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Force/position control strategies provide an effective framework to deal with tasks involving interaction with the envi-
ronment. One of these strategies proposed in the literature is external force feedback loop control. It fully employs the
available sensor measurements by operating the control action in a full dimensional space without using selection matrices.
The performance of this control strategy is affected by uncertainties in both the robot dynamic model and environment
stiffness. The purpose of this paper is to improve controller robustness by applying a neural network technique in order
to compensate the effect of uncertainties in the robot model. We show that this control strategy is robust with respect
to payload uncertainties, position and environment stiffness, and dry and viscous friction. Simulation results for a three
degrees-of-freedom manipulator and various types of environments and trajectories show the effectiveness of the suggested
approach compared with classical external force feedback loop structures.
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1. Introduction

Most of the industrial robot manipulators in the 1980s car-
ried out tasks of welding, painting, and handling. They
were generally controlled in position or in velocity by
training. The end effector, by describing its trajectory,
practically never came into direct contact with the envi-
ronment. However, in recent years, robot manipulators
have been required to perform tasks of great skills, e.g.,
in assembly plants. Currently, the tasks in robotics lead
more and more to interactions of the robot with its envi-
ronment. Typical tasks are assembly and machining ob-
jects. Indeed, when the robot is in contact with an envi-
ronment, the end effector of the robot manipulator can-
not move freely in all directions. The resulting movement
is a constrained motion, and the kinematics chain of the
manipulator are closed in the environment. Because of
the stiffness of both, the weak variation of the end-point
trajectory can induce high efforts which, if they are not
taken into account by the controller, can cause rebounds
and the deterioration of the effector and/or the environ-
ment. When a robot manipulator touches an environment,
it is necessary to simultaneously control the force applied
to the environment and the position of the end effector in

the same environment.
There are two main methods of force control in

the literature: impedance control and hybrid control. In
impedance control systems, the approach (Hogan, 1985)
consists of adjusting the robot end effector position in re-
sponse to the contact force in such a way that a target
impedance force relationship is satisfied. In hybrid control
systems, the control loop is divided into two directions for
force control and position control. Controllers with two
full degrees of freedom make both a position and a force
control action available for each task coordinate; the ac-
tual control action is built using selection matrices which
determine a proper contribution to the control law for each
task coordinate matrices (Raibert and Craig, 1981). In or-
der to ensure stability, the scheme must take account of
dynamic coupling effects arising during the manipulator
motion (Khatib, 1987). However, using selection matri-
ces by these schemes may modify the norm of the desired
command vectors of the controllers (Perdereau, 1991).

Another force/position structure can be devised that
closes an outer force control loop around an inner posi-
tion control loop, which may be the ordinary position con-
trol system of the manipulator. This structure is known in
the literature as the external force feedback loop method
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(Schuter and Van Brussel, 1988). This structure makes
it possible to control the force and the position simultane-
ously without needing to use selection matrices. The force
control loop is designed to prevail over the position con-
trol loop in the event of a conflict, variations in the planned
task giving priority to the force control that is generally a
conventional PID controller.

Several approaches are proposed in the literature to
return this controller adaptive without influencing the ex-
isting motion control system of the manipulator. The
works (Saadia et al., 1997; Saadia, 1997) proposed an
adaptive neural network control scheme for force control
of an assembly robot. This approach was tested only with
an assembly task where the velocity motion was chosen
very slow. A fuzzy PI control scheme is used in the force
controller design in (Song and Li, 1995). It is shown
that this scheme is adaptive with respect to environment
stiffness variation. The performances of this approach
impose that the force data provided by the force/torque
sensor are not contaminated by noise. The use of good
filters is necessary. However, no dynamic structure—to
our knowledge—has been proposed in the literature which
would be able to deal with the problem of parameter vari-
ations of the robot itself as well as of the environment
which have in reality an impact on the dynamic response
of a manipulator in contact.

Actually, the design of the dynamic external force
feedback loop control law is straightforward if the models
of the robot manipulator and the environment are known
with high precision. Uncertainties in these models de-
grade system performance. In practice, a complete dy-
namic model of a robot is not known exactly, and the en-
vironment position and stiffness are also approximately
known.

