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Abstract

Providing explanations in a recommender system is getting
more and more attention in both industry and research com-
munities. Most existing explainable recommender models re-
gard user preferences as invariant to generate static explana-
tions. However, in real scenarios, a user’s preference is al-
ways dynamic, and she may be interested in different product
features at different states. The mismatching between the ex-
planation and user preference may degrade costumers’ satis-
faction, confidence and trust for the recommender system.

With the desire to fill up this gap, in this paper, we build a
novel Dynamic Explainable Recommender (called DER) for
more accurate user modeling and explanations. In specific,
we design a time-aware gated recurrent unit (GRU) to model
user dynamic preferences, and profile an item by its review
information based on sentence-level convolutional neural net-
work (CNN). By attentively learning the important review in-
formation according to the user current state, we are not only
able to improve the recommendation performance, but also
can provide explanations tailored for the users’ current pref-
erences. We conduct extensive experiments to demonstrate
the superiority of our model for improving recommendation
performance. And to evaluate the explainability of our model,
we first present examples to provide intuitive analysis on
the highlighted review information, and then crowd-sourcing
based evaluations are conducted to quantitatively verify our
model’s superiority.

Introduction

Explainable recommendation has attracted increasing atten-
tion in both industry and academic communities, because
it can not only enhance customers’ satisfaction, confidence
and trust for the recommender system, but also can help
them to make better and faster choices (Zhang and Chen
2018). With the desire to make a recommender system
more interpretable, user reviews–which contain rich user
preference–have been widely leveraged as an important re-
source to provide recommendation explanations, for exam-
ple, EFM (Zhang et al. 2014) explained a recommendation
by filling user cared features learned from the review in-
formation into pre-defined templates. LRPPM (Chen et al.
2016b) and MTER (Wang et al. 2018) extended EFM for
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more accurate user-item-feature explanations based on ten-
sor factorization techniques. NARRE (Chen et al. 2018a)
leveraged attention mechanism to extract valuable item re-
views to explain the rating prediction process.

Despite effectiveness, these explainable recommender
models still suffer from some inherent limitations. To begin
with, most of them represent a user as a static latent vec-
tor, thus, they fail to capture user dynamic preference in the
context of explainable recommendation, which may weaken
the recommendation performance according to many previ-
ous studies (Tang and Wang 2018; Hidasi et al. 2016). More
importantly, the explanations provided by these models are
usually invariant, which is less effective in satisfying users’
actually dynamic preference in real scenarios. For example,
a user may care more about the socks’ breathability in the
beginning, and after a period of time, she may become more
interested in the warmth because the weather started getting
cold. The mismatching between the explanation and user
preference may degrade costumers’ satisfaction, confidence
and trust for the recommender system.

Inspired by these limitations, in this paper, we design a
novel Dynamic Explainable Recommender (called DER)
for more accurate user modeling and recommendation ex-
planations. We believe a persuasive explanation should ac-
curately tell an item’s properties (what) that the user (who)
cares most at present (when). To solve the problem of when,
gated recurrent unit (GRU) is selected as the basic archi-
tecture to capture user dynamic preference. A key problem
of GRU is that it models a sequence without considering
the time interval information between two successive steps,
which is yet an important signal for user behavior model-
ing, e.g., a user tend to have similar preferences within a
short time, while large time gap may have more opportuni-
ties to change user interest (Zhu et al. 2017). To solve this
problem, we revise traditional GRU by adding a time gate to
make it more applicable for the field of personalized recom-
mendation. For what, we extract item properties from the
review information based on sentence-level convolutional
neural network (CNN). Finally, we adopt a “personalized
attention mechanism” for merging different review informa-
tion to address the issue of who. Based on the above designs,
we predict the likeness from a user to an item, and also high-
light valuable review information to explain the prediction
according to the user’s current preference.
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In a summary, in this paper, we propose to model user dy-
namic preference in the context of explainable recommen-
dation, and accordingly provide adaptive explanations tai-
lored for different user states. To achieve this goal, we de-
sign a novel dynamic explainable recommender model by
integrating gated recurrent unit (GRU) with attention mech-
anism. The carefully designed time-aware gated recurrent
unit (GRU) is good at modeling user dynamic preference,
while the attention mechanism facilitates explainable rec-
ommendation. By combining them, we hope to take advan-
tages of the benefits from both components. We conduct ex-
tensive experiments to demonstrate the effectiveness of our
model for the recommendation task of rating prediction. And
also, we evaluate our model’s explainability from both qual-
itative and quantitative perspectives.

