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Abstract:  
The problem of path planning deals with the computation of an optimal path of the robot, from 

source to destination, such that it does not collide with any obstacle on its path. In this paper we 

solve the problem of path planning separately in two hierarchies. The coarser hierarchy finds the 

path in a static environment consisting of the entire robotic map. The resolution of the map is 

reduced for computational speedup. The finer hierarchy takes a section of the map and computes 

the path for both static and dynamic environments. Both the hierarchies make use of 

Evolutionary Algorithm for planning. Both these hierarchies optimize as the robot travels in the 

map. The static environment path gets more and more optimized along with generations. Hence 

an extra setup cost is not required like other evolutionary approaches. The finer hierarchy makes 

the robot easily escape from the moving obstacle, almost following the path shown by the 

coarser hierarchy. This hierarchy extrapolates the movements of the various objects by assuming 

them to be moving with same speed and direction.  Experimentation was done in a variety of 

scenarios with static and mobile obstacles. In all the cases the robot could optimally reach the 

goal. Further the robot was even able to escape from the sudden occurrences of obstacles.  
 

Keywords: Robot Path Planning, Evolutionary Algorithms, Dynamic Obstacles, Hierarchical 
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1. Introduction 
 

Robotic path planning is a well-studied problem in the field of robotics. Here we are given a 

robotic map, which represents the world of the robot. The map has a source and a destination. 

The problem of path planning deals with the determination of a path starting from source to 

destination that can be used by the robot for navigation purposes. Using this path the robot does 

not collide with any of the obstacles. A number of algorithms may be used for the building up of 

the map of the robot. These algorithms take the inputs from various sensors, cameras, etc. and 

construct the robotic map (Ge and Lewis 2006).  
 

The entire problem of path planning is usually studied under two separate headings of path 

planning in static environment and path planning in dynamic environment. The static 

environment path planning assumes that the various obstacles do not change their position with 

respect to time. As a result the algorithm may first compute the entire path. Later on the 

computed path may be used directly for moving the robot as it is certain that it would not collide 

with any obstacle. This is done with the help of robotic controllers.  

 

The dynamic environments are much more difficult to solve. In such environments the various 

obstacles change their positions along with time (Shukla et al 2009). As a result the robot needs 

to be planned and moved at every unit of time. This further stresses on the constraint that the 

algorithm must be able to compute the results in a time effective manner. It must be able to carry 

forward learning and results from the past computations to next generations. Here the robot 

controller and planner work hand in hand for the complete motion of the robot. Most of the 

evolutionary approaches are very optimal in giving effective results, but face the problem of time 

complexity. This restricts their use in any map of decent size, or problems with large complexity. 

The evolutionary approaches hence need to be effectively modified so as to give high 

performance in real time scenarios, under the conditions of massively large input size. The basic 

motive of this paper is to overcome the limitations of a single evolutionary approach by using a 

combination of evolutionary approaches.  

 

In this paper we break the problem of path planning into two related sub-problems namely, 

coarser path planning and finer path planning. The finer path planning gets inputs of reasonably 

simple size. But it is expected to give precise outputs in real time scenarios. On the other hand 

the coarser path planning may take time to optimize the complete path. The path may be vaguely 

built as further optimizations would be carried by the finer path planning module. To incorporate 

sudden and dynamic obstacles, both these techniques need to work hand-in-hand. The coarser 

planning has a role to play in case of some sudden blockage where global path needs to be 

changed in sufficiently less time, the finer planning technique not only tunes the path, but also 

helps in escaping from regular obstacles. An only coarser or finer planning would make the 

algorithm computationally very expensive, and would hence not allow dynamic or sudden 

obstacles.  