During the past years, several approaches have been
proposed to solve the problem of motion/force tracking in
the presence of uncertainties: one can mention variable
structure control (VSC) (Yao et al., 1992), adaptive con-
trol (Singh and Popa, 1995; Whitcomb, 1997) and recently
robust adaptive control (Chiu et al., 2004). Although these
techniques improve system performances, they tend to in-
crease the complexity of system dynamics, which requires
special attention regarding system stability. The use of
neural networks in control systems has increased in re-
cent years because such usage does not require a detailed
knowledge of mathematical and control theories, thereby
reducing the development cost of controllers for complex
systems, particularly nonlinear ones.

Neural networks have previously been applied to
the control of manipulators. Kiguchi and Fakuda (1995;
1997) proposed that the intelligent position/force con-
troller of robot manipulators could be controlled using
fuzzy neural approaches, and Nakawono and Katagiri
(2003) proposed a force and position controller for robot
manipulators using a neurocontroller with genetic algo-

rithm based training. The disadvantage of these ap-
proaches lies in the use of the selection matrices in the
control loops for the former, whereas for the latter the
choice of the input of the neural networks depends directly
on the desired task, and their applications are limited to
simple cases where the frame attached to the plane and
reference frame are supposed to be parallel, which limits
the diversity of the tasks in an imposed constrained mo-
tion.

Jung and Hsia (1995; 1998; 2000) proposed a for-
ce/impedance controller using a neural network compen-
sator for uncertainties of robotic manipulators. The sug-
gested method uses a trajectory modification algorithm
technique to determine the reference trajectory. The dis-
advantage of this method is that it is based on the detec-
tion of the effort felt to select the modified trajectory de-
pending on a desired force, which can be sensitive to the
noise generated by the force sensors. In (Ferguene and
Toumi, 2005), it was shown that neural networks are very
effective in compensating for motion/force tracking in the
case of a simple planar surface.

In this paper, we propose a new dynamic external
force feedback loop scheme using a neural network com-
pensator for uncertainties. This paper is organized as fol-
lows: The classical external force feedback loop structure
is addressed in Section 2. In Section 3, robot model in
contact with an environment is formulated. Section 4 de-
velops the dynamic external force feedback loop structure,
where an analysis of stability was carried out. In Sec-
tion 5, we present our neural approach applied to the con-
trol scheme. Section 6 shows simulation results for tasks
carried out on two different environment types (planar and
curved surface), by using a three-degrees-of-freedom in-
dustrial robot PUMA560 (Armstrong and Khatib, 1986),
to demonstrate the robustness of the proposed scheme to
payload uncertainties, position and environment stiffness,
as well as dry and viscous frictions. Finally, conclusions
are drawn in Section 7.

2. External force feedback loop scheme

In this control system (Fig. 1), the force error is converted
in a suitable reference trajectory for the inner position con-
troller which is defined in the Cartesian space or the angu-
lar space (Schuter and Van Brussel, 1988). When there are
no constraints due to the environment (E), the force con-
troller will be without effect and the position controller
will continue to control the system. When constraints ap-
pear, the force controller allows the control of the gener-
ated efforts. However, this controller scheme as proposed
in the literature generally neglects the effect of the dynam-
ics of the manipulator (terms due to the inertial, Coriolis
and centrifugal torques) because the velocity is supposed
to be very slow and the effect of the contact forces domi-
nates the dynamic disturbances generated over the system,
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which is not always true with respect to the tasks in the
constrained motion carried out by the robot. In what fol-
lows we propose a new dynamic external force feedback
loop scheme developed in Cartesian space coordinates.

Fig. 1. External force feedback loop structure.

