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655 avenue de l’Europe - 38334 St Ismier Cedex, France

Email: {ccheng; tay; christian.laugier}@inrialpes.fr

Abstract— The Bayesian occupancy filter (BOF) [1] has
achieved promising results in the object tracking applications.
This paper presents a new development of BOF which inherits
original BOF’s advantages in handling occlusion and representing
objects’ shape. Meanwhile, the new formulation has significantly
reduced original BOF’s complexities and can be run in realtime.
In Bayesian occupancy filter, the environment is finely divided
into 2-dimensional grids. Different from conventional occupancy
gridmaps, in BOF, each grid has both static (occupancy) and
dynamic (velocity) characteristics. In the new proposed BOF, the
velocity of each cell is modeled as a distribution. The distribution
for each cell occupancy can therefore be inferred using a
filtering mechanism. Like the original BOF, no representation
of objects exists in the BOF gridmap. However, there are often
applications which require the definition and tracking at the
object level. In the post-processing, a segmentation algorithm
is implemented to extract the objects from BOF estimation.
Thereafter, standard target tracking methods are employed to
further analyze each object’s motion. Experiments using data
from an indoor human tracking application demonstrate that our
approach yields satisfactory results even when serious occlusions
exist.

I. INTRODUCTION

Perception and reasoning with dynamic environments is

pertinent for mobile robotics and still constitutes one of the

major challenges. To work in these environments, the mobile

robot needs to perceive through its sensors, where measure-

ments are uncertain. Uncertainty is often treated within the

estimation framework. Such an approach enables the mobile

robot to model the dynamic environment and follow the

evolution of its environment. With an internal representation

of the environment, the robot is thus able to perform reasoning

and predictions in order to accomplish its tasks successfully.

Systems for tracking the evolution of the environment has been

traditionally a major component in robotics. Industries are now

beginning to express their interests in such technologies. One

particular example is the application within the automotive

industry for adaptive cruise control [1] where the challenge is

to reduce road accidents, thanks to better collision detection

systems. The major requirement of such a system is a robust

tracking system. Most of the existing target tracking algo-

rithms uses an object-based representation of the environment.

However, these existing techniques have to take into account

explicitly data association and occlusion. In view of these

problems, the bayesian occupancy filter (BOF) [2] has been

proposed.

The advantages of the BOF are:

• Uncertainty taken into account explicitly thanks to the

probabilistic reasoning paradigm, which is becoming a

key paradigm in robotics: various approaches based on

this paradigm have already been successfully used to

address several robotic problems, such as CAD mod-

elling [3] or map building and localization (SLAM) [4],

[5].

• The data association problem is postponed by reasoning

on a probabilistic grid representation of the dynamic

environment. In such a model, concepts such as objects

or tracks do not exist; they are replaced by more useful

properties such as occupancy or risk, which are directly

estimated for each cell of the grid using both sensor

observations and some prior knowledge. For example,

to calculate the risk of collision for a mobile robot, the

only properties required are the distribution on occupancy

and velocities for each cell in the grid with no strict

obligations to deal with data association. Furthermore,

in estimating the occupancy probability the hidden parts

of the environments can also be explicitly characterized,

thanks to an adequate sensor model.

• The object model problem is nonexistent because there

are only cells in the environment state and that each

sensor measurement changes the state of each cell. The

fact that different kinds of object produces different kinds

of measures are handled naturally by the cell space

discretization.

• The dynamics of the environment and its robustness

relative to object occlusions is addressed using a novel

two-step mechanism which permits taking the sensor

observations history and the temporal consistency of the

scene into account. This mechanism estimates, at each

time step, the state of the occupancy grid by combining

a prediction step (history) and an estimation step (incor-

porating new measurements). This approach is derived

from the Bayes filters approach [6]; which explains why

the filter is called the Bayesian Occupancy Filter (BOF).

• The Bayesian Occupancy Filter has been designed in

order to be highly parallelisable. A hardware implemen-

tation on a dedicated chip is possible, which will lead to

an efficient representation of the environment of a mobile

robot.