 

The problem of path planning has been solved by a large variety of algorithms. The various 

models may be fundamentally studied in three broad categories. All these categories have some 

different modeling scenario, assumptions and execution of the algorithm. The first category 

consists of the planning algorithms that model the problem as a graph. The problem is solved as 

a graph search problem where source is the initial node and goal is the destination node. This 
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includes algorithms like Breadth First Search, A* algorithm (Shukla et al 2008), Dynamic 

Programming, D* algorithm, etc. A modified A* algorithm called Multi-Neuron Heuristic Search 

(MNHS) was used by Shukla and Kala (2008) for solving the problem of path planning. MNHS 

expands a series of nodes from the open list with a variety of costs from good to bad. This is 

unlike the standard A* algorithm that always expands only the best node. Hence the MNHS 

works better for search problems where heuristics can sharply change from good to bad. This 

includes a maze solving problem that has its relevance to path planning as well. The algorithm 

could easily solve the problem of path planning for a variety of complex obstacles (Kala et al 

2009b). 

 

The other category of algorithm includes the behavioral planning algorithms. In these algorithms 

we do not necessarily work over the map to compute the path of the robot (Kala et al 2009c; 

Shukla et al 2009). We rather try to portrait the behavior of the robot and try to fuse intelligence 

of deciding the moves in it. These include the neural as well as the fuzzy approaches. This class 

of algorithms has their analogy to the general manner in which the humans move. We are aware 

of the manner in which we escape from static and dynamic obstacles. We are further able to 

make turns and make our way out of any situation, without knowing the complete map as a 

whole. Shibata et al. (1993) used Fuzzy Logic for fitness evaluation of the paths generated.  

 

The last class of algorithms includes the evolutionary (Alvarez 2004; Juidette and Youlal, 2000; 

Xiao, 1997; Lin et al., 1994) and the potential approaches (Pozna 2009; Tsai et al 2001). The 

path in an evolutionary approach evolves along with the generations using an evolutionary 

process (Kala et al 2009c; Shukla et al 2009). As the generations increase, the path optimality 

keeps improving. The potential approaches fix a potential for every obstacle and free path. Using 

these potentials, the optimal path may be computed. The comparison between the potential and 

other soft computing approaches can be found in the work of Hui et al (2009). The potential 

approaches are closely related to the statistical approaches that independently or aided by other 

algorithms carry out effective planning. Jolly et al (2009) present one such approach where 

Beizer curve is used for robotic planning. The curve aids in generating paths that satisfy the non-

holonomic constraints for better robotic movements. Embedded networks have also been used 

for the planning and robotic movement in the work of O’ Hara et al (2008). 

 

Besides, the various approaches and algorithms may fuse together resulting in hybrid algorithms 

to solve the problem (Shukla et al 2010). In these algorithms we try to maximize the benefits of 

the participating algorithms and minimize their weaknesses. The limitation of one algorithm is 

removed by the advantages of the other algorithm. The resulting algorithm hence has an optimal 

working. One such hybrid algorithm is the fusion of A* algorithm and Fuzzy Planner in the work 

of Kala et al (2010). In this approach a lower resolution path planning was done using a 

probabilistic A* algorithm.  The FIS further worked over the path generated by the A* algorithm 

to generate path escaping the dynamic obstacles and obeying the non-holonomic constraints. 

Another hybrid algorithm is the fusion of MNHS with Genetic Algorithm in the work of Kala et 

al (2009a). In this work the MNHS does the task of optimal computation of the robotic path. The 

MNHS may become very computationally expensive if the entire map is given to it. Hence it is 

only given a selected list of nodes which are potentially good points where the robot may take a 

turn of an optimal total path. The optimization of the location of these points is done with the 

help of Genetic Algorithms. Here the MNHS adds optimality and GA adds the iterative nature 
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and computational speedup to the algorithm.   

 

The representation of the map carries a lot of relevance for the planning. The map closely relates 

to the planning algorithm to facilitate the planning. Various map representations are used as per 

the algorithm and situation demands. The representation techniques include Quad Tree 

(Kambhampati and Davis 1986), Mesh (Hwag et al 2003), and Pyramid (Urdiales et al 1998). 