3. Dynamic equation of robot manipulators
in contact with the environment

The dynamic equation of an n degrees-of-freedom manip-
ulator in joint space coordinates can be given by

τ = A(q)q̈ + b(q, q̇)q̇ + g(q) + τf + τe, (1)

where

• q, q̇ and q̈ are the joint angle, the joint angular veloc-
ity, and the joint angular acceleration, respectively,

• A(q) is the n × n symmetric positive-definite inertia
matrix,

• b(q, q̇)q̇ is the n×1 vector of Coriolis and centrifugal
torques,

• g(q) is the n × 1 vector of gravitational torques,

• τf is the n×1 vector of actuator joint friction forces,

• τe is the n × 1 vector of external disturbance joint
torques,

• τ is the n × 1 vector of actuator of actuator joint
torque.

For simplicity, write

C(q, q̇)q̇ = b(q, q̇)q̇ + g(q).

Therefore, (1) can be rewritten as

τ = A(q)q̈ + C(q, q̇) + τf + τe. (2)

The relation between the joint velocity speed and the
Cartesian space velocity can be expressed as

Ẋ = J(q)q̇, (3)

where J(q) represents the n × n Jacobian matrix of the
manipulator that is supposed to be nonsingular. By differ-
entiating (3), the Cartesian acceleration term can be found
as

Ẍ = J(q)q̈ + J̇ q̇. (4)

Then the equation of robot motion in the joint space can
also be represented in Cartesian space coordinates by the
relationship

q̈ = J(q)−1(Ẍ − J̇ q̇). (5)

Substituting (5) into (2) yields

τ = A(q)J(q)−1(Ẍ − J̇ q̇) + C(q, q̇) + τf + τe. (6)

The actuator forces are related to the joint torques of
the actuators through the Jacobian of the mechanism, i.e.,

τ = JT F. (7)

The model of the robot in Cartesian space is thus given by

F = DẌ + H + Ff + Fe, (8)

where

D = (JT )−1AJ−1,

H = (JT )−1C − DJ̇J−1Ẋ,

Ff = (JT )−1τf ,

Fe = (JT )−1τe.

4. Dynamic external force feedback loop
control scheme

A dynamic force/position control scheme is developed in
this section according to the concept of the external force
feedback loop. The dynamical model (8) represents a
highly nonlinear and strongly coupled system for which
the nonlinear dynamic decoupling approach (Boissonat
and Faverjon, 1988) can be adopted in Cartesian space co-
ordinates (see Fig. 2). The desired position Xd is modi-
fied by the term ΔX resulting from the force control loop.
This leads to the following control structure:

F = D̂M−1
d U + Ĥ + F̂e, (9)

with

U = MdẌd + Kv(Ẋd − Ẋ) + Kp(Xc − X), (10)

where

• Xc = Xd + ΔX is the position command,
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Fig. 2. Dynamic external force feedback control scheme.

• D̂, Ĥ are the estimates of D and H , respectively,

• F is the n× 1 vector of generalized forces at the end
effector,

• U is the n × 1 vector of the decoupled end effector,

• Md is the positive definite desired inertia matrix that
must be diagonal to ensure dynamic decoupling, and

• F̂e is the measured contact force vector.

Combining (8)–(10) yields the closed loop tracking
error dynamic equation

MdËp + KvĖp + KpE

= D̂−1(ΔDẌ + ΔH + Ff + ΔFe), (11)

where
ΔD = D − D̂,

ΔH = H − Ĥ,

ΔFe = Fe − F̂e,

E = Xc − X,

Ep = Xd − X.

In the ideal case, where the dynamic model is known
perfectly, i.e., ΔD = ΔH = ΔFe = 0 and Ff = 0,
the closed loop robot behavior is given by the following
relation:

MdËp + KvĖp + KpE = 0. (12)

According to Fig. 2, we can write

E = Xc − X = Xd + ΔX − X = Ep + ΔX. (13)

If we replace (13) in (12), we will have

MdËp + KvĖp + KpEp + KpΔX = 0. (14)

The force controller chosen here is given by

ΔX = Ki

∫ t

0

Ef dτ, (15)

where Ef = Fd − Fe. In this case, (12) becomes

MdËp + KvĖp + KpEp + KpKi

∫ t

0

Ef dτ = 0. (16)

This points out how Ef prevails over Ep. Indeed,
in a steady state, the position error may be a constant
with a force error equal to zero. This implies that the
force control loop dominates over the position control
loop in that the overall control system attempts to ob-
tain Fe = Fd even with a position error that differs from
zero. Md, Kp, Kv and Ki are diagonal matrices of the
form λI (λ is a scalar and I is an identity matrix). It is
noted that, if the task carried out by the effector ensures
Fd = Fe, the system will be controlled by the usual dy-
namic Cartesian space control.

