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ABSTRACT Lithium-ion (Li-ion) batteries have increasingly been used in diverse applications. Accurate
estimation of the state of health (SOH) of the Li-ion batteries is vital for all stakeholders and critical in various
applications such as electric vehicles (EVs). The electrical equivalent circuit (EEC) 2-RCmodel is often used
to model the battery operation but has not been used to capture the degradation of battery cells over time. This
paper uses the 2-RC model to capture the degradation of the Li-ion battery. The proposed model is not only
time-dependent but also captures the effect of temperature on battery degradation. The proposed approach
estimates the SOH accurately and is also considerably flexible for diverse cells of different chemistry.
We further generalize an N-RC model approach to evaluate the SOH of the battery. We compare the
proposed model (2-RC) with the 1-RC model, and through numerical results, we show that the 2-RC model
outperforms 1-RC and reduces the computational cost significantly. Similarly, the 2-RC model outperforms
3-RC and higher-order circuits. We also show that the proposed approach can capture the battery dynamics
better for specific smaller orders of the polynomial (associated with Arrhenius equation) when compared
with the 1-RC approach with considerably reduced (up to 60%) root mean square error (RMSE). Lastly, the
average testing RMSE for 2-RC is 52.4%.

INDEX TERMS Lithium-ion battery, state-of-health, equivalent circuit model, open circuit voltage.

I. INTRODUCTION
Batteries are ubiquitous in 21st century; from personal com-
puters to residential storage units, from storage for renewable
energy sources to high power electric vehicles (EVs), batter-
ies are used as sources of energy and storage. They power
medical devices, home appliances and store energy in grids.
Use of batteries in EVs is getting popular as the world is
facing a high rate of depletion in fossil fuels than its forma-
tion. Moreover, with the gain in popularity of EVs, smart grid
technology is incorporating EVs in their models for better
energy management systems [1], [2]. Therefore, to reduce
failure scenarios and the need for better battery monitoring
systems is rising and the need to study the degradation of
battery is crucial.

Lithium-ion (Li-ion) batteries are gradually becoming the
most commonly used type of battery because of their low
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maintenance, long lifetime, lightweight, high energy density,
considerable depth of discharge, wide temperature range,
low self-discharge rate, and fast charging capabilities [3]–[5].
Li-ion batteries have diverse applications and are manufac-
tured with various storage capacities and chemistries. Some
common chemistries include Lithium Cobalt Oxide (LCO),
Lithium Iron Phosphate (LFP), Lithium Manganese Oxide
(LMO), Lithium Nickel Cobalt Aluminum Oxide (NCA),
and Lithium Nickel Manganese Cobalt Oxide (NMC). These
batteries differ in their energy storage capabilities, such as
energy density and power density for different applications.
Li-ion technology is also entering the realm of backup power
system storage because of its long cycle-life at high temper-
atures, high energy efficiency, and high energy utilization,
even at high discharge current rates [6].

Li-ion batteries undergo a continuous degradation pro-
cess [7]. The irreversible electrochemical changes, such
as solid electrolyte interface (SEI) growth during repeated
charging and discharging, occur in the battery [8]. Loss of
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lithium inventory (LLI) generally results as a product of SEI
growth [9]. Ageing can further be due to other reactions such
as loss of activematerial on anode and cathode [9]. The degra-
dation leads to reduced storage capacity and performance,
and so using these batteries beyond the end of life (EOL) can
lead to catastrophic results, especially in critical applications
such as EVs or biomedical applications [10]. Battery man-
agement system (BMS) that monitor the health of the battery
under safe operating conditions require accurate knowledge
of the state of health (SOH) of battery. In order to have an
accurate knowledge of the battery’s degradation state, BMS
execute SOH estimation algorithms [11].

SOH is generally defined as the percentage of remaining
maximum capacity at a particular time compared to the nom-
inal rated capacity at the time of manufacturing. It is defined
mathematically using equation 1,

SOH(%) =
Qmax

Qnom
× 100% (1)

where Qmax is the maximum capacity of the given cycle, and
Qnom is the rated nominal capacity of the battery. The nominal
capacity is defined as the amount of charge delivered by a
fully charged battery [12].