Zhu et al (1991) used the concepts of cell decomposition and hierarchal planning. Here they 

represented the cells using a concept of grayness denoting the possibility of presence of 

obstacles. Hierarchial Planning can also be found in the work of Lai et al (2007) and Shibata et 

al (1993).  

 

The problem of path planning is followed by the robotic movement which is carried out by 

robotic controllers. Path planning and robotic control go hand in hand. The planning must hence 

ensure an easy robotic movement by the controller. Chen and Chiang (2003) made an adaptive 

intelligent system and implemented using a Neuro-Fuzzy Controller and Performance Evaluator. 

Their system explored new actions using GA and generated new rules. In the field of multi-robot 

systems, Carpin and Pagello (2009) used an approximation algorithm to solve the problem of 

robotic coordination using the space-time data structures. They showed a compromise between 

speed and quality. Peasgood et al. (2008) solved the multi-robot planning problem ensuring 

completeness using Spanning Trees.  

 

This paper is organized as follows. In Section 2 we present the path planning at the coarser level 

by Evolutionary Algorithms. Here we make use of a lower resolution map. In section 3 we 

discuss the path planning in dynamic environment using the Evolutionary Algorithms in the 

original map with static and dynamic obstacles. Section 4 gives the experimentation results. 

Section 5 gives the conclusion remarks. 
 

2. Coarser Path Planning 
 

The first planning is done at a coarser level. Here the map consists of only static obstacles. This 

requires a classification of all the obstacles into static and dynamic obstacles. In practice this task 

may be easily carried out by scanning the environment in few successive times. This planning 

considers only static obstacles. The dynamic or moving obstacles are neglected. Then a higher 

resolution map of this environment is made. The higher resolution map may be too difficult for 

the evolutionary algorithm to solve. Hence we first reduce the map resolution to make it 

computationally feasible for the evolutionary algorithm to evolve the robotic path. Each of the 

steps is discussed in details in the coming sections. 
 

2.1 Resolution Reduction 
 

The original map is taken as a grid of size M x N that is given to the algorithm to solve. Here M 

and N are usually reasonably large numbers. This makes computing the optimal path with 

evolutionary approach very difficult due to the vast nature of the evolutionary search space. Each 

cell in this map denotes 1 or 0 depending upon the presence or absence of obstacle. Any cell cij in 

the map may hence be given by (1) 
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𝑐𝑖𝑗 = {
0 if no obstacle exists at location (i,j) of map 

1 if an obstacle exists at location (i, j) of map
     (1) 

 

Here 0 ≤ i ≤ M, 0 ≤ j ≤ N 

 

The map resolution is reduced by a factor of α. This means that the resultant map has dimensions 

ceil(x/ α) x ceil(y/α). In other words a block of size α x α of the original high resolution map 

makes up a unit cell of the reduced resolution map. Consider α to have a value of 5. The original 

and the reduced resolution map are given in figure 1. 
 

  
 

 
 

 

 

Figure 1(a): Original Map Figure 1(b): Gray Map 

 
 

 

 

 
Figure 1(c): Binary Low Resolution Map 

 

The value of any cell of this reduced resolution map is aggregated value of all the cells in the 

block of the higher resolution map. This aggregation produces values between 0 and 1 

corresponding to the cell of the lower resolution. The resultant map is a gray map as given in 

figure 1(b). Here the aggregated value denotes the shade of gray with 1 denoting complete black 

and 0 denoting complete white. Let dkl be any aggregated cell of the lower resolution map. This 



6 
 

is given by (2) 

 

𝑑𝑘𝑙 = ∑ ∑ 𝑐𝑖𝑗𝑘𝑖           (2) 

 

For working we need to convert this map into a binary map. All cells above a threshold value are 

assumed to be 1 and all others are assumed to be 0. This gives us a black and white lower 

resolution map shown in figure 1(c). Any cell ekl of this map is given by (3) 

 

𝑒𝑘𝑙 = {
1 𝑑𝑘𝑙 > 𝑇ℎ
0 𝑑𝑘𝑙 < 𝑇ℎ

          (3) 

 

Th represents the threshold that may be set to any convenient value. 
 

