatial resolution. Twenty water absorption bands were

removed, and 200 bands were used for experiments. This image

contains 145× 145 pixels with 16 classes of interest. Fig. 4

shows the FCC image and its corresponding ground truth map.

Fig. 3. (a) FCC of the ROSIS University image (R: 0.8340 µm G: 0.6500 µm

B: 0.5500 µm). (b) Ground truth image and its corresponding class labels.

B. Design of Experiments

From the available ground truth samples, we randomly

selected 100 samples for training, 100 samples for validation,

and the remaining samples were used for testing (see Tables I

and II). If the total number of available reference samples was

lower than 300 samples per class, then 25% of samples were

selected for training, another 25% of samples for validation, and

remaining samples were used as the testing samples. The exper-

imental results were assessed by overall accuracy (OA), average

accuracy (AA), and producer accuracy (PA). In order to avoid

the bias induced by random sampling of the training and valida-

tion samples, ten independent Monte Carlo runs are performed

and the accuracies (OA, AA, PA) are averaged over the ten runs.

In each of the RSM, multiclass pair-wise probabilistic SVM

classification with the Gaussian RBF kernel was performed

[44]. The SVM parameters in all experiments were automat-

ically tuned by using fivefold cross-validation with C = 2α,
α = {−5,−4, . . . , 15} and γ = 2β ,β = {−15,−13, . . . , 3}
(C is the cost function and γ is the width of the RBF kernel).

When using the DCS-LA and DCS-MLA methods, the classi-

fier competence was estimated based on both strategies (1) and

(3), and the best results were retained. The performance of the

DCS-LA and DCS-MLA approaches depends on the k-nearest

neighbors of the test sample in the validation data set. Hence,

we varied the value of k from 3 to 25 and only the best classifi-

cation accuracies were retained. When more than one classifier

was selected, the performance of the DES depended on the

number of classifiers (T ) included in (4). Hence, in the exper-

iment, we varied the number of classifiers from 2 to 7 and only

the best accuracy is reported. However, in most of the Monte

Carlo runs, the optimal results were obtained with four and five

classifiers. The parameters of ELM regression were automati-

cally tuned using fivefold cross-validation method. In the MRF

model (18), the parameter γ that controls the spatial smoothness

was tuned empirically for the optimal classification results.

Furthermore, the classifier combination or CF method using

Bayesian average algorithm was adapted to combine all the
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Fig. 4. (a) FCC of the AVIRIS Indian Pines image (R: 0.8314 µm G: 0.6566 µm B: 0.5574 µm). (b) Ground truth image and its corresponding class labels.

base classifiers in the MCS [40] to compare with the DCS/DES-

ELM approaches. The results of the proposed spectral–spatial

DES (DES-ELM+MRF) were compared with the results of

the full-band SVM classification, full-band ELM classification,

SB classifier, and CF. Apart from this, the proposed spectral–

spatial DES method was compared with the four state-of-the

art approaches, full-band SVM+MRF [32], full-band ELM+
MRF, MCS +MRF [36], composite kernels (CK) [30], and

SVM ensemble fusion [12]. In the CK [30], the spatial and

spectral kernels are combined to exploit the spectral and spatial

information of the hyperspectral image. The spatial component

of the kernel was derived from the mean of the spectral bands

over a spatial neighborhood. The spectral component of the

kernel was derived from the spectral information of the indi-

vidual pixels. The Gaussian RBF and the polynomial kernel

were considered in the CK. The experiments were conducted

with different combination of the kernels (for instance, polyno-

mial kernel for spectral information and RBF kernel for spatial

information), and only the best accuracies were reported (for

both images, RBF kernel was used for both spectral and spatial

information). We tuned hyperparameters of the composite ker-

nel γ, and C by using fivefold cross-validation and we varied

the parameter µ between 0 and 1.

In the SVM ensemble fusion method [12], the hyperspec-

tral image was partitioned into different subsets (i.e., 4 and 6

subsets for the ROSIS University and AVIRIS Indiana Pines

hyperspectral images) using correlation coefficient, and each of

these subsets was classified by SVM classifier. The decision

function values of the individual SVM classifier were fused by

one more SVM classifier (the hyperparameters are optimally

tuned by fivefold cross-validation). The same number of train-

ing and testing samples were used for computing the accuracy

of the state-of-the art approaches.

