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Simple Summary: Epithelial cell adhesion molecule (EpCAM) is a tumor marker widely used in
both basic studies and clinics. However, our study demonstrates that EpCAM expression is strongly
upregulated by gene amplification and promoter hypomethylation in primary lung tumors, but
severely downregulated by epigenetic repression (including promoter hypermethylation and histone
deacetylation), tumor-associated macrophages (TAMs), and TAMs-derived TGFβ in metastatic lung
tumors. DNMT inhibitor 5-aza-dC, HDAC inhibitor MS-275, and TGFβ neutralizing antibody are
able to restore EpCAM expression in highly metastatic lung cancer cells. These findings disclose
that multiple mechanisms contribute to the dynamic expression patterns of EpCAM in primary
and metastatic lung tumors, redefining the application of EpCAM as a biomarker in tumor cell
identification and isolation in specific cancers and clinical stages.

Abstract: Although great progress has been achieved in cancer treatment in the past decades, lung
cancer remains the leading cause of cancer death, which is partially caused by the fact that most lung
cancers are diagnosed at advanced stages. To improve the sensitivity and specificity of lung cancer
diagnosis, the underlying mechanisms of current diagnosis methods are in urgent need to be explored.
Herein, we find that the expression of EpCAM, the widely used molecular marker for tumor cell
characterization and isolation, is strongly upregulated in primary lung tumors, which is caused by
both gene amplification and promoter hypomethylation. In contrast, EpCAM expression is severely
repressed in metastatic lung tumors, which can be reversed by epigenetic drugs, DNMT inhibitor
5-aza-dC and HDAC inhibitor MS-275. Moreover, tumor-associated macrophages (TAMs) impede
EpCAM expression probably through TGFβ-induced EMT signaling. These findings unveil the
dynamic expression patterns of EpCAM and differential roles of epigenetic modification in EpCAM
expression in primary and metastatic lung tumors, providing novel insights into tumor cell isolation
and lung cancer diagnosis.
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1. Introduction

Lung cancer is the leading cause of cancer death with the highest incidence rate (13%)
and mortality rate (21%) all over the world [1]. In the past decades, great progress has been
made in lung cancer treatment including targeted therapy, immunotherapy, etc.; however,
the 5-year survival rate in patients with lung cancers is still as low as 22% [2–4]. One of
the major reasons is that most lung cancers are diagnosed at advanced stages because
of insensitivity and low specificity of current diagnosis methods, including low-dose
computed tomography (LDCT), sputum cytology, and tumor biomarker detection [5,6].
Therefore, to determine the underlying mechanisms of these technologies is urgently
needed to improve the sensitivity and specificity of diagnosis in patients with lung cancers.
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EpCAM, epithelial cell adhesion molecule, is a highly conserved membrane protein
in vertebrates [7,8]. Physiologically, EpCAM is ubiquitously expressed on epithelial cells
in organs including lung, colon, bladder, and breast, whereas in pathological conditions,
EpCAM is specifically expressed in cancers originated from epithelial cells [7,8]. Moreover,
EpCAM expression is frequently upregulated in a variety of human cancers, including
lung cancer, breast cancer, cervical cancer, and pancreatic cancer [9]. Given the expression
characteristics, EpCAM is utilized as a standard molecular marker for identification and isolation
of cancer cells from blood, bone marrow, lymph nodes, and biopsy samples [10,11]. With its
widely application in basic and translational research, however, minimal or no expression
of EpCAM is found on circulating tumor cells (CTCs) in some cancer patients [12,13]. So
far, it is unclear that how EpCAM expression is strong upregulated in tumor cells but
sometimes diminishes.

Multiple mechanisms are involved in the regulation of gene expression, including
genetic, epigenetic, and transcription factor [14,15]. Gene amplification leads to upregu-
lation of oncogene, such as EGFR and C-MYC, while loss of heterozygosity (LOH) and
homozygous deletion (HD) impair the expression of tumor suppressor gene, such as TP53
and Rb [16–18]. Promoter hypermethylation and histone deacetylation synergistically con-
tribute to the repression of PDLIM2 and E-cadherin in many types of human cancers [19–21].
In most cases, transcription factors are the major regulators of gene expression in both
physiological and pathological conditions, e.g., NF-κB and STAT3 regulation of survival
and proliferative genes [22,23].