A. Contributions

Previous experiments based on the BOF techniques relied

on the assumption of a constant velocity and the problem of

velocity estimation in this context has not been addressed.

In particular the assumption that there could only be one

object with one velocity in each cell was not part of the

previous model. In this paper, a representation that has one

probability distribution over velocities for each occupancy cell

is presented. This model is very similar in concept to optical

flow, but with occupancy considerations rather than intensity.

The general principle for the estimation of occupancy grids

will be to include the velocity estimation in the prediction

estimation loop of the classical BOF approach. For each

grid in the BOF, the set of velocities that brings a set of

corresponding cells in the previous time step to the current

grid will be considered. The resulting distribution on the

velocity of the current grid is updated by conditioning on the

incoming velocities with respect to the current grid and on the

observations.

This paper brings an amelioration in these aspects and

thus presents an integrated approach to performing not only

the occupancy states of the grids but the distribution on

grid velocity as well. To avoid confusion, all ideas presented

applies to the currently proposed formulation of BOF unless

explicitly stated. The current paper is organized as follow:

• in section II, related work to multiple target tracking

systems and occupancy grids are presented.

• in section III, the fundamental concept of bayesian fil-

tering and the new filtering equations in the grids are

presented.

• Section IV presents the object-level abstraction based on

BOF estimation. A nearest neighbor join probabilistic

data association algorithm is also developed to track the

extracted objects.

• The paper finishes off with a presentation of results

followed by a conclusion.

II. RELATED WORK

A. Multi-Target Tracking

The aim of multi-target tracking is to estimate at each

time step, the dynamics of each moving object observed

by the sensors. Such an estimation is required due to un-

certainty in observations i.e. sensor data. The estimation of

the dynamics is performed, in a manner that is as robust

as possible, after observations are obtained from the sensors.

The main difficulty of multi-target tracking is known as the

Data Association problem. It includes observation-to-track

association and track management problems. The goal of

observation-to-track association is to decide whether a new

sensor observation corresponds to an existing track. Track

management includes deciding whether existing tracks should

be maintained, deleted, or if new tracks should be created.

Numerous methods exist to perform data association [7], [8].

The reader is referred to [9] for a complete review of the

existing tracking methods with one or more sensors.

Urban traffic scenarios are still a challenge in multi-

target tracking area: the traditional data association problem

is intractable in situations involving numerous appearances,

disappearances and occlusions of a large number of rapidly

manoeuvring targets.

In [10], a classical Multiple Hypothesis Tracking technique

is used to track moving objects while stationary objects are

used for SLAM. Unfortunately, the authors did not explicitly

address the problem of the interaction between tracked and

stationary objects, e.g. when a pedestrian is temporary hidden

by a parked car. One of the aims of the BOF is to overcome

such a problem.

B. Grid Representation of the Environment

The occupancy grids framework [11], [12] is a classical way

to describe the environment of a mobile robot. It has been ex-

tensively used for static indoor mapping using a 2-dimensional

grid . The goal is to compute from the sensor observations the

probability of each cell being occupied or empty. To avoid a

combinatorial explosion of grid configuration, the cell states

are estimated as independent random variables.

More recently, occupancy grids have been adapted to

track multiple moving objects [13]. In this approach, spatio-

temporal clustering applied to temporal maps is used to

perform motion detection and tracking. A major drawback of

this work, relative to the ADAS context, is that a moving object

may be lost due to occlusion effects.

III. BAYESIAN OCCUPANCY FILTER

A. Grid Based Bayesian Filtering

The sensor observation history should be taken into account

in order to be able to make robust estimations in changing

environments (i.e. in order to be able to process temporary

objects occlusions and detection problems). Our approach

for solving this problem is to make use of an appropriate

Bayesian filtering technique called the Bayesian Occupancy

Filter (BOF).

Bayes filters [6] address the general problem of recursively

estimating the probability distribution, P (Xk | Zk), of the

state of a system conditioned on its observation. This expres-

sion is also known as the posterior distribution. In general, this

estimation is done in two stages: prediction and estimation.

The goal of the prediction stage is to compute an a priori

estimate of the target’s state known as the prior distribution.