4.1. Stability analysis in elastic environments. We
next want to analyze the performances of the proposed
control when the manipulator interacts with the environ-
ment. Accurate modeling of the contact between the ma-
nipulator and the environment is usually difficult to obtain
in an analytic form, due to the complexity of the physical
phenomena involved in the interaction. It is then reason-
able to resort to a simple and significant model relying on
the robustness of the control system in order to reduce the
effects of inaccurate modeling. The total elasticity, due to
end effector force sensors and environments, is accounted
through the compliance of the plane. Friction effects are
neglected within the compliance of the operational range
of interest. When the end effector is in contact with the
plane, the model of the contact force is given by (only
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translational motion and linear force components are stud-
ied, i.e., n = 3 is assumed)

Fe = Ke(X − Xe), (17)

where Xe is a point of the plane at rest and Ke is a (3×3)
constant symmetric stiffness matrix. Equation (17) in-
duces the following relationship:

Ef = KeEp + Fd − Ke(Xd − Xe), (18)

which, when substituted in (16), gives

MdËp + KvĖp + KpEp + KpKiKe

∫ t

0

Ep dτ

= −KpKi

∫ t

0

Fd dτ + KpKiKe

∫ t

0

(Xd − Xe) dτ

(19)

Equation (19) represents a third-order vector system
for which the gain matrices are to be suitably chosen in
order to obtain asymptotic stability. Since the system is
linear, its stability can be discussed in terms of the stability
of the unforced system given by the following equation:

MdẌ + KvẊ + KpX + KpKiKe

∫ t

0

X dτ = 0. (20)

Since the robot is in contact with its environment,
in order to analyze (20) coupled by the matrix Ke, the
following assumptions are made:

• The contact force is orthogonal to the plane for any
vector (X − Xe). Then, a base of R(Ke) (the range
space of matrix Ke) is the unit vector �n orthogonal
to the plane and rank(Ke) = 1.

• All vectors (X − Xe) which lie on the plane and do
not contribute to the contact force are tangent in the
plane. Then a base of N(Ke) (the null space of the
matrix Ke) is a pair of orthogonal unit vectors (�t1, �t2)
lying in the plane.

Under these conditions, the columns of the matrix

Rot = (n t1 t2) (21)

form a set of orthonormal vectors constituting a base of
R

3. According to the above remarks, the matrix Ke can
be decomposed as

Ke = Rot diag(ke, 0, 0)RT
ot = kennT , (22)

with Rot, as defined in (21), representing the rotation ma-
trix from the frame attached to the plane to the reference
frame. Then ke is the stiffness coefficient, characterizing
the contact along the orthogonal direction to the plane.

Let us introduce xn, x1, x2 as the components of X in the
frame attached to the plane defined by

⎛
⎝ xn

x1

x2

⎞
⎠ = RT

otX. (23)

Noting that

RotR
T
ot = nnT + t1t

T
1 + t2t

T
2 = I, (24)

Eqn. (20) can be written in the reference frame attached to
the plane as follows:

n

[
mdẍn + kvẋn + kpxn + kpkike

∫ t

0

xn dτ

]

+ t1[mdẍ1 + kvẋ1 + kpx1]
+ t2[mdẍ2 + kvẋ2 + kpx2] = 0. (25)

By the orthonormality of t1, t2 and n, (25) is equiva-
lent to the following system of three scalar equations:
⎧⎪⎪⎨
⎪⎪⎩

mdẍn + kvẋn + kpxn + kpkike

∫ t

0 xn dτ = 0,

mdẍ1 + kvẋ1 + kpx1 = 0,

mdẍ2 + kvẋ2 + kpx2 = 0.