In the present study, combining public databases and our experiments, the expression
of EpCAM was extensively examined in both primary and metastatic lung tumors. The
underlying mechanisms accounting for dynamic expression of EpCAM in different stages of
lung cancer were explored with respect to both genetic and epigenetic regulation manners.
In addition, the effect of tumor microenvironment on tumor cell EpCAM expression was
investigated. These findings about EpCAM expression regulation will provide novel
insights into tumor cell isolation and lung cancer diagnosis.

2. Materials and Methods
2.1. Public Data Mining

The gene profiles about expression, mutation, methylation, and copy number of ep-
cam in human cancers were retrieved from The Cancer Genome Atlas (TCGA) database
(http://xena.ucsc.edu) accessed on 20 January 2021. Other data about EpCAM expres-
sion in mouse lung tumors and cell lines were downloaded from NCBI GEO database
(https://www.ncbi.nlm.nih.gov/gds) accessed on 25 January 2021 as described [19,24]. All
information in detail are indicated in Figure legends.

2.2. Mouse and Tumor Cells

FVB/N, BALB/c, and C57BL/6 mice originally from Beijing HFK Bioscience Co., Ltd.
were housed in pathogen-free conditions and used according to protocols approved by the
Animal Ethics Committee of Wuhan University of Science and Technology. To induce lung
tumorigenesis, 1 g/kg body weight of urethane was intraperitoneally injected once a week
for six consecutive weeks in 6-week-old female FVB/N wildtype mice. After 6-week tumor
initiation and 6-week tumor progression, the mice were sacrificed for lung tumor analysis.
For spontaneous primary lung tumor and metastatic lung tumor, female FVB/N wildtype
mice were maintained for 24 months and sacrificed for tumor examination. Mouse lung
tumor cells (LAP0297, MAD109, and LLC) and human lung tumor cells (Kras mutant: A549,
Calu-6, H727, and H460; EGFR mutant: H1650, H1975, H3255, and HCC827) were cultured
in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin/streptomycin at
37 ◦C in humidified 5% CO2 incubator as described [24,25].

http://xena.ucsc.edu
https://www.ncbi.nlm.nih.gov/gds
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2.3. Immunoblotting Analysis

An equal amount of protein extracts from the indicated normal lung tissues and
lung tumors were separated on 10% SDS-PAGE gels and transferred onto nitrocellulose
membrane. The membrane was blocked with 5% non-fat milk in freshly prepared TBST
buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.1% Tween 20), then sequentially
incubated primary antibodies and secondary antibodies. At last, the signal was detected by
ECL system as described [26]. All antibodies used in this study are shown in Supplementary
Table S1.

2.4. FACS Analysis

The single cell suspensions were blocked with αCD16/CD32 (mouse) or TruStain FcX
(human), then stained with the antibody against cell surface antigen. CD45 was utilized as a
marker to distinguish immune cells from other cells in primary tumor cell suspensions and
in vitro cell cocultures. Data were acquired by Accuri C6 or LSRFortessa I and analyzed
by FlowJo software as described [27]. All antibodies used in this study are shown in
Supplementary Table S1.

2.5. RT-PCR Analysis

Total RNAs were extracted from the indicated normal lung tissues, lung tumors, and
lung cancer cells, and then subjected to RNA reverse transcription and real-time PCR as
described [19,22,24]. All primers used for qPCR in this study are shown in Supplementary
Table S2.

2.6. Statistical Analysis

Two-tailed, unpaired Student’s t test was used to assess significance of differences
between two groups. All data are represented as bars (means ± SEM) with sample dots.
The sample numbers for RT-PCR, FACS, immunoblotting, and sequencing are indicated in
the Figures or Figure legends. The p values are indicated as * p < 0.05, ** p < 0.01, ns, not
statistically significant.