Preliminaries

In this section, we first conduct primary analysis based on a
real-world dataset to verify our assumption that: users’ cared
item aspects are always changeable in real scenarios. Then
we formally define the task of explainable recommendation
with user dynamic preferences.

Data Analysis

We base our analysis on the Amazon dataset1, which is col-
lected from www.amazon.com. To alleviate the influence
of product diversity, we focus our analysis in the same
category (we specified it as Musical Instruments). Intu-
itively, people usually talk about their cared product aspects
in the review information (McAuley and Leskovec 2013;
Zhang et al. 2014). To verify the dynamic properties of user
preferences, we merge all the user reviews posted in the
same month into a document, and further leverage Latent
Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003) to
project each document into a topical distribution vector that
reflects its relevance to different learned topics. The changes
of the topic distribution in each month are presented in Fig-
ure 1, we can see: (1) On the whole, users’ attention for dif-
ferent topics is dynamic. For example, in November 2008,
users discussed more on the third topic (with the proba-
bility of 0.27), while in May 2011, the first topic became
the most cared aspect (with the probability of 0.28). (2) For
each topic, its received attention varies as the time changes.
For example, the second topic (denoted in green circle) ob-
tained the most attention in December 2008 (with the prob-
ability of 0.51), following which its attractiveness gradually
decreased, and reached the lowest point in May 2014 (with
the probability of 0.11).

These results manifest that users’ cared product features
are always changeable, which motivates us to provide adap-
tive explanations to satisfy user dynamic preferences.

Problem Definition

Suppose we have a user set U = {u1, u2, ..., u|U|} and an

item set I = {i1, i2, ..., i|I|}. For each user, we chrono-
logically organize his/her historical behaviors as a sequence

1http://jmcauley.ucsd.edu/data/amazon/links.html

Figure 1: The dynamic nature of the user review topic dis-
tribution across different months. The number of topics in
LDA is set as 5.
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at time tus by rating rus and review wu
s . Given all the user

behaviors in the training set O = {Ou|u ∈ U}, our task
of explainable recommendation with user dynamic prefer-
ence is to learn a predictive function f , such that for a user-
item pair (u, vulu+1) in the testing set, it can predict the rat-
ing rulu+1 that reflects the user’s likeness towards the item
at tulu+1. And further, its internal parameters or intermediate
outputs should provide explanations for the final predicted
rating according to the user’s preference at tulu+1.

DER: Dynamic Explainable Recommender

The principle of our framework can be seen in Figure 2. User
dynamic preference is modeled by a novel time-aware GRU
architecture. By aggregating user historical behaviors, the
output from the last GRU step encodes the user’s current
preference. The target item is profiled based on all its re-
ceived user reviews, where each sentence is projected into
a latent vector by a convolutional neural network (CNN).
According to the user current preference, different sentence
vectors are attentively merged into a unified embedding,
which is then leveraged to derive the final rating. Once our
model learned, the attention weights encode the importances
of different review sentences, which can help us to explain
the rating prediction process. In the following, we describe
different components in our framework more in depth.

User Profiling based on Time-aware Gated
Recurrent Unit

Gated recurrent unit (GRU) (Cho et al. 2014) is a powerful
and efficient tool to model sequential features. The compu-
tational rule (see Figure 2(b)) of a traditional GRU at each
time step can be concluded as:

zs = σ(Wz[xs,hs−1]) (1)

rs = σ(Wr[xs,hs−1]) (2)

h′

s = Tanh(Wh[xs, rs ⊙ hs−1]) (3)

hs = zs ⊙ hs−1 + (1− zs)⊙ h′

s (4)
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Figure 2: (a) The overall framework. (b) The comparison between traditional GRU and our designed T-GRU. The blue bold
lines highlight the augmented operations. (c) The attention mechanism of merging different review sentences for the target item.