2.2 Evolutionary Algorithm 
 

The task of the evolutionary approach is to work over the coarser map and find a feasible and 

optimal path using which the robot may be able to reach the destination from the source. Here we 

use the evolutionary operators to construct a higher generation population from a lower level 

population. The fitness of the population keeps improving along with time and hence the latter 

solutions are more optimal. 

 

The first task in the use of evolutionary algorithms (EA) is the individual representation. The 

individual of the EA is a collection of points of the form <P1, P2, 3, ... Pn>. The first point is the 

source and the last point is always the destination. These are fixed and hence need not be 

represented in the EA individual. Further each point Pi is a combination of x and y coordinates 

and may be represented by (xi, yi). The number of points n is variable. There are a total of 2n 

points in the EA individual representation. We hence have a variable size genetic individual.  

 

The optimality of any individual is measure by its fitness function. The fitness of any individual 

is the combination of two factors. The first factor is the total path length. This factor tries to give 

high fitness to paths that have very small length. The other factor is the total number of points in 

the path. Each point represents a turn that the robot needs to make while physically moving on 

the path. It is natural that the number of turns needs to be as less as possible. This enables the 

robot to take as straight path as possible which would also be short. Further less turns means the 

robot would be capable of operating at high speeds. In case the robot meets with an obstacle in 

its path, the solution is regarded as inflatable and the individual is assigned the worst possible 

fitness value.  

 

The individual fitness for any individual I is given by (4).  

 

fit(I) = β l + γ n          (4) 
 

Here l is the normalized path length given by (5) and n is the number of turns.  

 

𝑙 =
∑ |𝑃𝑖+1−𝑃𝑖

𝑛
𝑖=1,𝑠𝑜𝑢𝑟𝑐𝑒,𝑔𝑜𝑎𝑙 |

|
𝑚

𝛼
+

𝑛

𝛽
|

        (5) 
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Any individual may have a maximum number of points or turns in its representation. This is 

denoted by nmax. This number is not fixed, rather increases as the number of generations increase. 

This increase is given by (6). 

 

𝑛𝑚𝑎𝑥 = 𝑁 𝑒
−

𝑔2

2(𝑑𝐺)2          (6) 

Here g is the generation number of EA 

d is the decay constant  

G is the radius constant or the maximum number of generations possible 

 

The increasing number of turns would lead to an increase in the evolutionary search space. This 

emphasizes on the larger number of individuals as the generations proceed. As a result the 

number of genetic individuals increases along with time as given by (7). 

 

𝐼 = 𝐼𝑚𝑖𝑛 + (𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛)𝑒
−

𝑔2

2(𝑐𝐺)2        (7) 

Here Imax is the maximum possible number of individuals 

Imin is the least possible momentum 

g is the generation number of EA 

c is the decay constant  

G is the radius constant or the maximum number of generations possible 

 

The EA uses a total of 7 operators for the generation of the higher generation from the lower. 

These are Selection, Crossover, Soft Mutation, Hard Mutation, Elite, Insert and Repair. Selection 

uses a Rank based fitness scaling with stochastic uniform selection. Scattered crossover 

technique is used for crossover between the individuals. Suppose the two parents are A and B 

that have x and y number of points existing. We first make a pool of points R that carries all 

points from A and B. The points common to A and B are taken only once. The points in R are 

sorted according to the X axis values. Now we distribute the points in R to the new children such 

that each of the 2 generated child gets (x+y)/2 points and each of the point in R belongs to either 

of the two children. Soft mutation makes small parametric variations as is invoked frequently. 

Hard mutation makes large changes and is invoked occasionally. Insert operator adds new 

individuals to the population pool that possess the maximum allowable number of turns nmax as 

per the current generations. Repair operator deletes all infeasible individuals and adds new 

individuals that possess the maximum possible number of turns nmax as per the current 

generation.  
 