3. Results
3.1. EpCAM Expression Is Upregulated in Primary Lung Cancer

EpCAM is widely used as a selection marker for tumor cell identification and isolation
in both human and mouse studies. In line with its application, TCGA and CPTAC data
revealed that EpCAM expression was strongly upregulated at both RNA and protein levels
in human primary lung cancer compared to normal lung tissues, respectively (Figure 1A,B),
which was supported by the qPCR data showing increased EpCAM mRNA level in primary
lung tumors compared to their matched normal lung tissues (Figure 1C). To verify these
findings in human primary lung cancer, GSE31013 data were analyzed and found EpCAM
upregulation in murine primary lung tumors spontaneously derived from B6C3F1 mice
(Figure 1D), which was further validated by the elevation of EpCAM mRNA levels in
both spontaneous and carcinogen urethane-induced primary lung tumors from FVB/N
mice (Figure 1E,F). In addition, enhanced protein expression of EpCAM was confirmed
in murine primary lung tumors in comparison with normal lung tissues by FACS and
immunoblotting assays ( Figures 1G–I and S1) These data together indicated that EpCAM
is upregulated in primary lung cancer.

3.2. Gene Amplification Induces EpCAM Expression in Primary Lung Cancer

How do primary lung cancers express high levels of EpCAM? Initially, the copy
number of epcam gene was examined in TCGA LUNG cohort. Overall, a significant increase
of copy number was observed in epcam gene loci (Figure 2A), while as many as 41% of lung
cancers harbored low-to-high epcam gene amplification (Figure 2B). Correlation between
copy number and expression level exhibited that about 64% of patients with primary lung
cancers experienced both epcam gene amplification and increased expression (Figure 2C).
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Moreover, cigarette smoking, the major cause of lung cancer, significantly promoted epcam
gene amplification (Figure 2D). These data suggest that gene amplification is one of the
mechanisms to upregulate EpCAM expression in primary lung cancer.
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Figure 1. EpCAM expression is upregulated in primary lung cancer. (A) TCGA LUNG data showing 
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normal lung (NL: grey dot). (B) CPTAC LUAD data showing increased EpCAM protein expression 
in human primary lung tumor. (C) qPCR data showing increased EpCAM RNA expression in hu-
man primary lung tumor compared to normal lung tissue from the same patients. (D) GSE31013 
data showing increased EpCAM RNA expression in spontaneous primary lung tumor from B6C3F1 
mice. (E,F) qPCR data showing increased EpCAM RNA expression in spontaneous (E) and ure-
thane-induced (F) primary lung tumor from FVBN mice. (G,H) FACS data showing increased  
EpCAM protein expression in spontaneous (G) and urethane-induced (H) primary lung tumor from 
FVBN mice (n = 4). (I) Western blot data showing increased EpCAM protein expression in urethane-
induced and spontaneous primary lung tumor from FVBN mice. Date are representative of at least 
three independent experiments with similar results (C,E–I). Student’s t test (two-tailed, unpaired) 
was performed. Data represent means ± SEM (A,C–F) and means ± SD (B). ** p < 0.01. 
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Figure 1. EpCAM expression is upregulated in primary lung cancer. (A) TCGA LUNG data showing
increased EpCAM RNA expression in human primary lung tumor (Tumor: red dot) compared to
normal lung (NL: grey dot). (B) CPTAC LUAD data showing increased EpCAM protein expression
in human primary lung tumor. (C) qPCR data showing increased EpCAM RNA expression in human
primary lung tumor compared to normal lung tissue from the same patients. (D) GSE31013 data
showing increased EpCAM RNA expression in spontaneous primary lung tumor from B6C3F1 mice.
(E,F) qPCR data showing increased EpCAM RNA expression in spontaneous (E) and urethane-
induced (F) primary lung tumor from FVBN mice. (G,H) FACS data showing increased EpCAM
protein expression in spontaneous (G) and urethane-induced (H) primary lung tumor from FVBN
mice (n = 4). (I) Western blot data showing increased EpCAM protein expression in urethane-induced
and spontaneous primary lung tumor from FVBN mice. Date are representative of at least three
independent experiments with similar results (C,E–I). Student’s t test (two-tailed, unpaired) was
performed. Data represent means ± SEM (A,C–F) and means ± SD (B). ** p < 0.01.