A. LITERATURE REVIEW
Numerous methods to estimate the battery’s SOH can be
found in the literature. Traditionally, these methods can
be divided into two categories: data-driven methods and
model-based methods or a combination of both techniques.

In data-driven methods, understanding the electrochemi-
cal reactions and their modelling is not necessary and so
these methods utilize only the degradation patterns present
in the data using large data sets. Various methods such
as Gaussian-process based Kalman filter [13]–[15], neural
network (NN) [16], [17], fuzzy logic [18], [19], genetic
algorithm (GA) [20], support vector machine (SVM) [21],
and long short term memory (LSTM) [21], [22], and other
data-driven techniques [23]–[25] have been employed for
SOH estimation. These methods have high accuracy and are
flexible to the changes in SOH. However, as data driven
techniques are trained on particular data sets, these techniques
are mostly not generalizable to unseen data [11].

The model-based approaches can be further divided into
two categories; electrochemical models [26], [27], and elec-
tric equivalent circuit (EEC) models [28]–[30]. Fractional
order models (FOM) are closely linked to electrochemical
models. They represent the physical changes in the battery
such as electrochemical reactions inside the battery [31], [32].
However, the FOMmodels are generally more complex com-
pared to an integer-order model. Thus, they require more
computational power and are generally slow [33]. The elec-
trochemical model can capture the state of the electrode at
a given instance. However, this approach has its drawbacks,
such as requiring the computation of a large number of com-
plex parameters and thus having a high computational cost

and so would not be suitable for real-time applications such
as in EVs.

Li-ion batteries are modelled as equivalent circuits com-
prising basic circuit elements like resistors and capaci-
tors (RC) in the EEC model. Their time dependency can
be used to model the parameters of the circuit. An EEC
model based on the Thevenin equivalent circuit can be used
to study the SOH of the battery as it degrades [34]. There
has been extensive research on different EEC models. The
two most common EEC models are the 1-RC model and the
2-RC model [11]. Bian et al. [29] proposed a 1-RC model
lumped with an Arrhenius constant to factor in the tem-
perature dependency of the battery degradation. The model
reduced the number of parameters, but it did not factor in
the battery’s dynamics, such as electrochemical polarization
and their transients. A 2-RC model can capture the dynam-
ics more effectively [29]. Several techniques are utilized
to estimate model parameters such as least-squares fitting
[11], [35], multi-objective genetic algorithm [36], and so on.
The least-squares fitting is themost straightforward technique
and produces a reasonable estimate of the model parameters.
Furthermore cell inconsistency analysis can be done using
Thevenin equivalent circuit [37]. To limit the scope of this
article we will not discuss cell consistency analysis, however,
we will keep it as future work.

Transient response of the battery is the response when
battery is triggered to a different state from its steady state.
During the rest time, the SOH of the battery changes, and
the transient response can be used to analyze the difference
in the SOH of the battery after discharging [38]. However,
as mentioned in [38] the accuracy achieved has an error of
3%. A model which can capture this degradation as well to
enhance the accuracy of estimated SOH is a challenge.

Differential methodologies such as incremental capacity
analysis (ICA) and differential voltage analysis (DVD) are
used to study the degradation of the Li-ion battery [39]–[41].
These peaks shift in terms of amplitude and position with
time in ICA peaks indicates degradation of the battery. The
peak shifts occur due to battery ageing and failure mecha-
nisms like loss of useful Li-ion [42], [43]. However, these
approaches have a few drawbacks, such as requiring static
charging and discharging over a broader range, and there are
also challenges in extracting features from the IC curves [44].
With the help of the IC curve, we can find the range of values
for a specific charging/discharging cycle which can help in
estimating the SOH of the cycle using a small portion of the
data provided [29].