2.3 Iterating with Time 
 

The unique feature of this evolutionary technique is that the algorithm runs while the robot is 

moving. The algorithm keeps trying to find more and more optimal paths as the robot continues 

walking. The present position of the robot is the source. Hence the source of the EA is variable in 

nature that changes along the evolutionary process. Hence whenever the robot makes any move, 

all the individuals of this EA are updated. Since the source was not present in the EA individual 

representation, it may not be needed to update the source. We check if the projection of the line 

joining the present position of the robot or the source and the first point of the individual 

representation is positive or negative on the line joining the original source and the goal. In case 
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the slope is negative, the first point is deleted. This signifies the robot has crossed the first point 

in the course of its journey. Let the path of the coarser hierarchy at any point of time be as given 

in figure 2(a). Further let the robot be at any location A shown in figure 2(b). To find whether the 

robot has crossed the point P (or Q) represented in the coarser path, we find the slope based on 

angle θ1 (or θ2).  If this is positive, the robot is yet to cross the point, else the robot has crossed 

the point. This is shown in figure 2(b). It may be easily seen that the robot has crossed point Q, 

but is yet to cross point P. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2(a): Path computed by coarser evolutionary algorithm  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2(b): Deletion of crossed points 

 

This complete process is then repeated with the new point that emerges as the first point. This 

process is repeated for all the individuals. 
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3. Finer Path Planning 
 

The other level at which the planning is done is at the finer level. This contains the actual high 

resolution map. This level of planner is not given the complete map. It is rather given a small 

part of the map around the area across the present location of the robot. Hence a part of the entire 

map is cut for these optimization. The evolutionary algorithm is used to decide every move of the 

robot. The robot keeps moving as guided by the EA till the goal is reached.  The various stages of 

the algorithm are discussed in the following sub-sections. 
 

3.1 Map Segmentation 
 

The first task is to segment the map. Here we only give a small section of the entire map to the 

planner for figuring out the most optimal path. The section of extracted map depends upon the 

current position of the robot. The extracted map is a high resolution map built around the robot. 

The current position of the robot becomes the source and the first position outside the map in the 

path returned by the coarser EA becomes the goal. While segmenting we have to cut a square of 

size γ x γ. The placement of this square is such that the robot is always at a distance of 0.25 γ 

from two sides of the square and 0.75 γ from the two sides of the square. The direction of the 

square is towards the goal. The segmentation of map is shown in figure 3(a)-(d) for the various 

possibilities. The selection of source and goal position is showed in the same figure. 

 

3.2 Handling Dynamic Obstacles 
 

A key aspect of the algorithm is that it needs to handle dynamically moving obstacles. We 

assume that the robot knows the position and the velocities of all the obstacles in the 

surroundings. This may be easily scanned by the robot. The planner, while planning the next 

move, assumes that these obstacles continue moving with the same velocity. This may naturally 

not be true in practice, but the robot only needs to plan a unit move extrapolating the present 

observations of position and velocity. This enables robot, not to reach a position which may be 

occupied by some other robot at a later stage of time.  

 

Consider that an obstacle is moving at a velocity v whose projections at the x and y axis is vx and 

vy. Let the current position of the obstacle be (x, y). Hence the position at any time t may be 

given by (8) 

 

(x',y') = ( x + vx t, y + vy t)          (8) 

 

Consider the robot moves with a constant speed of r. The robot must plan its motion such that at 

time t it would not be located at the location (x',y') 
 

3.3 Evolutionary Algorithm 
 

The framework of the evolutionary algorithm used in this approach is similar to the evolutionary 

algorithm (EA) of the coarser planner. The individual of the EA is a collection of points of the 

same form <P1, P2, P3, ... Pn>. The first point is the source which is always the current robot 

position and the last point is always the destination. The number of points n is variable. The 
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fitness of any individual is the combination of two factors, total path length and number of turns. 