3.3. Promoter Hypomethylation Induces EpCAM Expression in Primary Lung Cancer

About 17% of lung cancer patients possessed high EpCAM expression levels but no
gene amplification (Figure 2C), suggesting additional mechanism(s) involved in upregula-
tion of EpCAM expression. Besides genetic modification, epigenetic regulation frequently
controlled the activation and repression of genes in cancers [14,15]. Herein, DNA methy-
lation data from TCGA LUNG cohort showed that compared with normal lungs, the
methylation level in epcam promoter was significantly decreased in primary lung tumors
(Figure 3A), with the biggest difference of methylation level at CpG site corresponding to
probe cg03706175 (Figure 3B). About 70% of patients with primary lung cancers harbored
both epcam promoter hypomethylation and increased expression (Figure 3C). Furthermore,
cigarette smoking, the major cause of lung cancer, severely induced hypomethylation in
epcam promoter (Figure 3D). These data suggest that promoter hypomethylation is one of
the mechanisms to induce EpCAM expression in primary lung cancer.
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level and copy number variation in normal lung. (D) TCGA LUNG data showing positive associa-
tion between smoking and epcam gene amplification. Student’s t test (two-tailed, unpaired) was per-
formed. Data represent means ± SEM (D). ** p < 0.01; ns, not statistically different. 
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Figure 2. Gene amplification induces EpCAM expression in primary lung cancer. (A) TCGA LUNG
Gistic 2 data showing epcam gene amplification in human primary lung cancer. (B) TCGA LUNG
Gistic 2 thresholded data showing distribution of epcam copy number variation in human primary
lung cancer. (C) TCGA LUNG data showing epcam gene amplification in about 64% of lung cancers
with increased EpCAM expression. Axis x and y cross at mean value (1.45, 0) of EpCAM expression
level and copy number variation in normal lung. (D) TCGA LUNG data showing positive association
between smoking and epcam gene amplification. Student’s t test (two-tailed, unpaired) was performed.
Data represent means ± SEM (D). ** p < 0.01; ns, not statistically different.

3.4. EpCAM Expression Is Downregulated in Metastatic Lung Cancer

Previous data showed upregulation of EpCAM in primary lung cancer (Figure 1),
leading to a question of EpCAM expression in metastatic lung cancer. To address this issue,
public NCBI GEO database was employed in the present study. In human lung cancer CL1
cells, EpCAM expression was severely impaired in highly invasive cells in comparison
with poorly invasive ones (Figure 4A). The EMT status induced by TGFβ strongly impeded
EpCAM expression in A549, HCC827, and H358 lung cancer cells (Figure 4B). These data
of EpCAM repression in human lung cancer were also confirmed in murine lung cancer.
As shown in Figure 4C, compared with primary lung tumors, EpCAM expression was
significantly decreased in metastatic lung tumors from KrasG12Dp53flox mice. Moreover,
metastatic lung tumors expressed minimal EpCAM protein in contrast to high levels of
EpCAM protein in urethane-induced and spontaneous primary lung tumors from FVB/N
mice (Figures 4D and S2). These data suggest that EpCAM expression is downregulated in
metastatic lung tumors.



Cancers 2022, 14, 4121 6 of 12
Cancers 2022, 14, 4121 6 of 13 
 

 

 
Figure 3. Promoter hypomethylation induces EpCAM expression in primary lung cancer. (A) TCGA 
LUNG data showing decreased epcam promoter methylation in human primary lung cancer. (B) 
TCGA LUNG data showing methylation status of each CpG site in epcam promoter in human pri-
mary lung cancer. (C) TCGA LUNG data showing epcam promoter hypomethylation in about 70% 
of lung cancers with increased EpCAM expression. Axis x and y cross at mean value (1.45, 0.26) of 
EpCAM expression level and promoter methylation level in normal lung. (D) TCGA LUNG data 
showing negative association between smoking and epcam promoter methylation. Student’s t test 
(two-tailed, unpaired) was performed. Data represent means ± SEM (A,B,D). * p < 0.05; ** p < 0.01; 
ns, not statistically different. 

3.4. EpCAM Expression Is Downregulated in Metastatic Lung Cancer 
Previous data showed upregulation of EpCAM in primary lung cancer (Figure 1), 

leading to a question of EpCAM expression in metastatic lung cancer. To address this 
issue, public NCBI GEO database was employed in the present study. In human lung can-
cer CL1 cells, EpCAM expression was severely impaired in highly invasive cells in com-
parison with poorly invasive ones (Figure 4A). The EMT status induced by TGFβ strongly 
impeded EpCAM expression in A549, HCC827, and H358 lung cancer cells (Figure 4B). 
These data of EpCAM repression in human lung cancer were also confirmed in murine 
lung cancer. As shown in Figure 4C, compared with primary lung tumors, EpCAM ex-
pression was significantly decreased in metastatic lung tumors from KrasG12Dp53flox mice. 
Moreover, metastatic lung tumors expressed minimal EpCAM protein in contrast to high 
levels of EpCAM protein in urethane-induced and spontaneous primary lung tumors 
from FVB/N mice (Figures 4D and S2). These data suggest that EpCAM expression is 
downregulated in metastatic lung tumors. 

