

Dynamic Euclidean Minimum Spanning Trees
and Extrema of Binary Functions

David Eppstein
Department of Information and Computer Science

University of California, Irvine, CA 92717

Abstract

We maintain the minimum spanning tree of a point set in the plane, sub-
ject to point insertions and deletions, in amortized timeO(n1/2 log2 n) per
update operation. We reduce the problem to maintaining bichromatic closest
pairs, which we solve in timeO(nε) per update. Our algorithm uses a novel
construction, theordered nearest neighbor pathof a set of points. Our results
generalize to higher dimensions, and to fully dynamic algorithms for main-
taining minima of binary functions, including the diameter of a point set and
the bichromatic farthest pair.

1 Introduction

A dynamic geometric data structure is one that maintains the solution to some
problem, defined on a geometric input such as a point set, as the input undergoes
update operations such as insertions or deletions of single points. Dynamic al-
gorithms have been studied for many geometric optimization problems, including
closest pairs [7, 23, 25, 26], diameter [7, 26], width [4], convex hulls [15, 22], lin-
ear programming [2, 9, 18], smallestk-gons [6, 11], and minimum spanning trees
(MSTs) [8]. Many of these algorithms suffer under a restriction that, if deletions are
allowed at all, they may only occur at certain prespecified times—the algorithms
are notfully dynamic.

A number of other papers have considered dynamic computational geometry
problems under an average case model that assumes that among a given set of
points each point is equally likely to be inserted or deleted next [10, 19, 20, 21, 24].
However we are interested here in worst case bounds.

We are particularly interested in the dynamic geometric MST problem. If only
insertions are allowed, it is not hard to maintain the MST in timeO(log2 n) per
update. The same bound has recently been achieved forofflineupdates consisting of
a prespecified sequence of insertions and deletions [8]; this can be further improved
for rectilinear metrics. No known online algorithm allowing both insertions and
deletions (or even deletions only) had significantly better worst case bounds than the
trivial O(n logn) method of recomputing the MST from scratch after each update.

Following Agarwalet al. [1], we reduce MST maintenance to thebichromatic
closest pairproblem. Suppose we are given two point sets: red pointsR and
blue pointsB. The bichromatic closest pair is the pair of two pointsp ∈ R and
q ∈ B, minimizing the distancepq. In other words,d(p, q) = d(R, B). The
dynamic geometric MST problem can be reduced to dynamically maintaining the
solutions to several bichromatic closest pair problems, and to solving a dynamic
graph MST problem in which edges are inserted or deleted according to the behavior
of the closest pairs. If we were performing insertions only, maintaining bichromatic
closest pairs would not be difficult. Vaidya [27] described a method for performing
insertions in the red set, and both insertions and deletions in the blue set, in time
O(n1/2 logn) per operation. But no fully dynamic algorithm for this problem was
previously known.

A generalization of bichromatic closest pairs was described by Dobkin and
Suri [7], who describe methods for computing the minimum of any binary function
f (x, y), with x and y ranging over all values in input setsX and Y. Dobkin
and Suri gave algorithms for maintaining such minima in a semi-online model of
computation, in which as each point is inserted we are told the time it will be deleted;

1

their algorithm needs only the existence of a data structure that, given a valuey, finds
the valuex among the given inputs that minimizef (x, y). This class of functions
includes the closest pair problem, the diameter problem mentioned earlier, and
many similar geometric optimization problems. Dobkin and Suri call this problem
that of finding minima of decomposable functions, however this terminology is
unfortunate as the word “decomposable” has been used in the literature to mean
something different [5]: a functionf on sets is decomposable if wheneverS is the
disjoint union ofS1 andS2, f (S) can be computed easily fromf (S1) and f (S2).
We prefer to call this problem that of finding minima of binary functions. In any
case no fully dynamic algorithm for such problems was previously known.

In this paper we provide the first known fully dynamic algorithms for the fol-
lowing geometric optimization problems.