B. CONTRIBUTIONS
This paper proposes a dynamic EEC model that adapts and
captures the SOH dynamics over time and can reliably predict
degradation in the battery’s health. The model is based on
the 2-RC EEC model that uses open-circuit voltage (OCV),
which is the function of the state of charge (SOC). The model
uses non-linear least squares curve fitting to approximate the
parameter of the model which can then be used to estimate
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FIGURE 1. Equivalent 2-RC Model of the battery [46].

the SOH for a given cycle. To validate the model, numerical
tests are performed on the Center for Advanced Life Cycle
Engineering (CALCE) dataset provided by the University
of Maryland (UMD) College Park and the publicly avail-
able National Aeronautics and SpaceAdministration (NASA)
Ames Research Center dataset [45].

The paper’s organization is as follows; in Section II, we dis-
cuss the modeling of the Li-ion battery using resistors and
capacitors. In Section III, we discuss the algorithm’s devel-
opment and validation to test the model. In Section IV,
we evaluate the model using error metrics and compare it
with the 1-RC approach. In Section IV-C we discuss a gen-
eralized N-RC model-based approach. And in Section IV-A,
we discuss the voltage window and ICA peaks. In Section V,
we summarize the key advantages, findings, conclusions, and
future work.

II. 2-RC EQUIVALENT CIRCUIT MODEL
To model the battery and capture its dynamics, we used an
EEC 2-RC model as shown in Figure 1 [46]. As the bat-
tery degrades, the rate at which the voltage drops increases.
To model this trend against battery capacity, we use our 2-RC
model. State of Charge (SOC) of a battery is defined as the
quantity of charge stored at a given instant relative to the
maximum quantity of charge that can be stored in a particular
cycle. Mathematically, this can be written as

SOC =
Q

Qmax
, (2)

where Qmax is the maximum charge that can be stored which
changes as the battery degrades, and Q is the charge stored at
the given instant of that cycle.

A more robust way to define SOC is

SOC = SOC0 +
Q

Qmax
, (3)

here we take into account the initial approximate of SOC
of the cycle as SOC0.
The battery dynamics can be expressed using basic circuit

components. The Thevenin based EEC model consists of
a self-discharging resistor R0, RC parallel networks. Rp,Rq
are polarization resistances where Rp captures electrochem-
ical polarizations and Rq captures concentration polariza-
tion and Cp,Cq are polarization capacitors to capture the
transients [47]. R0 represents the electrolytic and connection

resistance of the Li-ion battery as well [48]. The terminal
voltage is V whereas the current I is assumed to be positive
during the charging phase and negative during the discharging
phase of the battery. τ1 and τ2 are the time constant of the cell.
TheOCV is a function of a given SOC and temperature. Equa-
tions (4), (5), (6), and (7) are written by applying Kirchhoff’s
voltage law (KVL) on Fig 1.

OCV(SOC,T ) = V − Vp − Vq − Vo (4)

Vo = IR0 (5)

Vp = Vp,0e
−

t
τ1 + IRp(1− e

−
t
τ1 ) (6)

Vq = Vq,0e
−

t
τ2 + IRq(1− e

−
t
τ2 ) (7)

In equation (4), Vp and Vq are the electrochemical polar-
ization voltages, Vo is the voltage drop across the ohmic
resistance. By substituting equations (5), (6), and (7) into
equation (4), we get

OCV(SOC,T ) = V + (IRp − Vp,0)e
−

t
τ1

+(IRq − Vq,0)e
−

t
τ2 − I (Ro + Rp + Rq) (8)

The battery’s capacity and performance degrade with tem-
perature T [49]. The Arrhenius equation for the temperature’s
model is represented as [29], [33]

OCV(SOC,T ) = e
E
R (

1
Tref
−

1
T )

m∑
k=0

ak,refSOCk , (9)

where ak,ref are polynomial coefficients, E is the activation
energy, Tref is temperature constant and R is the energy gas
constant.