(26)

These equations show that the dynamics of the sys-
tem (20) are decoupled in the space of variables xn, x1

and x2. The Routh criterion applied to the system (26)
gives a necessary and sufficient condition of stability:

kp, kv, md, ki > 0 and kv > mdkike,

with kp, kv, ki and md being respectively the elements of
matrices Kv, Kp, Ki, Ke and Md.

Remark 1. An estimate of the stiffness coefficient ke is
used to tune the feedback gains based on a simple scalar
differential equation.

Remark 2. In the case of a free motion (Fd = Fe = 0),
(16) is uncoupled and becomes a second-order equation.
The necessary and sufficient condition of its stability is
checked for md, kv, kp > 0.

4.1.1. Case of unknown environment positions. If
the environment position Xe is perfectly known, (19) can
be rewritten while replacing Xd by Xe (Xd = Xe). If the
environment position is unknown, then Xd = Xe+δXe =
X ′

e , with δXe being the position environment uncertainty.
In this case, (19) will be written as

MdËp + KvĖp + KpEp + KpKiKe

∫ t

0

Ep dτ

= −KpKi

∫ t

0

Fddτ − MdδẌe − KvδẊe − KpδXe.

(27)
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The Laplace transform of (27) gives

Ep(s)

= − [Mds
3 + Kvs

2 + Kps + KpKeKi]−1

× [KpKiFd + (Mds
3 + Kvs

2 + Kps)δXe(s)]

(28)

with δXe(s) as the input and Ep(s) the output.
We suppose that the input (disturbance) is a step

(δXe(s) = 1/s), and that Fd = 0, the equilibrium point
for the system (28), will be

Ep(∞) = lim
s→0

sEp(s) = 0 ⇒ X∞ → Xe

⇒ Fe = Ke(X∞ − Xe) → 0.

This result proves that the system is compliant and
that the force controller dominates the position controller.

4.1.2. Case of a curved surface. The analysis of the
stability developed in Section 4.1 is valid only in the case
of planar surfaces. If the surface is curved, the rotation
matrix Rot (Eqn. (21)) becomes a nontrivial function of
a time varying contact point. Considering the complexity
of the problem, we suppose that the surface is smooth and
known analytically. In this case, we have the local stability
of an equilibrium point. Indeed, the tangent plane at the
point is a good approximation to the surface and Rot can
be considered to be constant. Quasi-static analysis can
be made with respect to the succession of locally stable
equilibrium points. The desired trajectory is selected such
that Rot varies slowly with respect to the overall system
dynamics. Under these assumptions, the above stability
conditions remain valid. In this case, the contact force
model (17) can be rewritten in the form (Chiaverini and
Sciavesco, 1993)

Fe = Ke(Xe(X))(X − Xe) (29)

with
Ke(Xe) = ken(Xe)nT (Xe). (30)

However, bad performances of this control system
can appear if the exact knowledge of the robot and envi-
ronment models is not checked, i.e., ΔD, ΔH , ΔFe and
Ff are different from zero. We propose a new external
force feedback loop structure based on a neural approach
to compensate for these disturbances.

5. Neural structure of external force
feedback loop control

In this section, we present a neural network controller
designed to achieve disturbance rejection for the exter-
nal force feedback loop system. The proposed scheme is
given in Fig. 3. The idea is that the neural network out-
put φ cancels out the uncertainties caused by an inaccurate

robot model in contact with its environment. The output
signal φ of the neural network is added to the control in-
put U whose dimension equals the number of degrees of
freedom of the robot manipulator. Therefore, the vector φ
is three dimensional. The control law becomes

F = D̂M−1
d (U + φ) + Ĥ. (31)

Combining (31) and (8) yields the corresponding
closed-loop error system as

MdËp + KvĖp + KpE

= D̂−1(ΔDẌ + ΔH + Ff + Fe) − φ. (32)

In order to achieve the ideal case (Eqn. (12)), the out-
put of the neural compensator is required to be

φ = D̂−1(ΔDẌ + ΔH + Ff + Fe). (33)

Let
v = MdËp + KvĖp + KpE. (34)