• For any planar point set undergoing point insertions and deletions, and for any
ε > 0, the Euclidean bichromatic closest pair, bichromatic farthest pair, or
diameter can be maintained in amortized timeO(nε) per insertion or deletion.

• For any planar point set undergoing point insertions and deletions, the Eu-
clidean MST can be maintained in amortized timeO(n1/2 log2 n)per insertion
or deletion.

• For d-dimensional point sets in the rectilinear (L1 or L∞) metrics, and for
the Euclidean metric in dimensiond ≤ 4, the MST can be maintained in
amortized timeO(n1/2 logd n) per update.

• For a point set of any fixed dimension, the Euclidean MST, bichromatic closest
pair, bichromatic farthest pair, diameter, minimum or maximum distance
between a point and a hyperplane, and minimum or maximum separation
between axis-aligned boxes, can all be maintained in amortized timeO(n1−ε)

per update, whereε > 0 is some constant depending ond.

More generally, we maintain the minimum or maximum of any binary function,
given a data structure that answers nearest neighbor queries for that function and
that allows fully dynamic point insertions and deletions. For example, our methods
solve the problems of the minimum separation among a set of rectangles or higher-
dimensional axis-aligned boxes, the minimum or maximum distance between a set
of points and a set of hyperplanes, and the minimum or maximum axis-aligned
rectangles or boxes having a long diagonal defined by a pair of points.

2

2 The Dynamic Post Office Problem

We use a data structure for thepost office problemas a key subroutine in our
algorithm. In this problem, one is given a point setS, and a query pointp; the
problem is to find the nearest point top in S. If S is unchanging, this can be done
by computing a Voronoi diagram ofS (in time O(n logn) for the Euclidean planar
metric), and performing point location queries in the diagram (O(logn) time in the
plane).

In our use of this problem,Swill undergo point insertions and deletions. Until
recently the best known algorithm for such a dynamic post office problem involved
partitioning the points into groups, and recomputing the Voronoi diagram in a
single group after each update; this approach results in update and query times of
O(n1/2 log1/2 n). In a recent breakthrough, Agarwal and Matouˇsek [2, 3] showed
how to solve the post office problem by applying parametric search techniques
together with a halfspace range searching data structure. They were able to achieve
the following result.

Lemma 1 (Agarwal and Matoušek [2, 3]). For any fixed ε > 0, there is a data
structure with which we can insert and delete points in a planar set S, and find the
nearest neighbors to given query points, in time O(nε) per insertion, deletion, or
query.

Agarwal and Matouˇsek’s technique can also be extended to higher dimensions.
For any dimensiond they present data structures taking timeO(n1−2/(dd/2e+1)+ε)

per operation. Their data structure takes spaceO(n1+ε) for d = 2, and has higher
space bounds in higher dimensions.

We note that for rectilinear (L1 andL∞) metrics, orthogonal range query data
structures let us solve the post office problem in timeO(logd n) per operation [16,
17, 28].

3 Ordered Nearest Neighbors

Suppose we are given a bichromatic setS of red and blue points. We define a
bichromatic ordered nearest neighbor pathto be a path produced by the following
sequence of operations. We first choosep1 arbitrarily. Then we successively extend
this path by one more point, by choosingpi +1 to be the nearest neighbor topi among
the unchosen points of the opposite color. If there arem red points andn > m blue
points, and we begin the path with a red point, the path will contain 2m vertices,
after which we are left withn − m unmatched blue points.

3

Lemma 2. Let S be a bichromatic point set, with m red points and n > m blue
points. Suppose, for distance function d(p, q), the post office problem for S can
be solved (after a preprocessing stage taking time P(n)) in time T(n) per insertion,
deletion, or query. Then we can compute a bichromatic ordered nearest neighbor
path for S in time O(P(n) + mT(n)).