Since the OCV of a battery depends on the SOC and tem-
perature, we combine equations (8) and (9). The combined
model of OCV is written as

V = e
E
R (

1
Tref
−

1
T )

m∑
k=0

ak,ref(SOC0 +
Q

Qmax
)k

−(IRp − Vp,0)e
−

t
τ1

−(IRq − Vq,0)e
−

t
τ2 + I (Ro + Rp + Rq). (10)

Here SOC0 is the value of SOC at t = 0. The simplified
version of the final expression can be written as

V = c0
m∑
k=1

ak,ref(SOC0 +
Q

Qmax
)k + c1ep1Q + c2ep2Q + r,

(11)

where p1, p2, c0, c1, c2, and r are constants for a given cycle.
The mapping of coefficients is shown in Table 1.

III. MODEL TRAINING METHODOLOGY
To obtain an estimate of SOH, we use equation (11) to com-
pute Qmax which will then be substituted in equation (1). The
algorithm to approximate SOH has been summarized in Fig 2.
Themodel assumes that the coefficients c0, c1, c2, p1, and p2
are constant for constant current charge/discharge cycle as
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TABLE 1. Mapping of equation 11 coefficients.

we are using the V-Q profile of one cycle. The coefficients
capture the trend and shape of the curve, which is why they are
kept constant for one cycle. The parameters for ak,kref need
to be computed once for the initial cycle. As these constants
capture the general shape of the VQ profile. These parameters
then remain constant for the remaining cycles. Afterward,
only c0, c1, c2, p1, p2, SOC, and Qmax are required to com-
pute the SOH. The last cycle is defined by the user as the
cycle till which we want to estimate the SOH of battery.

In this type of modeling, a constraint has to be placed on
c0 such that c0 ∈ [0.5, 1.5] [29]. The results also validate
this restriction on c0, as model accuracy decreases outside
this range. Likewise, Qmax ∈ [Qend ,Q0], where Q0 is the
maximum discharge capacity of the cycle, and Qend is the
end capacity of the given charge/discharge cycle.

We train on the initial cycle to compute the value
of a1,ref , . . . ., ak,ref . During the initial cycle, we do a
70-30 train-test split. We randomize the data for the initial
cycle to avoid over-fitting. This creates a limitation, however,
as the accuracy varies according to randomization. To over-
come this limitation, we repeat the cycle for many iterations
and average out the final value. Moreover, we utilize the ICA
curve to check the fitting of the parameters. We compare the
ICA curve we obtain from the estimated parameters with the
original ICA curve. If the error between the two curves is
low we conclude that the fitting for the first cycle is accurate
and we can use the values of a1,ref , . . . ., ak,ref obtained for
the rest of the cycles. The evolution of Qmax is computed for
every cycle by fitting equation (11) to the V-Q profile for the
given cycle. The value obtained is then used to compute SOH
from equation (1).

The proposed 2-RC model is compared with the 1-RC
model proposed in [29]. For the 1-RC model, equation (11)
reduces to

V = c0
m∑
k=1

ak,ref(SOC0 +
Q

Qnom
)k + c1ep1Q + r . (12)

The same algorithm is shown in Fig 2 is used for both
the 1-RC model and the 2-RC model. The RMSE for both
models are compared for different values of m where m is the
polynomial degree.

IV. VALIDATION AND EVALUATION
We evaluated our algorithm on the UMD CALCE dataset,
and NASAAmes Research Center dataset. We performed our

FIGURE 2. The Flow chart summarized our methodology to approximate
of SOH using our model.We fit the equation 11 to the V-Q profile. We get
an a value for the charge Qmax which is then used to compute SOH from
equation 1.

simulations in MATLAB using the optimization toolbox. The
evaluation criteria and the results are discussed below.

A. EVALUATION METRICS
The SOH is computed utilizing the algorithm explained in
Fig 2. The estimated SOH is compared with the ground
truth provided in the dataset. We then calculate the RMSE
defined as

RMSESOH =

√∑
N ( ˆSOH− SOH)2

N
, (13)
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where ˆSOH is the predicted value of SOH for the given cycle,
SOH is the ground truth, and N is the total number of cycles
for a given test dataset. As explained in Section III, the V-Q
data for the first cycle is randomized such that values of volt-
age measured are randomly indexed in the array. We compute
the SOH for a different number of iterations and compute an
average RMSE of SOH.