Since the control objective is to generate φ to reduce v to
zero in (32), we propose here to use v as the error sig-
nal for training the neural network. Thus the ideal value
of φ at v = 0 is the same as the uncertainties given by
(33). Equation (33) is nonlinear and depends on the posi-
tion, velocity and acceleration of the end effector, as well
as force contacts between the robot and environment. We
propose this as neural network input. The weight updat-
ing law minimizes the objective function J , which is a
quadratic function of the training signal v. The three-layer
feedforward neural network structure is used as the com-
pensator. It is composed of linear input and output layers
and a nonlinear intermediate hidden layer that is a sigmoid
function, which is bounded in magnitude between −1 and
1 in accordance with the following equation:

f(·) =
1 − exp(−(·))
1 + exp(−(·)) . (35)

The input is

[
XT

c (t) ẊT
d (t) ẌT

d (t) FT
e (t)

]T
.

According to Fig. 4, the output can be written in the form

φk =⎡
⎢⎢⎢⎢⎣

nH∑
j=1

w2
jk

⎛
⎜⎜⎜⎜⎝

1 − exp(−(
nI∑
i=1

xdiw
1
ij + b1

j))

1 + exp(−(
nI∑
i=1

xdiw
1
ij + b1

j))

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦+ b2

k.

(36)

Here were use the following notation:
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Fig. 3. Neural structure of the external force feedback loop.

Fig. 4. External force feedback loop structure.

• nI is the number of inputs,

• nH is the number of hidden neurons,

• xdi is the i-th element of the input vector XNN ,

• w1
ij are the weights between the i-th neuron of the

input layer and the j-th neuron of the hidden layer,

• w2
jk are the weights of the j-th neuron of the hidden

layer and the k-th neuron of the output layer,

• b1
j is the biased weight for the j-th hidden neuron,

• b2
k is the bias of the k-th neuron of the output.

Remark 3. In the absence of a general rule regarding
the choice of the number of neurons of the hidden layer
(Haykin, 1999), the minimal number of neurons of this
layer is experimentally selected and it is fixed as six.

Remark 4. The network is adaptive online and the ini-
tialization of its weights is random. This neural controller
performs the adaptive control process online.

The weights update law minimizes the objective
function J , which is a quadratic function depending on
the signal v of Eqn. (34) and is given by

J =
1
2
vT v. (37)

Differentiating (37) and making use of (32) yields the
gradient of J ,

∂J

∂w
=

∂vT

∂w
v = −∂φT

∂w
v. (38)

The adaptation of the weights is obtained by using the al-
gorithm of retropropagation of the gradient given by the
following equation:

Δw(t) = η
∂φT

∂w
v + μΔw(t − 1), (39)

where η is the update rate and μ is the momentum coeffi-
cient (Haykin, 1999).

Remark 5. One can notice here that the convergence
of this backpropagation algorithm depends on the good
choice of parameters η and μ as well as the position and
force controller parameters that must satisfy the stability
condition given in Section 4.1.
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Below we give the backpropagation algorithm:
Initialize weight vectors (Δw = 0, w = 0)
for the work time simulation Tw.
1. Compute the network input.
2. Compute the network output by propagation the input

vector:

Y 1
j =

1 − exp
(
− ( nI∑

i=1

xdiw
1
ij + b1

j

))

1 + exp
(
− ( nI∑

i=1

xdiw1
ij + b1

j

)) ,

φk = Y 2
k =

nH∑
j=1

Y 1
j w2

jk + b2
k.

3. Compute the training signal v.
4. Compute Δw:

Δw1
ij(t) = η · 0.5 · (1 − Y 1

j )2xdi

[
n∑

k=1

vkw2
jk

]

+ μΔw1
ij(t − 1),

Δw2
jk(t) = ηvkY 1

j + μΔw2
jk(t − 1),

Δb2
k(t) = ηvk + μΔb2

k(t − 1),

Δb1
j(t) = η · 0.5 · (1 − Y 1

j )2
[

n∑
k=1

vkw2
jk

]

+ μΔb1
j(t − 1).