Proof: We maintain two post office problem data structures for looking up nearest
neighbors among the unchosen points, one data structure for each color. When we
choose a point we remove it from the structure. There are at most 2m queries and
a similar number of deletions, each of which takes timeT(n). Therefore the total
time is O(P(n) + mT(n)). 2

TheO(P(n)) term in the time bound of Lemma 2 is a one time start up cost for
building the post office data structure. Once we have computed the nearest neighbor
path, we can add back the deleted points in timeO(mT(n)), matching the time for
constructing the nearest neighbor graph. Then we can remember the data structure
and re-use it in later computations, avoiding the start-up cost. If the set ofn points
changes, the post office data structure can be updated in timeO(T(n)) per change.

4 Maintaining the Bichromatic Closest Pair

In order to maintain the bichromatic closest pair of points, we partition the point
setS into levelsnumbered from 0 todlog2 ne. The points at each level may be of
either color. LetSi be the set of points at leveli ; Si will contain at most 2i points.
Initially Sdlogne will contain all of S. For eachSi we maintain a graphGi . Gi may
have as its vertices not only the points inSi but also some other points inS− Si .

As we will show below, one of these graphs will contain an edge(p, q) such
that d(p, q) = d(R, B). Thus we can maintain the closest pair using a priority
queue of all the edges in these graphs. We store the edges of eachGi in a separate
priority queueQi , and determine the overall minimum length edge by examining
the O(logn) minima from the different queues.

Gi is initially constructed as follows. LetRi = Si ∩ R andBi = Si ∩ B. Gi

consists of two ordered nearest neighbor paths, one forRi ∪ B and one forBi ∪ R.
We keep a post office data structure for all ofS; thereforeGi can be constructed in
time O(|Si |T(n)) by Lemma 2 and the discussion following it. As the algorithm
progresses we delete edges fromGi and periodically reconstruct it from scratch.

We will also periodically reconstruct the overall data structure. If there werem
points inS when it was last reconstructed, we reconstruct it after performingm/2
update operations. This ensures that,n, the number of points inSis always between

4

m/2 and 3m/2. The amortized time spent in a global reconstruction isO(T(n))

per update, which can be charged to each update operation without affecting the
asymptotic running time.

4.1 Inserting and deleting points

Whenever we insert a pointp into S, we placep in level 0. Then, as long asp is in
a leveli containing more than 2i points, we move all points of leveli to leveli + 1,
making leveli empty. Oncep enters a leveli in which there are at most 2i points,
we remove all graphsG j for j < i , and reconstruct graphGi as described above.
We also discard all priority queuesQj , for j < i , and reconstructQi storing the
edges of newGi .

We delete a pointq from S as follows. We delete all the edges incident toq
from eachGi . If we deleted a directed edge of the form(p, q), then we also delete
p from its present level, and addp to level 0 as if it were newly inserted. However
we do not delete any other edges incident top. If q ∈ Sj , then there are at most
two edges pointing towardsq in G j , and there is at most one such edge in any other
graphGi , i 6= j . At most four edges are deleted from levelj and at most two
from each other level.O(logn) points are moved to level 0. As in the insertion
procedure, we then move these points as a group through successive levels until the
level they are in is large enough to hold them, and then reconstruct the graph for
the level they end up in.

4.2 Correctness

In order to prove the correctness of the algorithm, we need the following obvious
fact.

Lemma 3. Let i be some level. Then the level of all points, which are inserted to
Sor moved to level 0 after the most recent construction of Gi , is less than i .

The correctness of the algorithm now follows from the following lemma.

Lemma 4. There is an edge (p, q) in one of the graphs Gi such that d(p, q) =
d(R, B).

Proof: Let (p, q) be a bichromatic closest pair inS. Suppose without loss of
generality thatp ∈ Ri andq ∈ Bj , and thatj ≥ i . It follows from Lemma 3 thatq
was inSand p was inSi whenGi was constructed the last time.

First assume thatq < p in the ordering of the nearest neighbor path computed
for Ri ∪ B. Let (q, r) be the outgoing edge fromq when that graph was constructed

5

the last time. By definition of the bichromatic ordered nearest neighbor path,
d(q, r) ≤ d(q, p). If the edge(q, r) still exists, then it is a bichromatic closest pair
and the lemma is obviously true, so assume that(q, r) has been deleted. Sinceq is
still in S, the only way(q, r) could be deleted fromGi was thatr was deleted from
S. In that case,q would have been moved to level 0, which by Lemma 3 implies
that j < i , a contradiction.