The maximum number of points and the number of individuals increase with time and 

generations. The same 7 operators of are used. These are Selection, Crossover, Soft Mutation, 

Hard Mutation, Elite, Insert and Repair.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Case I     (b) Case II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 (c) Case III     (d) Case IV 

Figure 3: Map Segmentation 

 

 

3.4 Passage of Individuals 
 

The finer EA may get reasonably less time for the computations. It is natural that it cannot carry 

out the complete working of the EA within this time. Hence every EA gets half individuals from 

the previous EA run. The other half individuals are generated as per the conventional procedure. 

Again recall that the source and the goal and not represented in the EA individual. Hence the 

individuals in most cases do not require a conversion for being used in the next EA. Also fit 

individuals of one EA run would be fit enough for the other EA run since there might not be a 
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substantial change in the map. While passing of the points we have to however ensure that the 

robot has not passed away some point represented in the individual. We check if the projection of 

the line joining the present position of the robot or the source and the first point of the individual 

representation is positive or negative on the line joining the original source and the goal. In case 

the slope is negative, the first point is deleted. This signifies the robot has crossed the first point 

in the course of its journey as shown in figure 2. This complete process is then repeated with the 

new point that emerges as the first point. This process is repeated for all the individuals. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The complete planning algorithm 

 

The complete algorithm may be summarized by figure 4. The algorithm is an evolutionary 

approach, where a series of individuals representing solution are taken. As per our previous 

discussion, there are two different population maintained for the coarser and the final level. The 
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robot speed is fixed and within allowable time we need to optimize both these populations. Both 

finer and coarser optimizations are by separate EAs. The role of finer EA is to optimize the 

current path which would play a major role in deciding the immediate move of the robot. The 

coarser EA tries to optimize the global strategy being followed by the robot. In place of 

performing this step after a series of move of the robot, we prefer to perform this step at every 

robotic move to keep constant track of the changing environment. The algorithm stops once the 

robot reaches the final goal.  

 

4. Results 
 

The proposed algorithm was implemented using a simulator made on a JAVA platform. The map 

was supplied as a JPEG image to this simulator. The map contained only the static obstacles. A 

separate program module parsed this image and converted it into a robotic map. The algorithm 

had separate modules for each of the two EAs discussed in the text.  The robotic control and the 

control of the two EAs were done by a third module. Another module was used for specifying the 

behavior and movements of the dynamic obstacles. Finally a display module did the task of 

display of the robotic map and the movements of the robot and the obstacles. 

 

A number of executions were done with a variety of maps. These had both static and dynamic 

obstacles. In all these cases we saw that the robot was easily able to reach the goal position, 

starting from the specified goal position. The robot path was always optimal in nature. Further 

there was no visible collision of the robot in anywhere during its path. 

 

The first experiment was done with a variety of static obstacles. The complete setup of the 

algorithm was executed. The map was of size 1000 x 1000. The value of the map resolution 

reduction constant α was 20. The value of γ was 200. The master EA had the two mutation rates 

as 0.06 and 0.25. The maximum number of individuals could be 1000. At any generation, 68% 

individuals came from crossover, 15% from soft mutation, 5% from hard mutation, 2% from elite 

and 10% from the operator new. The slave EA was given similar parameters, except that the 

maximum number of individuals could be 100. The algorithm was executed for 100 generations 

at every step. The multi-objective parameters were fixed to 0.75 and 0.25 for both the 

evolutionary algorithms. The basic methodology of setting the parameters was that the algorithm 

execution time for every robotic step must be close to the speed of an average robot. The path 

traced by the robot is shown in figure 5. It can be easily seen that the robot was able to steer its 

way out of all the complex obstacles and reach the goal in an optimal path. This depicts the robot 

capability to solve complex maps.  
 