Figure 3. Promoter hypomethylation induces EpCAM expression in primary lung cancer. (A) TCGA
LUNG data showing decreased epcam promoter methylation in human primary lung cancer. (B) TCGA
LUNG data showing methylation status of each CpG site in epcam promoter in human primary lung
cancer. (C) TCGA LUNG data showing epcam promoter hypomethylation in about 70% of lung
cancers with increased EpCAM expression. Axis x and y cross at mean value (1.45, 0.26) of EpCAM
expression level and promoter methylation level in normal lung. (D) TCGA LUNG data showing
negative association between smoking and epcam promoter methylation. Student’s t test (two-tailed,
unpaired) was performed. Data represent means ± SEM (A,B,D). * p < 0.05; ** p < 0.01; ns, not
statistically different.

In addition, low EpCAM protein levels were found in highly metastatic human lung
cancer cells, including A549, Calu-6, H727, and H460 (Figure 5A), but high in poorly metastatic
lung cancer cells, including H1650, H1975, H3255, and HCC827 (Figure S3). Consistently,
minimal or no expression of EpCAM RNA and protein was detected in highly metastatic
murine lung cancer cells, including LLC, MAD109, and LAP0297 (Figure 5B–D). Taken
together, these data suggest that, similar to metastatic lung tumors, EpCAM expression is
also repressed in highly metastatic lung cancer cells.

3.5. Epigenetic Drugs Restore EpCAM Expression in Highly Metastatic Lung Cancer Cells

How is EpCAM expression in lung cancer switched from upregulation in primary
tumor to downregulation in metastatic tumor? Promoter methylation was one of the
mechanisms accounting for EpCAM repression in highly metastatic lung cancer cell A549,
which was evidenced by strong restoration of EpCAM expression by DNMT inhibitor 5-aza-
dC in both time- and dose-dependent manners (Figure 6A). Histone deacetylation, another
epigenetic regulation, also caused EpCAM repression, which could be reversed by HDAC
inhibitor MS-275 in highly metastatic lung cancer cells Calu-6, H727, H460, and A549
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(Figure 6B). Given that promoter methylation and histone deacetylation always synergized
in regulation of gene expression, the effect of DNMT inhibitor, HDAC inhibitor, and their
combination on EpCAM restoration was examined. Indeed, the strongest induction of
EpCAM expression was observed by combination treatment in comparison with individual
inhibitor in both human and murine highly metastatic cancer cells (Figure 6C,D). These
data indicate that epigenetic mechanisms partially contribute to EpCAM repression in
metastatic lung tumors.
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Figure 4. EpCAM expression is downregulated in metastatic lung cancer. (A) GSE42407 data showing
decreased EpCAM RNA expression in highly invasive human lung cancer cell CL1. (B) GSE49644
data showing decreased EpCAM RNA expression in TGFβ-induced EMT cells. (C) GDS4402 data
showing decreased EpCAM RNA expression in lung cancer cells derived from metastatic lung
tumors compared to primary lung tumors from KrasG12Dp53flox mice. (D) Western blot data showing
decreased EpCAM protein expression in breast metastatic lung tumor from FVBN mice. Data are
representative of three independent experiments with similar results (D). Student’s t test (two-tailed,
unpaired) was performed. Data represent means ± SEM (A–C). ** p < 0.01.