Similarly, assume thatp < q in the ordering forRi ∪ B, and let(p, r) be
the outgoing edge fromp in that graph when it was last reconstructed. Then
d(p, r) ≤ d(p, q), so if (p, r) is still in Gi it is a bichromatic closest pair. If it is
not in Gi thenr must have been deleted, andp would have been moved to level 0,
which by Lemma 3 contradicts the assumption thatp is still in level i . 2

4.3 Time analysis

We first analyze the time spent reconstructing the entire data structure. Recall
that, between periodic reconstructions, there is some valuem so thatn remains
betweenm/2 and 3m/2. For convenience defineN to be 3m/2. Let T(n) be the
time per operation in a nearest neighbor query data structure. We will assume that
T(n) is monotonic, and satisfies the propertyT(N) = O(T(n)) (as will be true
for any polynomial or other well behaved time bound). The time to perform each
periodic reconstruction is thenO(nT(n)), and each reconstruction happens after
Ä(n) updates, so the amortized time per update isO(T(n)).

We define for later use a potential function of a pointp ∈ Si to be

8(p) = cT(N)(log2 N + 1 − i) ,

wherec is some appropriate constant. Sincei ≤ dlog2 ne, 8(p) is always non-
negative. We define the overall potential function8(S) = ∑

p∈S8(p). 8(S) =
O(nT(n) logn) so the increase in8 occurring at reconstructions of the overall data
structure, amortized per update, isO(T(n) logn).

Next, let us analyze the time spent in reconstructingGi . The actual time spent
in constructingGi is O(2i T(n)). We also spend an additionalO(2i) time to re-
construct the priority queueQi . But observe thatGi is constructed only when the
points fromSi −1 are moved toSi . Since the points are moved fromSi −1 to Si only
if |Si −1| > 2i −1, 8(S) decreases by at leastc2i −1T(N). The amortized time in
reconstructingGi and updating the structure is thus zero ifc is chosen sufficiently
large.

When we insert a point, we add it toS0, which increases8(S)bycT(N)(log2 N+
1). Since the actual time spent in adding a point isO(logn) plus the time spent

6

in reconstructing the appropriate graphs, the amortized running time of an insert
operation isO(T(n) logn).

Deleting a point involves removing at most four edges from eachGi and Qi ,
moving O(logn) points toS0, and reconstructing appropriate graphs. The total
time spent in deleting the edges fromGi and Qi is O(log2 n), and moving the
points toS0 increases the total potential8(S) by O(logn) · cT(N)(log2 N + 1) =
O(T(n) log2 n). Since the amortized time spent in reconstructing the graphs is zero,
the total amortized time spent in deleting a point isO(T(n) log2 n).

Theorem 1. Let d(p, q) be a distance function for which some data structure
allows us to perform nearest neighbor queries, and insert and delete points, in time
T(n) per operation, and let T(n) be monotonic and satisfy T(3n) = O(T(n)).
Then we can maintain the bichromatic closest distance d(R, B), as well as a pair of
points realizing that distance, in amortized time O(T(n) logn) per insertion, and
O(T(n) log2 n) per deletion.

The assumption thatT(n) be linear or sublinear is a reasonable one, as in linear
time we could answer nearest neighbor queries simply by computingd(p, q) for all
input pointsp. The space requirement for the data structure isO(n) for the paths at
each level, plus the amount of space required for the nearest neighbor data structure
on a set ofN points.

5 Diameter and other Binary Functions

The algorithm described above will work to compute the minimum value of any
binary function, not necessarily a metric, as long as we can find an appropriate
bichromatic ordered nearest neighbor path, which can be done using a solution to
the post office problem. By negating the distance function, we can compute the
maximum value in a similar fashion.