Moreover, to further prove the superiority we make use
of bayesian information criterion (BIC). BIC is generally
used to determine the best model given a certain dataset as it
penalizes the model which has too many fitting parameters.
BIC is defined as [50]

BIC = Dln(σ 2)+ (k + 1)ln(D) (14)

where D is the size of the dataset, k is the order of model
defined as

k = n+ m+ 1 (15)

n is the integer order of RC pair (e.g 1,2,. . . .) and σ is
defined as

σ 2
=

1
D−k − 1

D∑
i=1

(SOHm − SOHe)2 (16)

We set D as the number of cycles present in the dataset that we
are estimating on. A lower BIC score indicates that a certain
model is superior.

B. RESULTS
In this section, we present the results with two different
datasets: the UMD CALCE dataset and the NASA Ames
dataset. The validation of the proposed scheme is done with
two different datasets to show the generalizability of the
proposed methodology.

1) CALCE DATASET
The CALCE dataset contains degradation data of different
pouch cell batteries under 20+ test conditions with six differ-
ent vendors. The cycling dataset has a constant current (CC)
and constant voltage (CV) charging profile, and a CC dis-
charging profile. Conditions such as temperature and C-rate
were changed for different tests. There were two broad types
of tests: cycling tests, and interval tests. In the cycling tests,
only a 10minutes rest period was used before starting the next
cycle, whereas, in the interval testing, rest periods of 12 hours
and 24 hours were used after each cycle. Table 2 summarizes
the test conditions of the CALCE dataset.

To evaluate the proposed algorithm, we used vendor-4 test
datasets. The batteries were exposed to different test condi-
tions where discharging C-rate, rest time, and the temperature
was varied. The discharging C-rate varied from 0.5C to 1.5C.
The temperature varied from 25◦ Celsius to 55◦ Celsius, and
rest time varied from 10 minutes to 24 hours. The cells were
all charged until a cut-off voltage of 4.40 V, and the current
at the CC stage was 2.25 A. During the discharging phase,
the cut-off voltage of these cells was 3.0 V. Fig 3 shows

TABLE 2. UMD CALCE dataset test conditions used in this paper.

the discharging V-Q curves for Test 1 (25◦ Celsius and 0.5C
discharge rate). In Fig. 3, it is clear that as the battery ages,
the discharging profile changes. The proposed algorithm is
applied to the dataset for different polynomial orders for
both 1-RC and 2-RC. We compare the results for both EEC
models. The result demonstrates that for certain smaller val-
ues of m, i.e. m = 5, 6, 7, 8 the 2-RC model outperforms
the 1-RC model. Fig. 4 compares the RMSE for different
values of m, and for m = 6, 7, 8 the 2-RC model can better
estimate the SOH. After that, for a higher value of m, we see
overfitting, and the RMSE increases. The overfitting occurs
due to an increase in the order of polynomials which closely
follows the trend of the initial cycle for ak,ref . However, these
computed values then do not capture the trend in later cycles.
Moreover, a lower value ofm saves computational power and
time compared to higher-order polynomials.

The proposed methodology is validated over multiple tests
with different test conditions on the CALCE vendor-4 dataset.
Tests 1, 3, 4, 5, and 6 are used to generate these results.
In Fig. 6 where the RMSE is computed for multiple tests
(1, 3, 4, 5, and 6) and averaged out. In Table 2, note that the
conditions are different for different tests; for tests 1 and 3,
the temperature is 25◦ Celsius, the discharge rates are 0.5C
and 1.5C, respectively, and the rest time is 10 minutes. For
tests 4, 5, and 6, the temperature is 35◦ Celsius, the discharge
rates are 0.5C, 1C, and 1.5C, respectively, and the rest time
is 10 minutes. Again we see that m = 7 is optimal even
when averaged over multiple tests of variable test conditions.
To demonstrate how closely does the model fits the ground
truth, Fig 7 shows the estimated and measured SOH using
the optimal value of m = 7 for tests 1 and 4. It is evident
that measured and estimated SOHs are in close conformity.
The RMSE for test 1 is 0.0535 and for test 4 is 0.0722. For
1-RC, the optimal value of m is 11 or higher, where the error
is minimum. However, when we compare the time for the
algorithm to run for 1-RC (m = 11) and 2-RC (m = 7), the
1-RC model requires approximately 6 seconds more in total,
which get significant for large datasets.