3.6. Macrophage-Derived TGFβ Represses EpCAM Expression in Lung Cancer Cells

Besides epigenetic regulation, EMT signaling, the origin of metastasis, may also con-
tribute to EpCAM downregulation, which was supported by negative association between
EMT status and EpCAM expression level in human lung cancers (Figure S4A). The proto-
typical EMT inducer TGFβ and its downstream signaling molecule SNAI2 were inversely
correlated with EpCAM expression in human lung cancers (Figures 7A and S4B). TGFβ
overexpression strongly inhibited the expression of EpCAM in both human and murine lung
cancer cells (Figure 7B–D), but stimulated the expression of SNAI2, which could bind to the
E-box in epcam promoter to suppress its transcription (Figure S4C–F). These data suggest
that TGFβ-induced EMT signaling causes the downregulation of EpCAM in lung cancer.
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data showing recovered EpCAM RNA expression by DNMT inhibitor (5-aza-dC) in human highly
metastatic lung cancer cell A549. (B) qPCR data showing restored EpCAM RNA expression by
HDAC1 inhibitor (MS-275, 72 hr) in human highly metastatic lung cancer cells. (C,D) qPCR data
showing synergistic induction of EpCAM RNA expression by DNMT inhibitor (5-aza-dC) and
HDAC1 inhibitor (MS-275) in human (C) and murine (D) highly metastatic lung cancer cells. Data
are representative of three independent experiments with similar results. Student’s t test (two-tailed,
unpaired) was performed. Data represent means ± SEM. ** p < 0.01; ns, not statistically different.
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Figure 7. Macrophage-derived TGFβ represses EpCAM expression in lung cancer cells. (A) TCGA
LUNG data showing negative association between EpCAM and TGFβ. (B) GSE125113 data showing
decreased EpCAM expression in H358 cell overexpressing TGFβ. (C) GDS3710 data showing EpCAM
downregulation by TGFβ in A549 cell (n = 3). (D) FACS data showing decreased EpCAM protein
expression by TGFβ in murine lung tumor cell (n = 4). LTC: lung tumor cell which was established
from spontaneous FVB/N lung tumor. (E) FACS data showing repressed EpCAM expression in
murine lung tumor cells by macrophage coculture (n = 4). AM: alveolar macrophage, PEC: peritoneal
macrophage, BMM: bone marrow derived macrophage. (F) FACS data showing lung tumor cell EpCAM
downregulation by RAW 264.7 coculture was restored by TGFβ neutralizing antibody (n = 4). Data
are representative of three independent experiments with similar results (D–F). Student’s t test
(two-tailed, unpaired) was performed. Data represent means ± SEM (C,E,F). ** p < 0.01.

Given that tumor microenvironment, in particular tumor-associated macrophage, is in-
volved in EMT and metastasis in lung cancer [28,29], the effect of macrophage on tumor cell
EpCAM expression was examined. Indeed, all macrophages, including primary (AM, PEC), cell
line (RAW 264.7), and BMM, were able to suppress EpCAM expression on lung tumor cells
(Figure 7E), which could be reversed by TGFβ neutralizing antibody (Figure 7F). Taken
together, these data suggest that macrophages in tumor microenvironment likely produce
TGFβ to repress EpCAM expression in lung cancer cells.

4. Discussion

Precise detection and characterization of tumor cells are critical for cancer diagno-
sis, treatment, and patient survival, particularly for lung cancer [5,6,10–13]. The current
biomarkers used for tumor cell isolation, e.g., EpCAM, are not effective due to their in-
sensitivity and low specificity, which leads to the requirement of mechanistic studies on
expression regulation of these tumor biomarkers. In the present study, EpCAM expression
is found strongly upregulated in primary lung tumors, which is caused by both gene ampli-
fication and promoter hypomethylation, but severely repressed in metastatic lung tumors,
which can be reversed by epigenetic drugs, DNMT inhibitor 5-aza-dC, and HDAC inhibitor
MS-275. Additionally, tumor-associated macrophage (TAM), the metastasis stimulator, is
capable of secreting TGFβ to impair EpCAM expression probably through SNAI2. These
findings disclose that multiple mechanisms including genetic, epigenetic, and transcription
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factors contribute to dynamic expression of EpCAM in primary and metastatic lung tumors,
providing novel insights into tumor cell isolation and lung cancer diagnosis.

EpCAM is a widely used biomarker for tumor cell isolation in both basic studies and
clinics, because of its strong upregulation in a variety of human cancers, including lung
cancer, breast cancer, cervical cancer, pancreatic cancer, and stomach cancer (Figure S5A).
However, the application of EpCAM as a biomarker for tumor cell isolation from blood,
bone marrow, lymph nodes, and biopsy samples is not suitable for colon cancer, kidney
cancer, liver cancer, and thyroid cancer, in which EpCAM exhibits repressed or comparable
expression levels compared to normal tissues (Figure S5B,C). These results not only support
the concept of EpCAM as a selection tumor marker, but also refine its application in tumor
cell identification and isolation in specific cancers.