The general problem of finding minima and maxima of binary functions is
described by Dobkin and Suri [7], who give algorithms for maintaining such extrema
in a semi-online model of computation, in which as each point is inserted we are told
the time it will be deleted. However no fully dynamic algorithm for these problems
was previously known.

The technique as we described it works only forbichromaticproblems. To
extend it to uncolored problems, we replace a single uncolored point set by a colored
set containing both one red point and one blue point in place of each uncolored point.
However the minimum of a binary function on such sets may bef (x, x) for some
x, which we may wish to disallow; e.g. for the uncolored closest pair problem we

7

wish the points of the pair to be distinct. To avoid this difficulty, we can modify
the distance function so that the distance between a point and itself is defined to
be+∞. We can use a data structure for the original post office problem to answer
queries for the modified distance function as follows: simply remove the query
point from the data structure, perform the query, and put any removed point back
where it was. With this modification, uncolored closest pairs can be found by letting
R = B = S. Of course fully dynamic techniques were known for certain specific
uncolored closest pair problems [25] but these techniques did not generalize to
binary functions or even arbitrary metrics.

We illustrate our technique with some examples of specific bichromatic and
uncolored problems of minimizing binary functions.

The bichromatic closest pairof a planar point set can be maintained in time
O(nε) per insertion or deletion, by using the post office data structure cited in
Lemma 1. In any higher dimensiond, the bichromatic closest pair can be maintained
in time O(n1−2/(dd/2e+1)+ε) per update.

Thebichromatic farthest pairof a two-colored planar point set is the farthest
distance between any points of opposite colors, and is thus the maximum of the
distance function. Using Agarwal and Matouˇsek’s methods [2, 3], a post office
data structure for the negation of the Euclidean distance can be maintained in time
O(n1−2/(dd/2e+1)+ε) per operation. Thus we can use our technique to maintain the
bichromatic farthest pair in timeO(n1−2/(dd/2e+1)+ε) per update.

Thediameterof a point set is the uncolored version of the farthest pair problem.
For this problem we do not even need to modify the distance function as described
for uncolored problems in general: if we simply setR = B = S the uncolored and
bichromatic farthest pairs will coincide. Thus the diameter can be maintained in
the same time bound ofO(n1−2/(dd/2e+1)+ε) per update.

The same technique applies to the problems of the minimum separation among
a set of rectangles or higher-dimensional axis-aligned boxes, the minimum or max-
imum distance between a set of points and a set of hyperplanes, and the minimum
or maximum axis-aligned rectangles or boxes having a long diagonal defined by a
pair of points. For each of these problems, Dobkin and Suri [7] give data structures
that answer post office queries in sublinear time after polynomial preprocessing
time. A static data structure of this type can be transformed to a fully dynamic
structure using standard grouping methods, after which we can use our technique
to achieve fully dynamic algorithms for maintaining these quantities with sublinear
update times.

8

6 Dynamic Euclidean Minimum Spanning Trees

We have seen how to use the nearest neighbor searching problem to maintain the
bichromatic closest pair of a point set, as points are inserted and deleted. We now
apply these results in an algorithm for maintaining the Euclidean minimum spanning
tree of a point set. The connection between bichromatic closest pairs and minimum
spanning trees can be seen from the following lemma.

Lemma 5 (Agarwal et al. [1]). Given a set of n points in Rd, we can form a hier-
archical collection of O(n logd−1 n) bichromatic closest pair problems, so that each
point is involved in O(i d−1) problems of size O(n/2i) (1 ≤ i ≤ logn) and so that
each MST edge is the solution to one of the closest pair problems.

Proof sketch: For simplicity of exposition we demonstrate the result in the case
thatd = 2; the higher dimensional versions follow analogously.

If pq is an MST edge, andw is a double wedge having sufficiently small interior
angle, withp in one half ofw andq in the other, thenpq must have the minimum
distance over all such pairs defined by the points inw. Therefore ifF is a family
of double wedges with sufficiently small interior angles, such that for each pair of
points(p, q) some double wedgew(p, q) in F hasp on one side andq on the other,
then every MST edgepq is the bichromatic closest pair for wedgew(p, q).