where zs is the update gate and rs is the reset gate, each of
which is obtained by applying a sigmoid function σ(·) to the
concatenated input. h′

s is the current memory content and
hs is the output hidden state. ⊙ is Hadamard (element-wise)
product and [·, ·] is concatenate operation. Tanh(·) is hyper-
bolic tangent activation function and Wz,Wr,Wh are pa-
rameters to be learned. Basically, in the process of sequence
modeling, by multiplying with hs−1, the reset gate rs de-
termines what to remove from the previous steps, e.g., if rs
is close to 0, GRU will wash out the past information and
focus only on the current input xs. At the same time, the
update gate zs determines what to collect from the current
memory content h′

s and what from the previous steps hs−1.
For example, if zs is close to 1, then 1 − zs will be near 0.
GRU will keep a majority of the previous information hs−1,
and ignore big portion of the current content h′

s.
GRU has been demonstrated to be effective in many

neural language processing (NLP) tasks (Cho et al. 2014;
Zhou et al. 2017; Noh, Hongsuck Seo, and Han 2016). In
our problem, we can straightforwardly regard a user be-
havior as a word, and the whole behavior sequence as a
sentence. However, an important difference between user
behavior modeling (UBM) and neural language processing
(NLP) is that: the time interval information between two
successive steps, which is meaningless in NLP, is an impor-
tant signal in UBM. Intuitively, a user tend to have similar
preferences within a short time, while large time gap may
decrease the influence of the former action. To seamlessly
embed this insight into our model, we redesign the architec-
ture of GRU. To begin with, we introduce a new time gate
gs, which is jointly determined by the current input xs, the
previous information hs−1 and the time interval △s, that is:
gs = σ(Wg[xs,hs−1] + λ△s)

2, where, △s = ts+1 − ts is

2For simplicity, the label for discriminating different users’ se-
quential behaviors is omitted

the time interval between step s and s+ 1, λ > 0 (meaning
each element in λ is larger than 0) is a pre-defined hyper-
parameter. Wg is a weighting matrix to be learned. Obvi-
ously, each element in gs is monotonically increasing at △s,
which means larger time interval leads to larger gs, and vice
versa.

On one hand, we hope a small time interval will not
change user preference much, it means if △s is small, user
preference at ts+1 should be similar to the one at ts, which
is profiled by xs. On the other hand, we hope long time in-
terval will have the user return to previous long-term prefer-
ence, it means if ts+1 is much larger than ts, the influence of
the current behavior xs should be little. The user preference
tend to be consistent with the historical behaviors embedded
in hs−1. Based on these analysis, the time gate gs is infused
into equation (3) as:

h′

s = Tanh(Wh[xs, gs ⊙ rs ⊙ hs−1]) (5)

where if the time interval △s is small (meaning small gs),
the influence of the historical information hs−1 will be low-
ered by multiplying gs, and the current input xs will take
the leading role, and vice versa. Similarly, we revise equa-
tion (4) as:

hs = gs ⊙ zs ⊙ hs−1 + (1− gs ⊙ zs)⊙ h′

s (6)

where the user preference at ts+1 (i.e., hs) will keep a major-
ity of the long-term preference encoded in hs−1, if the next
action happens after a large time interval △s (corresponding
to large gs), and vice versa. The overall architecture of the
modified GRU can be seen in Figure 2(b), we call it T-GRU
for short.

For comprehensive user profiling, in our model, xs not
only includes the interacted item ID, but also contains the
corresponding rating and review information, that is:

xs = [EV v
u
s ,ERr

u
s ,W

u
s ] (7)
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where, vus and rus are one-hot representations for the inter-
acted item and its received rating, respectively. EV and ER

are weighting matrices that project vus and rus into embed-
ding vectors. W u

s is the representation of the review from u
to vus , which simply averages the pre-trained embeddings of
the words in wu

s
3.

Item Profiling based on Textual Convolutional
Neural Network

People usually talk about different product features in their
reviews. Comparing with item ID, such information can pro-
vide more explicit and comprehensive signals for collab-
orative modeling. Similar to many previous work (Zheng,
Noroozi, and Yu 2017; Chen et al. 2018a), the review in-
formation in our model is processed based on the convo-
lutional neural network (CNN) (Krizhevsky, Sutskever, and
Hinton 2012). However, instead of taking each user review
as a whole, we process it on the sentence-level to allow more
flexible explanations.