The second experiment was done using two static and two dynamic obstacles. The two static 

obstacles were circular in structure. The two dynamic obstacles were rectangular in structure and 

marched towards the goal as the robot made its move. The same set of parameters was used as 

stated in the previous experiment. The path traced by the robot is given in figure 6. The two solid 

rectangles denote the final positions of the dynamic obstacles and the empty rectangles show 

their initial positions. It can be easily seen that the robot could adjust its movements in such a 

manner so as to avoid collision with both these obstacles. In the entire path it did not have to wait 

for path clearance by the obstacles. It made moves such that it could easily cross the obstacles. 

This execution clearly denotes the capability of the robot to escape from static and dynamic 

obstacles and reach the goal in an optimal manner.  
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Figure 5: The execution of the algorithm in complex map 

 

 

 
Figure 6: The execution of the algorithm with moving obstacles 

 

Since we have used an evolutionary approach, one of the major factors to consider in this 

approach is to judge the algorithms capability to respond to sudden occurrence of obstacles. A 

robot moving might suddenly see some obstacle in front of it and would be expected to make its 

way out of it and reach the goal in an optimal manner. For this we give a simple map to the robot 

and allow it to move. However as soon as the robot is somewhere mid-way in its journey, we 

suddenly place an obstacle on its way. The robot is still able to steer out its way and reach the 

destination. The complete path traced by the robot is given in figure 7. This clearly shows that 

the robot is able to react to any sudden change in environment. 
 

In these experiments we have demonstrated the ability of the robot to solve complex maps, 

escape from static and dynamic obstacles, and to react to the sudden emergence of obstacles. Any 
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real life situation would primarily involve these conditions in different forms. Hence we may 

assume that the robot would be able to solve a variety of situations that it encounters in real life.  
 

 
Figure 7: The execution of the algorithm with sudden obstacle emergence 

 

 

An important characteristic of the algorithm is the role of parameters α and γ in its execution. 

The parameter α denotes the distribution between the coarser and finer hierarchies. A very large 

value of α would result in a very big map size of the finer hierarchy. This would necessitate the 

need of too much of computation time for the finer hierarchy to compute the optimal path. This 

would make the algorithm equivalent to a single EA. The entire path may hence be more 

optimal, but the dynamism would be gone. A very small value of this parameter would result in 

excessive size for the coarser hierarchy. The coarser hierarchy algorithm may now need a lot of 

computation time to give a guiding path for the finer hierarchy. This path would be next to the 

most optimal path that might not require further optimizations by the finer hierarchy. It may be 

easily observed that this behavior is also like the use of a single evolutionary approach. 

Accordingly the two parameters need to be set. The parameters however also have a dependence 

on the map. A reasonably simple map with few simple obstacles may be degraded to a good 

extent, without much loss of information. A large value of α is hence workable. This however 

would not be the case with a complex maps having too many complex obstacles in various parts. 

Keeping α large in such a case might show two unconnected regions of the map as connected, 

which would be wrong guidance to the finer hierarchy. The other factor γ denotes the vision of 

the finer hierarchy. A very large value might give a reasonably large part of the map to the finer 

hierarchy to work over. This would result in a very large computational time, but in return would 

lead to better results in terms of path optimality. 
 

5. Conclusions 
 

In this paper we proposed a new algorithm for robotic path planning. The entire algorithm was 

broken into two stages of coarser and finer path planning. The coarser level used an evolutionary 

technique for path planning. This level worked only on a static map which had a reduced 

resolution. The path generated by this level of path planning was used for guiding the path 
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planning at the other level which was the finer level. This level of path planning was done on 

part of the actual high resolution map. The obstacles in this part were mobile which made the 

environment dynamic. For the planning purposes, this level extrapolated the motion of the 

various mobile obstacles. It assumed that the obstacles keep moving with the same speed and in 

the same direction. In this manner the robot is able to escape from the likely collisions with the 

mobile obstacles.  