Suppose the interior angle required is 2π/k. We can divide the space around
each pointp into k wedges, each having that interior angle. Suppose edgepq falls
inside one particular wedgew. We find a collection of double wedges, with sides
parallel tow, that is guaranteed to containpq. By repeating the constructionk
times, we are guaranteed to find a double wedge containing each possible edge.

For simplicity, assume that the sides of wedgew are horizontal and vertical.
In the actual construction,w will have a smaller angle thanπ/2, but the details
are similar. First choose a horizontal line with at mostn/2 points above it, and at
mostn/2 points below. We continue recursively with each of these two subsets;
therefore if the line does not crosspq, thenpq is contained in a closest pair problem
generated in one of the two recursive subproblems. At this point we have two sets,
above and below the line. We next choose a vertical line, again dividing the point
set in half. We continue recursively with the pairs of sets to the left of the line,
and to the right of the line. If the line does not crosspq, then pq will be covered
by a recursive subproblem. If both lines crossedpq, so that it was not covered by
any recursive subproblem, thenw(p, q) can be taken to be one of two bichromatic
closest pair problems formed by opposite pairs of the quadrants formed by the two
lines.

9

The inner recursion (along the vertical lines) gives rise to one subproblem
containingp at each level of the recursion, and each level halves the total number
of points, sop ends up involved in one problem of each possible sizen/2i . The
outer recursion generates an inner recursion at each possible size, givingi problems
total of each sizen/2i . The construction must be repeated for each of thek wedge
angles, multiplying the bounds byO(1). 2

Lemma 5 reduces the geometric MST problem to computing a MST in a graph
whose vertices are the points ofSand whose edges areO(n logd−1 n) bichromatic
closest pairs. Insertion or deletion of a point changesO(logd n) edges of the
graph. Hence, we can maintain the geometric MST by performingO(logd n)

updates in a data structure for maintaining the MST in a dynamic graph. The
following recent result strengthens anO(m1/2) time dynamic graph MST algorithm
of Frederickson [14].

Lemma 6 (Eppsteinet al. [12]). Given a graph subject to edge insertions and dele-
tions, having at most n vertices and m edges at any one time, the minimum spanning
tree can be maintained in time O(n1/2 log(m/n)) per update.

If we combine these two results, we get anO(n1/2 logd n log logn) time algo-
rithm for maintaining the MST, once we know the corresponding BCP information.
We can save a factor ofO(log logn) using a more sophisiticatedO(n1/2)-time graph
MST algorithm [13] or alternately we can use the following technique. Recall that
our collection of BCP problems is formed by splitting a point set recursively with
a hyperplane, partitioning the points on each side of the hyperplane recursively,
and combining the results with those of a lower-dimensional recursion along the
hyperplane itself. For each hyperplane in the recursion, we maintain the minimum
spanning tree of the BCP edges defined in all the subproblems both on the hyper-
plane itself, and in the subproblems on either side of the hyperplane. Each spanning
tree in a subproblem withk points is a subgraph of a graph with 3k edges, formed
as the union of minimum spanning trees in each subproblem. Each update in this
spanning tree can be performed inO(k1/2) time, and each update in the geometric
problem gives rise toO(logd k) updates in each subproblem. The total time for
performing MST updates is then

log2 n∑
i =0

O(logd n)O(n/2i)1/2 = O(n1/2 logd n).

The time bound for maintaining the solutions to the BCP problems is
∑

i d−1T(n/2i)

per insertion or deletion, whereT(n) is the time to update a single such problem.
If T(n) = Ä(nε) for someε > 0 this sum reduces toO(T(n)).