Formally, suppose there are n sentences in all the re-
views of an item defined by: W = {W1,W2, ...,Wn}

4. Let
ck = {ck1 , c

k
2 , ..., c

k
T } be the word embedding list of Wk,

where cki ∈ R
d is the pre-trained word embedding for the

ith word in Wk. Suppose there are m filters in our CNN
architecture, each of which is associated with a parameter
Kj ∈ R

d×t, where t is the window size (typically set as 2-
5). The filter processes t-length windows of d-dimensional
vectors to produce local features, and the output from the lth
window of the jth filter is:

olkj = ReLU(ckl:(l+t−1) ∗Kj + bj)

l ∈ {1, 2, ..., T − t+ 1}
(8)

where ck
l:(l+t−1) = {ckl , c

k
l+1, ..., c

k
l+t−1} is the lth window

to be processed. bj is the bias, ReLU(x) = max{0, x} is the
active function (Nair and Hinton 2010), and ∗ is the Frobe-
nius inner product operation. Given the output from the jth
filter, max-pooling operation is conducted to select the most
salient feature, i.e., the one with the highest value, that is:

fkj = max{o1kj , o
2
kj , ..., o

T−t+1
kj }. At last, the final embed-

ding for the kth sentence Wk is: fk = [fk1, fk2, ...fkm].

Explainable Rating prediction

Previous methods (Chen et al. 2018a; Seo et al. 2017;
Wu et al. 2017) usually interpret a recommendation in user-
independent manners. However, in real scenarios, people
usually have different personalities and may care about dif-
ferent aspects even for the same item. This intuition moti-
vates us to explain the recommendations in a personalized
manner.

Based on the above sections, suppose a user u’s dynamic
preference at tus+1 is encoded in hu

s ∈ R
h, and the dif-

ferent review sentences of an item v are represented as

3It should be noted that more advanced methods, such as the
hierarchical model (Cheng and Lapata 2016), can also be leveraged
to derive W

u

s
, which are left for future exploration.

4For simplicity, the label for discriminating different items is
omitted

fv
1 ,f

v
2 , ...,f

v
n . For personalized explanation, we profile the

item properties reflected in review information by merging
sentence embeddings under “user-aware” attention weights
as: evu =

∑n

k=1 αuvk · fv
k , where αuvk is derived from an

attention net as:

auvk = W2ReLU(W1((Whh
u
s )⊙ (Wff

v
k )) + b1) + b2

αuvk =
exp(auvk/τ)

∑h

k′=1 exp(auvk′/τ)
(9)

where Wh, Wf are weighting parameters that project hu
s

and fv
k into the same space, [W1, W2, b1, b2] are param-

eters of the attention net, τ is the pre-defined temperature
parameter. Once the model learned, αuvk, which has taken
user dynamic preference into consideration, can be used to
explain the rating prediction process by highlighting differ-
ent sentence importances.

For more robust user and item profiling, we further intro-
duce auxiliary embeddings eu ∈ R

K and ev ∈ R
K to derive

the final rating from u to v, that is:

r̂uv = FM([(eu +Hhh
u
s ), (e

v +Hee
vu)]) (10)

where Hh ∈ R
K×h,He ∈ R

K×m are weighting param-
eters, [·, ·] is the concatenate operation, and FM(·) is the
factorization machine layer, which is effective in capturing
nested variable interactions between the heterogeneous in-
formation learned from user reviews (e.g. hu

s and evu ) and
the other ones (e.g. eu and ev) (Zheng, Noroozi, and Yu
2017). At last, our final objective function to be minimize is:

L =
∑

(u,v)∈R

(ruv − r̂uv)
2 + γ

∑

θ∈Θ

||θ||22 (11)

where R is the set of user-item pairs in the training set. ruv
is the real rating from user u to item v. Θ is the set of pa-
rameters to be regularized. In this equation, the first term
is used to minimize the distance between the predicted and
the real ratings, while the second term aims to regularize the
parameters to avoid over fitting.

Experiments

In this section, we evaluate our model by comparing it with
several state-of-the-art models. We begin by introducing the
experimental setup, and then report and analyze the experi-
mental results.

Experiment Setup

Datasets We use two publicly available datasets from dif-
ferent domains to evaluate our models, that is:
• Amazon5: This dataset contains user rating and review in-
formation for different products on www.amazon.com. Ac-
cording to the product category, the raw data is divided
into 24 subsets. To cover different data characters, we select
three categories in our experiments, that is, Musical Instru-
ments, Automotive and Toy. In specific, Toy is a larger and
sparser dataset, while Musical Instruments and Automotive
are smaller, but denser.

5http://jmcauley.ucsd.edu/data/amazon
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Table 1: Statistics of the datasets. Musical Instruments is ab-
breviated as Music.