The goal of the estimation stage is to compute the posterior

distribution by using the estimate from the previous time step

with the current measurement of the sensor.

Exact solutions to this recursive propagation of the posterior

density do exist in a restrictive set of cases. In particular,

the Kalman filter [14] is an optimal solution when the mea-

surement and state transition model are linear with additive

gaussian noise. But in general, solutions cannot be determined

analytically, and hence an approximate solution has to be

computed.

In the case of the BOF, the state of the system is given by the

occupancy state and velocity of each cell of the grid, and the



required conditions for being able to apply an exact solution

such as the Kalman filter are not always verified. In addition,

the particular structure of the model (grids) and the real-time

constraint coming from most practical robotic applications

leads to the development of the Bayesian Occupancy Filter.

With the improved BOF formulation, it is now possible

to focus the computation on the most probable velocities

of grids instead of updating the grid occupancy values for

every possible velocity in the standard BOF approach. Such

an approach is not only more efficient computationally, but

provides a more theoretically founded and systematic way of

estimating grid velocities.

B. Bayesian Model

1) Probabilistic variable definitions: All the probabilistic

variables below are defined within the context of a single

cell c of the grid. This subscript is now omitted to maintain

simplicity, except where ambiguity is possible.

• C is an index that identify each 2D cell of the grid.

• A is an index that identify each possible antecedent of

the cell c over all the cells in the 2D grid.

• Zt ∈ Z where Zt is the random variable of the sensor

measurement relative to the cell c.

• V ∈ V = {v1, . . . , vn} where V is the random variable

of the velocities for the cell c and its possible values are

discretized in n cases.

• O,O−1 ∈ O ≡ {occ, emp} where O represents the

random variable of the state of c being either “occupied”

or “empty”. O−1 represents the random variable of the

state of an antecedent cell of c through the possible

motion through c. For a given velocity vk = (vx, vy) and

a given time step δt, it is possible to define an antecedent

for c = (x, y) as c−k = (x − vxδt, y − vyδt).

2) Joint distributions: The following expression is the

decomposition of the joint distribution of the all the relevant

variables according to bayes’rule and independency assump-

tions.

P (C, A, Z,O, O−1, V ) = P (A)P (V |A)P (C|V, A)

P (O−1|A)P (O|O−1)P (Z|O, V, C) (1)

The semantics of each distribution in the decomposition are

interpreted as follows:

• P (A) is the distribution over all the possible antecedent

of the cell c. It is chosen to be uniform because the cell is

considered reachable from all the antecedents with equal

probability.

• P (V |A) is the distribution over all the possible velocities

of a certain antecedent of the cell c, its parametric form

is in the form of a histogram.

• P (C|V, A) is a distribution that explains if c is reachable

from [A = a] with the velocity [V = v]. It is a dirac

with value equal to one if and only if cx = ax + vxδt

and cy = ay + vyδt which follows a dynamic model of

constant velocity.

• P (O−1|A) is the conditional distribution over the occu-

pancy of the antecedent. It gives the probability of the

possible previous step of the the current cell.

• P (O|O−1) is the conditional distribution over the oc-

cupancy of the current cell, which depends on the occu-

pancy state of the previous cell. It is defined as a transition

matrix: T =

[

1 − ǫ ǫ

ǫ 1 − ǫ

]

, which allows the system

to take in account the fact that the null acceleration

hypothesis is an approximation; in this matrix, ǫ is a

parameter representing the probability that the object in

c does not follow the null acceleration model.

• P (Z|O, V,C) is the conditional distribution over the

sensor measurement values. It depends of the state of the

cell, the velocity of the cell and obviously the position

of the cell.

3) Filtering Computation and Representation: Th aim of

filtering in the BOF grid is to estimate the distribution and grid

velocity for each cell of the grid. From the implementation

point of view, the set of possible velocities are discretized.