 

The algorithm was tested against three types of scenarios. The first scenario was a complex static 

map. This had a variety of obstacles of different types of shapes and size. We observed that the 

robot could easily make its way out of all the obstacles. This depicted a high planning sense of 

the robot even in complex maps. This is an indication of the maze solving capability of the robot. 

This capability is of prime importance in robotics. The simple maps can be solved by almost any 

algorithm in literature. The real challenge in path planning is to solve the complex maps in 

computationally less time.  

 

The other experiment was done on the mobile obstacles. Two mobile obstacles were placed for 

the robot to make its way out. The robot in this case could easily escape out of all the static and 

dynamic obstacles and reach its way to the goal. This has a lot of relevance to the natural manner 

in which the humans walk and drive. We observe the manner in which the surrounding obstacles 

are moving and accordingly adjust our moves. The robot does the same thing in this movement 

strategy where it extrapolates the moves of the various obstacles so as to predict the future map 

and accordingly decide its moves. Based on experiments we observe that the robot was able to 

guess the future positions of the other obstacles. Accordingly it adjusted its move so as to escape 

from these obstacles. Any static path planning technique would have made the robot reach near 

the moving obstacle and then the robot would have to wait for the obstacle to cross, so as to 

continue its motion.  

 

The last experiment tested the ability of the robot to react to sudden emergence of obstacles. The 

evolutionary approaches normally take time for figuring out the optimal path and hence these are 

usually applied to the static environments only. The static environment path planning cannot 

cater to the needs of the dynamic environments and especially the sudden obstacle emergence 

where the map changes by a considerable amount at an instance of time. Our approach could 

however still make the robot escape from the obstacle and reach the goal safely. Both the 

hierarchies adjusted well to the sudden obstacle emergence. As a result as soon as the obstacle 

emerged, the robot changed its direction and moved at the near optimal path. The provision of 

addition of new individuals at both evolutionary algorithms was largely responsible for rapid 

generation of new individuals that could solve the problem. These paths may naturally not be 

optimized. However as the robot moves, the paths keep getting optimized. A few robotic moves 

give enough time for the algorithm to nicely optimize the paths. 

 

The algorithm made a variety of parameters for the generation of the path. In all the executions 

these parameters were kept as constant and generated fair enough paths whose optimality was 

visible. This makes it appear that the various parameters are passive in nature whose values may 

be fixed to some constant values. In reality all these parameters have a high degree of relevance 

to the map being used and the optimal values of the parameters would depend upon the map 

being used. This showcases the problem of optimal parameter setting of these parameters. The 
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problem is similar to the problem of parameter setting in the problems of machine learning, 

pattern recognition, or other neural and evolutionary approaches, where the parameters depend 

upon the data set, fitness landscape, etc. The optimal parameters can hence only be computed 

after analyzing the map and possibly running the algorithm a number of times.  

 

The parameter dependency motivates the engineering of self-adaptive systems for path planning 

that can adjust the various parameters on their own without any external or human input. A child 

or person walking does not need to set some parameters for making its way out. Similarly the 

robot needs to be fully autonomous without requiring any parameter setting for the path 

computation. The self-adaptive nature of the algorithm may be worked over into the future. Even 

though a lot of research in this domain may lead to good adaptation, we may not be able to build 

completely parameter less systems that are always optimal in their processing and output as per 

the No Free Lunch Theorems.  

 

The hierarchical solution to the problem of robotic path planning enabled its execution in the 

real-time mode with static and dynamic obstacles. Future research directions include 

mechanisms to strike a tradeoff between these two levels, dynamic control of the parameters of 

the two evolutionary algorithms as per the current convergence status and map, and inclusion of 

the non-holonomic constraints to ensure a smooth physical robotic movement by the robotic 

controller. The algorithm may further be analyzed to the behavior of the various parameters that 

play a big role in deciding path optimality and the tradeoffs with time. The time factor is highly 

dependent on the type of robot and its speed. The physical testing of the robot on a physical 

robot may further enable a clear understanding of the algorithm and parameter behavior. 
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