Datasets #User #Item #Interaction Density

Music 1429 900 10245 0.797%
Automotive 2928 1835 20441 0.380%

Toy 19412 11924 167472 0.072%
Yelp 34547 47010 1523939 0.094%

• Yelp6: This is a large-scale dataset including users’ rating
and review behaviors for different restaurants. Because the
raw data is very large, we pre-process it by removing the
users and items with less than 20 ratings. The statistics of
these datasets can be seen in Table 1.

Evaluation method and baselines Root Mean Square Er-
ror (RMSE) is leveraged in our experiments to evaluate dif-
ferent models. Suppose the predicted and real ratings from
u to v are r̂uv and ruv , respectively. The RMSE score is cal-
culated by:

RMSE =







√

1

|T |

∑

(u,v)∈T

(ruv − r̂uv)
2
, (12)

where T is the set of user-item pairs in the testing set, and
lower RMSE score means better performance. In our exper-
iments, the following representative models are selected as
the baselines:

• PMF: This is a traditional matrix factorization
method (Mnih and Salakhutdinov 2008), and the
model parameters are learned by stochastic gradient
decent (SGD).

• GRU4Rec: This is a well known sequential recommender
model (Hidasi et al. 2016), where each previously inter-
acted item is accordingly fed into each time step.

• Time-LSTM This is a time-aware sequential recom-
mender method, where the time interval information (Zhu
et al. 2017) is incorporated in the modeling process.

• Time-LSTM++: This method is an advanced version of
Time-LSTM, where the input of each step not only con-
tains item ID, but also includes review and rating infor-
mation as in equation 7 for more comprehensive user pro-
filing.

• NARRE: This is a state-of-the-art explainable recom-
mendation method (Chen et al. 2018a), which has been
verified to outperform many promising algorithms includ-
ing NMF, SVD++, HFT and DeepCoNN on Amazon and
Yelp datasets. We implemented it based on the authors’
public code7.

Implementation details For each user behavior sequence,
the last and second last interactions are used for testing and
validation, while the other interactions are left for train-
ing. In our model, the batch size as well as the learn-
ing rate are determined in the range of {50, 100, 150} and

6https://www.kaggle.com/yelp-dataset/yelp-dataset/data
7https://github.com/THUIR/NARRE

Table 2: The results of comparing our model with the base-
lines in terms of RMSE.

Dataset Music Automotive Toy Yelp

PMF 1.0706 1.0100 1.1220 1.3411

GRU4Rec 1.0111 0.9723 1.0363 1.3011

Time-LSTM 0.9901 0.9615 0.9963 1.2821

Time-LSTM++ 0.9878 0.9435 0.9805 1.2711

NARRE 0.9784 0.9199 0.9690 1.2507

DER 0.9678 0.8981 0.9535 1.2314

{0.001, 0.01, 0.1, 1}, respectively. The user/item embedding
size K is tuned in the range of {8, 16, 32, 64, 128}, and we
will discuss its influence on the model performance in the
following sections. For the user review information, we first
pre-process it based on the Stanford Core NLP tool8, and
then the word embeddings are pre-trained based on the Skip-
gram model9. The baselines designed for Top-N recommen-
dation are revised to optimize the RMSE score.

Evaluation on Rating Prediction

Overall performance From the results shown in Table 2,
we can see: the simple PMF method performed worst be-
cause it fails to capture the sequential properties for user
behavior modeling, and also cannot borrow the power
of review information to enhance the user/item represen-
tations. Time-LSTM and Time-LSTM++ performed bet-
ter than GRU4Rec, which is consistent with the previous
study (Zhu et al. 2017), and verifies the effectiveness of time
interval information for user dynamic preference modeling.
NARRE outperformed Time-LSTM++, and the reason can
be that, for a target item, NARRE utilizes all its review infor-
mation to provide informative signals to assist the rating pre-
diction process, and the attention mechanism further make it
powerful to discriminatively enhance the impact of the valu-
able review information, while reducing the noise influence.
Encouragingly, DER consistently performed better than the
best baseline NARRE on all the datasets. Comparing with
NARRE, which represents each user as a static embedding,
the carefully designed T-GRU architecture enables us to ac-
curately model user dynamic preference, which facilitates
more adaptive and reasonable user profiling, and eventually
leads to improved rating prediction.