10

The hierarchical structure of Lemma 5 can be periodically rebalanced in a similar
amortized time bound. After2(n/2i) insertions in a subproblem of size2(n/2i),
we rebuild the hierarchical decomposition for that subproblem, reconstruct the BCP
data structure, rebuild the MST data structures within that subproblem, and update
the MST structures for higher level problems. The time for rebuilding the BCP
structure is an amortizedT(n) logO(1) n per operation; again ifT(n) = Ä(nε) the
polylogarithmic factor goes away. The MST data structure can be rebuilt in close
to linear time [12], so it only contributes an additive polylogarithmic term to the
total amortized time. We will delete and reinsertO(n/2i) edges in higher levels of
the MST data structure, in time

i∑
j =0

O(n/2i)O(n/2 j)1/2 = O(n3/2/2i).

So these rebalancing MST updates take an amortized time bound ofO(n1/2)

per insertion to the given subproblem, for a total amortized bound of simply
O(n1/2 logd n).

We have proven our main result:

Theorem 2. A Euclidean minimum spanning tree of a set of points in Rd can be
maintained in amortized time O(n1/2 logd n) per update for d ≤ 4 and in time
O(n1−2/(dd/2e+1)+ε) for d > 4.

Proof: We maintain the hierarchical decomposition into BCP problems of Lemma 5,
periodically rebalanced as described above. For each subproblem in the hierarchy
we maintain a dynamic graph MST data structure, also described above. Each point
insertion or deletion causes BCP updates taking amortized timeO(n1−2/(dd/2e+1)+ε),
MST updates taking timeO(n1/2 logd n), and rebalancing taking amortized time
dominated by the BCP and MST updates.2

The space is bounded by that for the nearest neighbor data structure,O(n1+ε)

in R2, or worse bounds in higher dimensions.
We note that for rectilinear (L1 and L∞) metrics, orthogonal range query

data structures can be used to answer dynamic bichromatic closest pair queries
in O(logd n) time per update [27].

Theorem 3. The rectilinear MST of a set of n points in Rd can be maintained in
time O(n1/2 logd n) per update.

11

7 Conclusions

We have described algorithms for maintaining the minimum spanning tree of a
changing point set, the bichromatic closest pair of a colored point set, and many other
dynamic geometry problems including diameter and bichromatic farthest pairs.

This naturally raises the question of how much farther our algorithms can be
extended or improved. It may be possible to compute the ordered nearest neighbor
graph more quickly than the current method, which involvesn updates in a post
office problem. It is not necessary that the graph form a path; it must only have
bounded in-degree.

It is open whether the ordered nearest neighbor sequence we generate, or any
other sequence for which the nearest neighbor in-degree is constant, can be found
quickly in parallel. Our method of picking a point at a time and finding its nearest
neighbor in the remaining set seems inherently sequential, but perhaps a different
approach will work.

Acknowledgements

Portions of this paper appear in a preliminary form in a conference abstract [2], co-
authored with Pankaj Agarwal and Jirka Matouˇsek, which also contains results of
Agarwal and Matouˇsek on halfspace range searching and nearest neighbor queries.
I thank Pankaj for the many improvements he made in this presentation while
readying that paper for publication. This work was supported in part by NSF grant
CCR-9258355.

References

[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs.Discrete Comput.
Geom., 6:407–422, 1991. See also6th Symp. Comp. Geom., 1990, pp. 203–
210.

[2] P. K. Agarwal, D. Eppstein, and J. Matouˇsek. Dynamic algorithms for half-
space reporting, proximity problems, and geometric minimum spanning trees.
In Proc. 33rd IEEE Symp. Foundations of Computer Science, pages 80–89,
1992.

[3] P. K. Agarwal and J. Matouˇsek. Ray shooting and parametric search. InProc.
24th ACM Symp. Theory of Computing, pages 517–526, 1992.

12

[4] P. K. Agarwal and M. Sharir. Off-line dynamic maintenance of the width of a
planar point set.Comput. Geom.: Theory & Appl., 1:65–78, 1991.

[5] J. L. Bentley and J. Saxe. Decomposable searching problems I: static-to-
dynamic transformation.J. Algorithms, 1:301–358, 1980.