C. Classification Results of RSM

Table III shows the classification accuracies of SVM clas-

sification relative to each random subspace. The results show

that there is a considerable variability among the base classi-

fiers in the MCS in terms of OA and class-specific accuracies,

thus indicating the suitability of RSM for forming the MCS.

The variability of classifiers accuracy is less significant for the

University image. There is a 2% accuracy difference between

the maximum and minimum overall classification accuracy in

the MCS, whereas it is about 8% difference for the AVIRIS

Indian Pines hyperspectral image.

TABLE I

NUMBER OF REFERENCE SAMPLES CONSIDERED FOR THE EXPERIMENT

OF UNIVERSITY IMAGE

D. Classification Results of the DCS and DES

In this section, the classification results of the differ-

ent DCS/DES approaches and the proposed DES-ELM,

DES-ELM+MRF methods are presented. Tables IV and V

summarize accuracies of the DCS/DES for both hyperspectral

images. DCS indicates that only the most competent classifier is

selected for each image pixel, whereas DES indicates that a sub-

set of classifiers was selected for each image pixel. The DCS,

DCS-LA, and DCS-ELM methods yield a marginal increase

in overall classification accuracies. The remaining methods

resulted in 2% decrease in classification accuracies when com-

pared to the SB classifier for both images. This observation

highlights the need to select an adaptive subset of classifiers for

each image pixel, instead of choosing only the most competent

classifier. This is analogous to the case of selecting multiple

classifiers instead of one classifier to avoid the risk of the

suboptimal performance.

When a subset of classifiers is chosen for each image pixel

and combined by the weighted Bayesian average method,

the classification accuracy is significantly improved with all

the DES approaches (except the DES-LSR method for the

University image). There is a significant improvement in

classification accuracy (about 5–6 percentage points) for the

Indian Pines image, and a moderate improvement (about 2–3

percentage points) for the University image. Among the DES

approaches, the DES-ELM achieved the highest accuracy for

the University image and the DES-LA, DES-potential, and

DES-ELM achieved the highest accuracies for the Indian Pines

image.

The per-class and average-class accuracies have also been

improved. There is about 7%–8% improvement in per-class
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TABLE II

NUMBER OF REFERENCE SAMPLES CONSIDERED FOR THE INDIAN PINES IMAGE

TABLE III

OA AND AA (IN PERCENTAGE) OF THE SVM CLASSIFICATION RELATIVE TO EACH

RANDOM SUBSPACE AND FULL-BAND HYPERSPECTRAL IMAGE

TABLE IV

PA, OA, AND AA (IN PERCENTAGE) OF THE DCS AND DES METHODS FOR THE UNIVERSITY IMAGE

The best accuracies are in bold.

accuracy for most of the classes in the Indians Pines image,

while it is moderate with the University image. This observa-

tion supports the need of adopting the adaptive classifiers based

on local pixel information for enhanced classification perfor-

mance. However, the poor per-class accuracy is observed with

the classes oats and alfalfa. This is because the classifier fails

to characterize the class information due to the presence of

the insufficient number of training samples. Furthermore, our

proposed DES-ELM approach has outperformed other DES

methods in terms of both accuracies and computational time

(see Table VI).

From the above observations, we can conclude that DES-

ELM better characterizes the spectral information and provides

reliable probability estimates and class labels when compared

to the other considered methods. The inclusion of spatial con-

textual information in DES-ELM by the MRF model further

significantly increases classification performance. In this case

(DES-ELM+MRF), the overall and average classification

accuracies are improved by 12%–15% and by 9%–12% over

the SB classifier, respectively. When compared to its earlier ver-

sion (DES-ELM), about 9% enhancement in the classification

accuracy is observed. Furthermore, the class-specific accuracies

exceed 95% for medium and large spatial structures, and are

less than 95% for small spatial structures (e.g., trees, alfalfa,

and oats). The lower per-class classification accuracy of oats

and alfalfa might be due to insufficient number of training

samples. The classification maps of the SB, DES-ELM, and

DES-ELM+MRF are shown in Figs. 5 and 6. Visual inspec-

tion of Figs. 5(a) and (b), and 6(a) and (b) reveal that DES

produced smoother classification maps than the SB classifier.

Figs. 5(c) and 6(c) confirm a significant increase in classifica-

tion accuracies and highlight the potential of the MRF model to

produce a smooth classification map with spatially connected

regions.