Influence of the embedding size K. In this section, we
investigate how the embedding size influences our model’s
performance, and due to the space limitation, unless speci-
fied, we only report the results on the Automotive dataset.
We observe the performance changes by tuning the embed-
ding size K in the range of {8, 16, 32, 64, 128}. From the
result presented in Figure 3, we can see: our model achieved
the best performances when the embedding size was relative
small (i.e., K = 8) , while larger K didn’t help to further
improve the results. This observation actually agrees with
many previous studies (Li et al. 2016; Zhang et al. 2017;

8https://stanfordnlp.github.io/CoreNLP/
9http://mccormickml.com/2016/04/19/word2vec-tutorial-the-

skip-gram-model/

57



Figure 3: Influence of the embedding size K for our model’s
final performance

Chen et al. 2016a), and the reason can be that: in our dataset,
a small number of parameters are enough for capturing user
different behavior patterns, using redundant dimensions will
increase the model complexity and over fit the training set,
which may degrade our model’s generalization capability on
the testing set.

Evaluation on Recommendation Explainability

As described by the previous work (Chen et al. 2018a), the
review information of a target item can provide users with
detailed information and suggestions to make informed de-
cisions. By presenting valuable review sentences for the rec-
ommended items, the transparency and explainability of the
recommender system can be improved. In this section, we
evaluate our highlighted review information from both qual-
itative and quantitative perspectives based on the Automo-
tive dataset.

Qualitative evaluation To provide intuitive analysis about
our model’s explainability, we present an example in Fig-
ure 4. In specific, we compare the highlighted review infor-
mation of a target item by NARRE and our model for dif-
ferent users. To evaluate our model’s capability on dynamic
modeling, we also list the latest reviews from these users for
reference.

We can see: NARRE highlighted the same review for
different users due to its user-independent attention mech-
anism, while our model can highlight personalized review
information, which is more practical and reasonable in real
scenarios. With the help of sentence-level attention mech-
anism, our model can flexibly extract useful information
across different reviews to form the final explanations. For
example, for the user ’A2SUCKG38D9RSD’, our model
highlighted the sentences, which are both about the aspect of
“fit”, from the 4th and 6th reviews. At last, the review infor-
mation highlighted by our model can effectively track user
recent preference, for example, user ’A1H79QIIXALK3N’
recently expressed some opinions about the “quality” aspect,
which is also highlighted by our model for the current rec-
ommendation. However, NARRE didn’t exhibit such capa-
bility. This observation, to some extent, verifies our model’s
superiority for learning user dynamic preference in the con-
text of explainable recommendation.

Figure 4: The example of an item’s highlighted reviews for
two different users. The most important review learned by
NARRE is labeled by italic, and the sentences selected by
our model are presented in underlined and bold fonts for dif-
ferent users, respectively. The latest reviews from these two
users are listed below for reference, and the green words in-
dicate similar preferences.

Quantitative evaluation To quantitatively evaluate our
model’s explainability, we conduct crowd-sourcing evalua-
tion by comparing our model with NARRE. In our model,
we highlight two most valuable sentences according to the
learned attention weights (i.e. αuvk), while in NARRE, we
predict the most important review for the target item. For
each user-item pair, the workers are provided with two in-
formation sources: (1) The user’s real review for the current
item, and (2) All the reviews recently posted by the user.
Based on these information, the workers are asked to select
one from three options (i.e., A:DER, B:NARRE, C:Tie) to
answer the following questions:

• Q1: Which model can highlight more accurate informa-
tion as compared with user real reviews?

• Q2: For each user, which model can highlight textual in-
formation that is more consistent with her recent reviews?

For more accurate evaluation, we employed 3 workers,
and one result was valid only when more than 2 work-
ers shared the same opinion. From the result of Q1 shown
in Figure 5, we can see: by comparing with user real re-
views, our model was more accurate than NARRE. We spec-
ulate that the personalized attention mechanism in our model
can discover tailed information for different users, while
NARRE only highlights the same review for them, which is
limited in capturing user different personalities revealed in
the ground truth. The result in Q2 manifests that the review
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Figure 5: Results of the quantitative evaluation on the rec-
ommendation explanations.

information highlighted by our model can be much more ef-
fective in tracking user recent preference, which verifies the
effectiveness of our designed dynamic architecture.