To further validate we make use of BIC as defined in
equation 14. We compute results up till 5-RC models to
verify the superiority of our model and the result is shown
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FIGURE 3. V-Q curves for all cycles for UMD Test dataset. As shown in the
figure the slope of the curve decreases as SOH decreases.

FIGURE 4. RMSE for UMD Vendor 4 Test 1 dataset. For certain smaller
values of m (i.e. m = 5, 6, 7, 8), the 2-RC model outperforms the 1-RC EEC
model.

FIGURE 5. BIC score of each RC model. We computed our score for UMD
vendor 2 datasets. The lowest BIC score of 2-RC model is at m = 7 where
the value is −481 and for 1-RC model is at m = 11.

in figure 5. The results verify our claim that the 2-RC model
performs best at m = 7.

2) NASA AMES DATASET
To show the generalizability of the proposed methodology,
we test our algorithm on a publicly available dataset from the
NASA Ames Research Center [45]. The dataset is generated
from NCA cells with a nominal capacity of 2 Ah. In this
paper, we utilized cells numbered B0005, B0006, B0007, and
B0018. The cycling dataset has a CC and CV charging profile
and a CC discharging profile. The cells are all charged until
a maximum cut-off voltage of 4.2 V, and the current at the
CC stage is 1.5 A. During the CV stage, the cut-off current
is 20 mA. However, during the discharging phase, the cut-off
voltages of these cells are 2.7, 2.5, 2.2, and 2.5V, respectively.
To test our algorithm, we use the discharging V-Q profiles

shown in Fig. 8 which are similar to the V-Q profiles of

FIGURE 6. Average RMSE for Tests 1, 3, 4, 5, and 6 of UMD Vendor 4 Test
dataset.

FIGURE 7. SOH approximation for Test 1 and Test 4 of UMD dataset.

FIGURE 8. V-Q discharging profile for B0005 cell.

the CALCE dataset. We apply the same algorithm described
in Section III. Again, we repeat our algorithm for different
values of m and evaluate the results for the 1-RC and 2-RC
models illustrated in Fig. 9. For 2-RC at m = 5, the RMSE
is minimum. The RMSE stays low for a few higher values
of m before it starts to increase again. In the 1-RC model,
the RMSE continues to decrease for higher values of m and
even performs better than the 2-RC model for m ≥ 8, giving
a better estimate of the SOH of the battery at the expense of
higher computational cost. Just as observed in the CALCE
dataset, the 1-RC model consumes more time than the 2-RC
model (approximately 1.5 seconds). Although it looks min-
imal, that is due to fewer cycles (138/139) in the NASA
Ames dataset. For any dataset with a higher number of cycles,
the difference will become higher, an observation consistent
with the fact that for the CALCE dataset, the difference
was around 6 seconds for 1045 cycles. For the 2-RC model,
Fig. 10 shows the SOH estimation as a function of cycles with
an optimal value ofm = 5 for the three batteries in the NASA
Ames dataset. Again, the measured and the estimated SOH
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FIGURE 9. Average RMSE for different values of m for B0005, B0006,
B0007, and B0018.

FIGURE 10. SOH Approximation for B0005, B0006, and B0007 cells.

are in solid agreement with each other. The RMSE for SOH
estimated for B0005, B0006 and B0007 is 0.7960, 0.5884,
and 0.8005, respectively.