Computational time analysis: Table VI shows the com-

putational time of the different DES approaches for both
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TABLE V

PA, OA, AND AA (IN PERCENTAGE) OF THE DCS AND DES METHODS FOR THE INDIAN PINES IMAGE

The best accuracies are in bold.

TABLE VI

CPU PROCESSING TIME (IN SECONDS) OF THE DIFFERENT

DES APPROACHES

Since the RSM generation includes for all the methods, the CPU processing

time of RSM generation is discarded.

hyperspectral images. The computational time complexity of

the DES-LA, DES-MLA, and DES beta potential methods is

very high and it grows with the number of pixels to be classified,

thus impeding the use of the DES approaches for the large-

scale image classification. On the other hand, the DES-LSR and

DES-ELM methods are independent of the number of pixels in

the image and thus perform very fast image classification. It

can be seen from Tables IV to VI that the proposed DES-ELM

method outperforms the other DCS/DES approaches in terms

of accuracy and computational time.

E. Comparative Performance of the Proposed Methods With

the State-of-the Art Approaches

The accuracy of the DES-ELM and the spectral–spatial DES

(DES-ELM+MRF) are compared with the state-of-the art

pixel-wise classification methods such as full-band ELM, full-

band SVM, CF or MCS, and SVM ensemble fusion method (see

Table VII). The proposed DES-ELM approach outperforms

the state-of-the art approaches by 2%–3% for the University

image and 4%–6% for the Indian Pines hyperspectral images.

Furthermore, there is a higher magnitude of improvement in

accuracy about 12% for University image and 27% for Indian

Pines image over the full-band ELM classifier. When com-

pared with the SVM ensemble fusion [12], DES-ELM+MRF
yields improvement of the OA by 11 percentage points for the

University image and by 16 percentage points for the Indian

Pines image. When compared with CF (MCS), it yields about

9% improvement for both images. In order to have a fair

comparison, we also compared the performance of the pro-

posed spectral–spatial DES with the state-of-the-art spectral–

spatial classification approaches, and the results are reported

in Table VII. The proposed DES-ELM+MRF method out-

performs SVM+MRF [32], SB +MRF, and MCS +MRF
(CF +MRF) [36] techniques by 2%–3.5% for the University

image and 1.6%–2.5% for the Indian Pines image. When

compared with the CK [30] and full-band ELM+MRF, the

DES-ELM+MRF improved accuracy of about 4.8% and

8.2% for the University image, and 8.8% and 11.3% for Indian

Pines image. Furthermore, the proposed DES-ELM+MRF
approach also yields the highest class-specific accuracies. This

observation highlights the potential of merging the advantages

of the two different approaches into a unified framework.

In order to examine statistical significance of the results, we

have conducted two-tail kappa statistical significance test and

the results are shown in Table VIII. The results are statisti-

cally significant at 95% confidence interval, if the tabulated

value |Z| > 1.96. As can be seen from Table VIII, the accu-

racy differences of the proposed DES-ELM are statistically

significant when compared to the SB classifier, CF (MCS),

full-band SVM, and SVM ensemble fusion method. However,

there is no significant difference between DES-ELM and CF
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Fig. 5. Classified images of the University image. (a) SB classifier; (b) DES-ELM; and (c) DES-ELM-MRF.

Fig. 6. Classified images of the Indian Pines image. (a) SB classifier; (b) DES-ELM; and (c) DES-ELM-MRF.

TABLE VII

OA, AA (IN PERCENTAGE) OF THE PIXEL-WISE CLASSIFICATION METHODS (FULL-BAND ELM, FULL-BAND SVM, SB, AND CF) AND THE

SPECTRAL–SPATIAL CLASSIFICATION METHODS (FULL-BAND ELM+MRF, FULL-BAND SVM+MRF, SB +MRF, AND MCS +MRF)

for the Indian Pines image. The high statistical significance

values are observed when the spatial contextual information

is incorporated with the DES-ELM approach. This observa-

tion confirms the advantage of the spatial contextual models to

obtain accurate classification image over the pixel-wise clas-

sification methods. Furthermore, the accuracy improvement

offered by the proposed DES-ELM+MRF approach is sta-

tistically significant when compared with the state-of-the-art

spectral–spatial classification models.