One way of implementating the computation of the probability

distribution is in the form of histograms. The following

equations displayed are based on the discrete case. Therefore,

the global filtering equation can be obtained by:

P (V, O|Z, C) =

∑

A,O−1 P (C, A, Z,O, O−1, V )
∑

A,O,O−1,V P (C, A, Z,O, O−1, V )
(2)

Which can be equivalently represented as:

P (V,O, Z, C) = P (Z|O, V, C) ∗ (3)




∑

A,O−1

P (A)P (V |A)P (C|V, A)P (O−1|A)P (O|O−1)





The summation in the expression represents the prediction

and its multiplication with the first term, P (Z|O, V, C), gives

the estimation.

The global filtering equation (2) can actually be separated

into three stages. The first being the prediction of the grid

occupancy given the velocity:

α(occ, vk) =
∑

A,O−1

P (A)P (vk|A)P (C|A)P (O−1|A) ∗

P (occ|O−1),

α(emp, vk) =
∑

A,O−1

P (A)P (vk|A)P (C|A)P (O−1|A) ∗

P (emp|O−1).

(4)

The observation (defined for a certain velocity) can be given

by:

β(occ, vk) = P (Z|occ, vk)α(occ, vk),

β(emp, vk) = P (Z|emp, vk)α(emp, vk).



And the likelihood of a certain velocity is given by:

l(vk) = β(occ, vk) + β(emp, vk).

Finally the estimation on probability of occupancy for cell

C with velocity vk is:

P (occ, vk, Z, C) =
β(occ, vk)

l(vk)
. (5)

The occupancy distribution in one cell can be obtained

by the marginalization over the velocities and the velocity

distribution by the marginalization over the occupancy values:

P (O|Z,C) =
∑

V

P (V, O|Z, C), (6)

P (V |Z,C) =
∑

O

P (V, O|Z, C). (7)

What can be surprising is that, a tracking system will only

focus on the velocity for occupied cells, that is P (occ, V ) and

only for cells that are high probability to be occupied.

IV. OBJECT-LEVEL POST-PROCESSING

Although the Bayesian Occupancy Filter yields satisfactory

results, in some specific applications it is often desirable to

maintain the object-level abstraction for higher-level analysis.

For instance, in unmanned surveillance, the number of objects

(people) in the surveillance region must be reported. In this

work, an optional object extraction and tracking module is

included to post-process the result of BOF.

A. Extract objects from BOF

The first step is a segmentation routing which locates

individual regions in the environment. BOF provides coherent

estimation for the occupancy and velocity estimation, so

that a naive discontinuity based routing is already sufficient

to perform the segmentation. Here we employ a simplified

version of the graph-based clustering scheme in [15]. The

similarity between two nearby grids is computed as the inverse

of the Euclidean distance between them in the joint space

defined by the position, occupancy value and velocity. Grids

with high similarities are grouped into the same cluster.

B. Kalman filter for each object

On the object level, we use Kalman filter (KF) to handle

the movement of each occupied region. The movement is

modeled to have a constant velocity, which is consistent with

the BOF framework. However, different from the conventional

2D constant velocity KF, here the velocity is also observable,

thanks to the speed estimation from BOF. Therefore, the state

vector and observational matrix in this implementation of KF

are written as:

X̄ =









x

y

ẋ

ẏ









H =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









where x and y represent the mass center of the extracted

region weighted by the occupancy likelihood.

C. NNJPDA for data association

Conventional ‘report-to-track’ trackers often suffer a lot

from the data association problem. In this work, since the

BOF process has significantly resolved the ambiguity in the

report/track assignment, in the post-processing, the data asso-

ciation problem can be trivially solved by joint probabilistic

data association (JPDA).

JPDA is a well-established data association approach that

has gained tremendous popularity in various tracking appli-

cations, including human tracking [16], air-craft tracking [],

and visual tracking [17]. Its strength lies in its capability to

jointly calculate the likelihood of association hypotheses, and

therefore preclude potential erroneous assignments generated

by greedy association algorithms (nearest neighborhood). A

typical association event and the corresponding result of JPDA

can be found in Fig.1 and the following table.

Fig. 1. An illustrative association event in JPDA. Each track’s prediction
state and covariance ellipse is plotted. The observations are also depicted and
indexed.