Gene amplification is one of the regulation manners to induce EpCAM expression
in human primary cancers, including lung, bladder, cervical, and esophagus (Figure S5).
However, no significant gene amplification of epcam was observed in BRCA, CHOL, and
STAD, which exhibit EpCAM upregulation (Figure S5). These results suggest that multiple
mechanisms together, but not gene amplification only, contribute to EpCAM upregulation
in human primary tumors. Indeed, promoter hypomethylation is one of these mechanisms
(Figure 3).

Mutation of epcam gene is linked to lynch syndrome and congenital tufting enteropa-
thy [30] but is rare (0.7%) and has neglectable effect on its expression in primary lung
cancers (Figure S6). However, both genetic (gene amplification) and epigenetic (promoter
hypomethylation) modification contribute to EpCAM upregulation in primary lung cancers
(Figures 2 and 3). Moreover, a minority of patients with lung cancer (6.67%) harbors gene
loss and promoter hypermethylation, but EpCAM upregulation, which is likely caused by
smoking-induced ROS (Figure S7). These findings suggest that EpCAM upregulation in
primary lung cancer is subtly regulated at various levels from genetic and epigenetic to
factors in tumor microenvironment.

In contrast to upregulation in primary lung tumors, EpCAM is severely repressed in
metastatic lung tumors, which is mediated by promoter hypermethylation, histone deacetyla-
tion, and TGFβ from macrophage in tumor microenvironment (Figures 4–7 and S3). Thus,
epigenetic regulation is one of the mechanisms controlling EpCAM expression in both
primary and metastatic lung cancers and its expression switch from upregulation to down-
regulation during tumor progression. This phenomenon is rare and not well studied.
Further studies will clarify the dynamic profile of proteins bound to epcam promoter during
lung cancer progression to figure out the mechanism, shifting epigenetic activation in
primary tumor to epigenetic repression in metastatic tumor. In addition, macrophage,
the major cell type constituting tumor microenvironment, produces TGFβ to modulate
EpCAM expression on tumor cells through TGFβ-SNAI2 axis to promote EMT and metas-
tasis in lung cancer. This crosstalk between macrophage and tumor cells is beneficial for
understanding of cancer metastasis regulation by tumor microenvironment.

Given the differential expression pattern of EpCAM in primary and metastatic lung
tumors, the function of EpCAM in different lung cancer stages may also be different. The
protumor activity of EpCAM was adequately reported in primary tumors [7,8]; however,
few and contradictory findings about regulation of EGFR-EMT axis by EpCAM (or its ex-
tracellular domain EpEX) were found in literature [31–35]. Our preliminary data identified
an inhibition effect of EpCAM reconstitution on metastasis in lung cancer. However, the
underlying mechanism is not clear yet. Further studies will be carried out to dig out the
mechanism of metastasis inhibition by EpCAM overexpression in lung cancer cells.

5. Conclusions

In summary, we found EpCAM expression upregulated in primary lung tumors, which
was caused by gene amplification and promoter hypomethylation. However, in metastatic
lung tumors, EpCAM expression is intensely repressed by macrophage-derived TGFβ,
promoter hypermethylation, and histone deacetylation, which could be reversed by TGFβ
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neutralizing antibody and epigenetic drugs, DNMT inhibitor 5-aza-dC and HDAC inhibitor
MS-275, representing novel therapeutic strategies to treat metastatic lung cancer. Whether
genetic modification is involved in EpCAM downregulation in metastatic lung tumors and
how EpCAM repression affects cancer metastasis are to be addressed in our further studies.
Taken together, these findings demonstrated that multiple mechanisms including genetic,
epigenetic, and tumor microenvironment modulated the dynamic expression patterns of
EpCAM in primary and metastatic lung tumors, shedding light on cell isolation, diagnosis,
and treatment in lung cancer.
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mutation has minimal impact on EpCAM expression in human primary lung cancer; Figure S7:
Smoking induces ROS to upregulate EpCAM expression; Table S1: Antibody list; Table S2: Primer list.
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