IV. DISCUSSION AND CONCLUSION

MCS has evolved as a promising approach for hyperspectral

image classification. The classifiers in the MCS are combined

in two ways by CF and classifier selection. Many studies have

demonstrated that combining multiple classifiers (for instance,

Bayesian average) has the potential to deliver significant

performance for hyperspectral image classification [8], [46].

However, the classifiers forming the MCS have to be diverse

in order to get enhanced performance; otherwise, the result

may be suboptimal. It is understood that along with the diver-

sity constraint, the classifiers forming the MCS should also

be accurate enough to enrich the performance of the MCS.

This requirement is often met by developing methodologies,

which select both diverse and high performance classifiers.

However, most often all the selected classifiers take part in the

decision-making and do not account for local class diversity

and distribution variations within the image. Dynamic classifier

(ensemble) selection is an alternative way of combining multi-

ple classifiers in the MCS, by selecting a classifier (or a subset

of classifiers) relative to each image pixel [25]. Most of the pre-

vious studies using MCS for hyperspectral image classification

are focused on the classifier combination or CF, while little or

no attention has been paid to the classifier selection mechanism.

In this paper, we proposed a new method for hyperspec-

tral image classification, which explores the potential of the
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TABLE VIII

KAPPA STATISTICAL SIGNIFICANCE TEST OF DIFFERENT PIXEL-WISE CLASSIFICATION METHODS

AND SPATIAL CONTEXTUAL METHODS OF UNIVERSITY AND INDIAN PINES IMAGE

The results are considered as significant at 95% confidence interval if the tabulated value

|Z| > 1.96.

DCS/DES. The LA-based methods and DCS/DES-beta poten-

tial compute the distance between each image (test) pixel and

the whole set of validation samples, resulting in a computa-

tional burden. On the other hand, DCS/DES-beta LSR finds a

function that maps the validation data samples to the classifier

competence and reduces the computational burden at the cost of

accuracy. Hence, it will be beneficial to have an effective frame-

work which reduces the computational burden without reducing

the accuracy. We proposed an ELM-based regression frame-

work, which estimates the function mapping validation samples

to the classifier competence measure, thus reducing the compu-

tational burden without degrading the accuracy. Furthermore,

ignoring the spatial correlation among the neighboring pixels

yields poor classification. Our proposed spectral–spatial clas-

sification framework combines both the spectral information

from the DES-ELM and spatial contextual information, result-

ing in accurate and smooth classification maps. Experimental

results show that selecting one best classifier is not an opti-

mal choice and it could end up with the accuracy no better

or less than SB classifier. On the other hand, when the sub-

set of classifiers is selected, DES offers 2%–6% increase in

classification accuracy. The proposed DES-ELM method out-

performs the existing DES methods in terms of accuracy and

computational aspects.

Compared to the single classifier, DES-ELM provides reli-

able probability estimates by alleviating the limitation of the

single classifiers and the CF, and emerges as a strong candi-

date to extract the spectral information. The incorporation of

the spatial contextual information shows remarkable perfor-

mance of about 9% in OA over the pixel-wise classification of

DES-ELM. Compared to the pixel-based classification methods

(full-band ELM, full-band SVM, SB, CF, and SVM ensem-

ble fusion [12]), there is 9%–27% increase in OA. Similarly,

the proposed spectral–spatial DES method shows very high

performance when compared to the state-of-the-art spectral–

spatial classification approaches (full-band ELM+MRF, full-

band SVM+MRF [32], MCS +MRF [36], and CK [30]).

Furthermore, Table VIII indicates that there is no significant

difference in classification accuracy between CF (MCS) and

DES-ELM for the Indian Pines image, but there is a significant

accuracy difference when the spatial information is incorpo-

rated by MRF model. This indicates the superior capability of

DES-ELM to better characterize the spectral information and

provide reliable probability estimates to be used with MRF reg-

ularization, when compared to the CF and SB classifiers. In

addition, the experiments are performed with few training sam-

ples per class (around 5% of total reference samples for the

University image and around 20% of total reference samples

for the Indian Pines image). The limitation of the DES methods

is that the number of classifiers to be selected is fixed and uni-

form across all the image pixels. In our future work, we would

like to propose a strategy to adaptively determine the number

of classifiers to be selected relative to each image pixel, so that

it could further improve the classification accuracy.
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