TABLE I

THE LIKELIHOODS CALCULATED BY JPDA FOR REPORT-TO-TRACK

ASSOCIATION CORRESPONDING TO THE SITUATION IN FIG.1

Rpt 0 Rpt 1 Rpt2 Rpt 3 no-assoc.

track 0 0 0.273 0 0 0.727

track 1 0 0 0.156 0.779 0.064

track 2 0 0 0.651 0.240 0.109

track 3 0 0 0 0 1

track 4 0.955 0 0 0 0.045

track 5 0 0.694 0 0 0.305

However, during the experiments, we also noticed that

the JPDA algorithm may sometimes yield poor performance



when the observations are compactly located. In this situation,

the weighted-average method of track updating will lead to

biased tracks, because any track on a particular target will

be attracted, to some extent, toward any neighboring target

with which it correlated consistently. This is often referred

to as the track coalescence problem [18]. The solution here

is to employ a nearest neighbor version of JPDA, i.e., the

association likelihood is calculated jointly as in the original

JPDA, while the track update is not based on a weighted sum

of all the available reports, but rather the one with highest

likelihood.

V. EXPERIMENTS

The approached described in the paper has been tested on a

video sequence taken from the European project CAVIAR. The

video sequence is taken from a shopping center in Portugal.

An example is shown in the pictures of Fig.2 and Fig.3. The

data sequence from CAVIAR gives annotated ground truths for

the detection of the pedestrians (marked as red rectangles).

Based on this given data, the uncertainties and occlusions

have been simulated. This simulated data is then applied to

the implementation described in this paper. In this section,

we show experimentally that it is possible to recover objects

from the BOF grids and perform tracking at the object level

although the notion of an object does not exist in the BOF

grids.

The results shown in Fig.2 and Fig.3 is shown in its time

sequence. For each time instance, the left figure shows the

input image with the bounding boxes, each indicating the

detection of a human, after the simulation of uncertainties

and occlusions. The lower figure shows the corresponding

visualization of the bayesian occupancy filter. The color in-

tensity of the cells represents the occupation probability of

the cell proportionally. The little arrows in a cell gives the

average velocity of the velocity distribution for the cell. The

right figure depicts the tracker output given by the NNJPDA

tracker with the numbers indicating its track number. The

sensor model used is a 2D planar gaussian model projected

on the ground. Its coordinates are given by the lower edge of

the bounding box.

The characteristics of the BOF can be inferred from Fig.2

and Fig. 3. A diminished occupancy of the person further away

from the camera is seen from the data between the first and

second step. This is caused by occasional instability in the

human detection. The occupancy in the BOF grids for the

missed detection diminishes gracefully with time rather than

disappearing immediately for classical occupation grids. This

mechanism provides a form of temporal smoothing to handle

unstable detections.

A more challenging occlusion sequence is shown in the last

three rows of Fig.2 and Fig. 3. Due to a relatively longer period

of occlusion, the occupancy probability of the occluded per-

son becomes weak. However, with an appropriately designed

tracker such as in our implementation, these problems can be

handled at the object tracker level. The tracker manages to

Fig. 2. Caviar data and results. To be continued in Fig.3.

track the occlusion at the object level, as shown in the last

step.

VI. CONCLUSION

This paper elaborated the theory and implementation of

Bayesian occupancy filter (BOF), which is a gridmap based

approach to model dynamic environment. This probabilistic

framework is developed based on Bayesian theory. It can ac-

curately estimate the geometric state (occupancy) and dynamic

state (the motion) of the environment. In this work, BOF is

applied to a multiple-object tracking problem and satisfactory

results have been demonstrated.

For some specific applications, in this work, we further

abstract the BOF onto the object level. An object extraction



algorithm is implemented to segment the occupied regions

from the estimated gridmap. Each region is then handled as an

object by the classic Kalman filter. To resolve the ambiguity

in data association. A Nearest Neighborhood JPDA algorithm

is included and tested.
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Fig. 3. Together with Fig.2. Tracking sequence based on the data from
CAVIAR. The first column shows the input image with the bounding boxes
indicating detected humans. Second column and third column shows the
corresponding representation of the BOF and JPDA tracker respectively.