[6] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic al-
gorithms fork-point clustering problems. InProc. 3rd Worksh. Algorithms
and Data Structures, pages 265–276. Lecture Notes in Computer Science 709,
Springer-Verlag, Berlin, 1993.

[7] D. Dobkin and S. Suri. Maintenance of geometric extrema.J. Assoc. Comput.
Mach., 38:275–298, 1991. See also30th Symp. Found. Comp. Sci., 1989, pp.
488–493.

[8] D. Eppstein. Offline algorithms for dynamic minimum spanning tree prob-
lems. InProc. 2nd Worksh. Algorithms and Data Structures, pages 392–399.
Springer-Verlag, LNCS 519, 1991.

[9] D. Eppstein. Dynamic three-dimensional linear programming.ORSA J. Com-
put., 4:360–368, 1992. See also32nd Symp. Found. Comp. Sci., 1991, pp.
488–494.

[10] D. Eppstein. Average case analysis of dynamic geometric optimization. In
Proc. 5th ACM-SIAM Symp. Discrete Algorithms, pages 77–86, 1994. To
appear inComputational Geometry Theory & Applications.

[11] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal
polytopes. InProc. 4th Symp. Discrete Algorithms, pages 64–73, 1993.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification –
A technique for speeding up dynamic graph algorithms. InProc. 33rd IEEE
Symp. Foundations of Computer Science, pages 60–69, 1992.

[13] D. Eppstein, Z. Galil, and G.F. Italiano. Improved sparsification. Technical
Report 93-20, Department of Information and Computer Science, University
of California, Irvine, 1993.

[14] G. N. Frederickson. Data structures for on-line updating of minimum spanning
trees.SIAM J. Comput., 14:781–798, 1985.

[15] J. Hershberger and S. Suri. Offline maintenance of planar configurations. In
Proc. 2rd ACM/SIAM Symp. Discrete Algorithms, pages 32–41, 1991.

13

[16] G. S. Lueker. A data structure for orthogonal range queries. InProc. 19th
IEEE Symp. Foundations of Computer Science, pages 28–34, 1978.

[17] G. S. Lueker and D. E. Willard. A data structure for dynamic range queries.
Inform. Proc. Lett., 15:209–213, 1982.

[18] J. Matoušek and O. Schwarzkopf. Linear optimization queries. InProc. 8th
ACM Symp. on Computational Geometry, pages 16–25, 1992.

[19] K. Mulmuley. Randomized multidimensional search trees: dynamic sampling.
In Proc. 7th ACM Symp. Computational Geometry, pages 121–131, 1991.

[20] K. Mulmuley. Randomized multidimensional search trees: lazy balancing
and dynamic shuffling. InProc. 32nd IEEE Symp. Foundations of Computer
Science, pages 180–196, 1991.

[21] K. Mulmuley.Computational Geometry, an Introduction through Randomized
Algorithms. Prentice Hall, 1993.

[22] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the
plane.J. Comp. Syst. Sci., 23:224–233, 1981.

[23] C. Schwarz, M. Smid, and J. Snoeyink. An optimal algorithm for the on-
line closest pair problem. InProc. 8th ACM Symp. Computational Geometry,
pages 330–336, 1992.

[24] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy.
In Proc. 32nd IEEE Symp. Foundations of Computer Science, pages 197–206,
1991.

[25] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic
time.Discrete Comput. Geom., 7:415–431, 1992. See also2nd Symp. Discrete
Algorithms, pages 1–6, 1991.

[26] K. J. Supowit. New techniques for some dynamic closest-point and farthest-
point problems. InProc. 1st ACM-SIAM Symp. Discrete Algorithms, pages
84–90, 1990.

[27] P. M. Vaidya. Geometry helps in matching.SIAM J. Comput., 18:1201–1225,
1989.

[28] D. E. Willard and G. S. Lueker. Adding range restriction capability to dynamic
data structures.J. Assoc. Comput. Mach., 32:597–617, 1985.

14