C. 3-RC AND N-RC MODEL
During the rest time, the SOH of the battery changes, and
transient response can be used to analyze the difference in
the SOH of the battery after discharging [38]. It can be
assumed that the transient response can be expressed better
using an additional RC parallel network. It might be assumed
that increasing the RC network in the model will increase
the model’s accuracy. In this subsection, we introduce the
Thevenin 3-RC EEC model. The addition of an RC parallel
network adds a new exponential term and a constant term.
Moreover, this approach can be extended to an N-RC model
where N represents the number of parallel RC networks.
Generalized N-RC equation can be written as

V = A
m∑
k=0

ak,ref(SOC0 +
Q

Qnom
)k +

N∑
n=1

cnePnQ + B, (17)

where, A = e
E
R (

1
Tref
−

1
T ), cn = −(IRn−Vn,0), Pn = − 1

Iτn
, and

B = I (
∑N

n=0 Rn).
We repeat the same procedure explained in Sections III

and IV for N = 3 for NASA dataset and N = 5 for UMD
dataset to estimate the SOH of the battery. The RMSE with
different order of RC models is compared in Fig. 11 and
Fig. 12. The RMSE is higher for the 3-RC model compared
to both 1-RC and 2-RC as shown in 13. Fromm = 6 onwards
the 3-RC model overfits.

FIGURE 11. Comparison of average RMSE values of different m for NASA
dataset (B0005, B0006, B0007, and B0018).

FIGURE 12. RMSE of N-RC model where N is carried from 1 to 5 for
different values of the order of the polynomial (m).

FIGURE 13. Average RMSE of N-RC model averaged over m (m varied
from 1 to 10).

The assumption that by adding an exponential term,
the model will capture the transient response better than
2-RC [51] is not valid in this case. It looks like N > 2 overfits
the data, and the RMSE increases. Moreover, the datasets
(both CALCE and NASA) do not have a sampling interval
short enough to capture higher-order transients. Therefore,
going beyond N = 2 does not provide a good fit and increases
the computational complexity. However, the N-RC model is
flexible, and different values of N can be used depending on
the dataset and its sampling intervals. Thus, for CALCE and
NASA Ames datasets, the 2-RC model suffices to estimate
the SOH of Li-ion batteries.

D. VALIDATION OF 2-RC MODEL
To further evaluate our model and test whether it can pre-
dict the SOH of a battery in general, we validate the model
using the CALCE vendor-2 dataset. In the vendor-2 dataset,
we have three samples for one test, and all are tested under
similar conditions (see Table 2). We compute coefficients
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FIGURE 14. 2-RC testing on Vendor 2 Test 9 Sample 2.

FIGURE 15. 2-RC testing on Vendor 2 Test 21 Sample 3.

TABLE 3. RMSE values for different test samples after testing.

for the first sample and use the computed coefficients to
predict the SOH for different cycles for the second and third
samples. The results are shown in Fig. 14 and Fig. 15 and are
summarized for selected tests in Table 3.

V. CONCLUSION
In this paper, a dynamic model based on a Thevenin EEC
(2-RC) lumped with the Arrhenius equation is used to esti-
mate the SOH. Using a simple model, we also capture the
temperature’s effect on the degradation of battery degra-
dation. In this model, the OCV is expressed as a polyno-
mial function of SOC. Thereafter, by using non-linear least
squares curve fitting, we can compute the SOH for a given
cycle. The results show that the 2-RC model outperforms
the 1-RC model and estimates the measured SOH with con-
siderably lower RMSE. Moreover, the 2-RC model requires
a lower order of the polynomial, as compared to the 1-RC
model, to approximate the SOH. This reduces the algorithm’s
time complexity and computational power as the number of
unknowns to be determined is reduced.

Initially, it was assumed that increasing the order of the
RC network in the model will increase the model’s accuracy.
However, the results presented in this paper show that the
Thevenin 2RC EEC model achieves the lowest root mean
squared error (RMSE). Adding an RC parallel network to the
1RC model adds a new exponential term and a constant term.

This is represented in equation (12). Based on table 3 the
average testing RMSE for 2-RC is 52.4%. Lastly, we believe
that our model will work on the dynamic dataset. We plan to
include analysis of dynamic dataset in our future work.

It is essential to determine the correct order of the poly-
nomial to choose the right value of m. We show that higher
values of m overfits the data and the RMSE starts increasing.
The generalizability of the proposed methodology is shown
by validating the model over two different data sets having
different types of batteries. The results show that the 2-RC
model outperforms 1-RC and N-RC models for N > 2.
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