Related Work

Explainable Recommendation

Explainable recommendation is becoming more and more
popular in both research and industry communities (Zhang
and Chen 2018), and many promising models have been
proposed in the recent years. More specifically, early meth-
ods (Zhang et al. 2014; Chen et al. 2016b) mainly based
themselves on the combination between matrix factorization
(MF) and sentiment analysis (SA). In a nutshell, they first
extracted feature-opinion-sentiment triplets from the user re-
view information, are then infused them into MF for col-
lective user preference modeling. At last, the explanations
were provided by filling the predicted user cared features
into pre-defined templates. Despite effectiveness, the final
results of these models may be limited by the accuracy of the
review preprocessing tools, and it may also be less efficient
in practice due to the complex process for extracting feature-
opinion-sentiment triplets. Recently, with the ever prosper-
ing of deep learning technology, many algorithms (Seo et al.
2017; Chen et al. 2018a; Tay, Tuan, and Hui 2018) were de-
signed to explain a recommendation based on the attention
mechanism. Basically, in these models, the raw user review
information related to a user (or an item) was merged into
a document, and by attentively discovering valuable infor-
mation in the document, the explanations were provided by
highlighting the words with the highest attention weights. In
particularly, D-Attn (Seo et al. 2017) and NARRE (Chen et
al. 2018a) automatically learned the importances of different
review sentences under the supervision of user-item rating
information. For providing tailored explanations for differ-
ent target items, MPCN (Tay, Tuan, and Hui 2018) lever-
aged ”co-attention” mechanism to capture the correlations
between the users and the items. In addition to user-review
explanations, Ai et al (Ai et al. 2018) conducted explainable
recommendation by reasoning over knowledge graph em-
beddings, where explanation paths between user and item
were constructed to generate knowledge-enhanced explana-
tions.

Although these models have achieved promising results,
they failed to model user dynamic preference, and the pro-
vided explanations were usually static at different times,
which may weaken the persuasiveness of the explanations
as mentioned before.

Recommendation based on User Dynamic
Preference

Recently, many models have been designed to incorpo-
rate temporal information into recommender system to cap-
ture user dynamic preference. In specific, early methods
care more about transition properties between two suc-
cessive behaviors. For instance, the factorized personal-
ized Markov chains (FPMC) (Rendle, Freudenthaler, and
Schmidt-Thieme 2010) combined matrix factorization with
one-order Markov chain to capture the influence of the last
behavior towards the next one. The hierarchical representa-
tion model (HRM) (Wang et al. 2015) generalized FPMC
into a representation learning framework, and significantly
improved the recommendation performance. The major lim-
itation of these methods lies in the ignoring of long-term
preference dependency. To solve this problem, many mod-
els were proposed to capture user multi-step behaviors based
on the recurrent neural network (RNN) (Yu et al. 2016;
Hidasi et al. 2016; Tan, Xu, and Liu 2016; Donkers, Loepp,
and Ziegler 2017; Liu et al. 2016; Song, Elkahky, and He
2016), the convolutional neural network (CNN) (Tang and
Wang 2018) or the memory network (Chen et al. 2018b). Ba-
sically, these methods attempt to transfer the power of deep
learning in sequence modeling to the field of recommender
system, while an important information–the time interval
between two adjacent behaviors–has been totally ignored.
Recently, Zhu et al (Zhu et al. 2017) designed a model called
Time-LSTM to demonstrated the importance of time interval
information for user dynamic preference modeling. Differ-
ent from this method, our model is built upon a more sim-
ply and lightweight architecture–GRU, which can be more
effective for practical recommender systems. More impor-
tantly, our model is able to incorporate side information (i.e.,
user reviews) for explainable recommendations.

Conclusion

In this paper, we propose to model user dynamic prefer-
ence in the context of explainable recommendation. Based
on our designed model, we can improve the performance
of user-item rating prediction as compare with several state-
of-the-art methods, and more importantly, we can provide
adaptive recommendation explanations according to the user
dynamic preference. We conduct extensive experiments to
demonstrate the superiority of our model.

As for future work, we will investigate the potential ad-
vantages of stochastic process (e.g., point process (Yan et
al. 2018)) for user dynamic preference modeling in the con-
text of explainable recommendation, where we may focus
on two questions: one is how to seamlessly equip stochas-
tic process with side information (e.g., user reviews), and
the other is how to relate stochastic process with attention
mechanism for explaining the recommendations. As there is
an emerging trend to leverage user visual preference for en-
hancing recommendation performance, in the future, we will
also study how to integrate product images into our model
for more comprehensive recommendation explanations.
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