5. Adjust the network weights and then go to Step 1.

6. Implementation

In order to check the effectiveness of the neural force posi-
tion control scheme, several simulations were carried out
using a three-link robot manipulator. The parameters are
taken from the first three links of the PUMA 560 arm
(Fig. 5) (Armstrong and Khatib, 1986) (it is supposed that
its last three joints are blocked). Simulations carried out
aim at evaluating the performances of our scheme for con-
strained tasks.

Three simulation test are proposed in this article. The
first consists in testing the compliance of the robot with
respect to the unknown environment position. For that
purpose, we introduced a position disturbance with a step
motion. In this case, the environment is supposed to be
planar and the frame attached to the plane is parallel to the
reference frame. The second simulation suggested in this
paper is a circular tracking in a tilted environment, and the
third (most complex) consists in making the effector fol-
low a curved surface. The controller gain can be obtained
by successive tests. It is a delicate operation, in particu-
lar, when there are many tunable parameters. We propose
a simple method which makes it possible to choose these
controller gains.

Let us consider the third-order equation of the sys-
tem (26). This equation can be written using the Laplace
transform as follows:(

mds
3 + Kvs

2 + Kps + KpKeKi

)
xn(s) = 0. (40)

An adequate adjustment of the parameters can be obtained
while forcing (40) to behave like a third-order system with
frequency ω0 and a damping ratio ξ adequately chosen,
given by

G(s) = (s + ω0)(s2 + 2ξω0s + ω2
0). (41)

Remark 6. The controller gains with the second-order
equation of the system (26) will be chosen the same
since the stability condition of the set remains checked
for md, kv, kp > 0. The sampling period is fixed at
Te = 5 ms, and the initial weights of the network are
fixed at zero (w = 0).

Simulation 1. A planar surface is considered in this sim-
ulation, characterized by n = (1, 0, 0)T , and the envi-
ronment position is at Xe = (0.45, 0.04, 0.45)T m (see
Fig. 5). A step disturbance δXe = (0.005, 0, 0)T m is in-

Fig. 5. Robot with tree axes and its environment.

troduced. The correct stiffness coefficient of the environ-
ment is assumed as ke = 104 N/m. Let a known mechan-
ical tool be attached to the third link (m = 2 kg). In order
to minimize possible noise effects due to the sensors, we
reduce the system bandwidth by choosing adequate (not
too large) control gains (Dumas and Samson, 1987). For
that purpose, we impose w0 = 20 rad/s and ξ = 1. By
identification, the control gains are selected as follows:

md = 1 kg, kp = 1200 N/m, kv = 60 s/m,

ki = 6.66.10−4 s−1.

The complete selection of the controller gains of the
system is thus the following:

Md = I, Kp = 1200 × I, Kv = 60 × I,
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Ki = 6.66.10−4 × I.

The simulation results are given in Fig. 6. Note that,
in the adapted case, the system is compliant with a com-
plete recovery from the impact and a perfect accommoda-
tion of the end effector position with a null steady contact
force achieved in less than 0.5 s, and this with respect to
the unknown localization of the environment.
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Fig. 6. Force and position tracking (update case).

To evaluate the robustness of our approach, we intro-
duced the following uncertainties in the robot model and
environment stiffness:

• Tool attached to the end effector m = 10 kg.

• Environment stiffness is increased to ke = 5 ×
104 N/m.

We kept the same values of the parameters of the
previous adjustment to which we added the parameters
of the neural network (Fig. 4), chosen experimentally as
η = 0.0008, μ = 0.9. The simulation data showed that
with a compensated system the rate of convergence is very
fast, with a convergence time less than 0.5 s (Fig. 8). How-
ever, with an uncompensated system the force and posi-
tion tracking errors are very large and amplified (Fig. 7).
The disturbance signal vector v (Figs. 9 and 10) shows
how this signal is reduced by our neural approach.

Simulation 2. In this simulation the proposed scheme is
tested by tracking a circle in a tilted environment accord-
ing to the normal n = (cos(π/4), 0,− sin(π/4))T with
the desired effort Fd = 5 N shown in Fig. 11. The equa-
tions defining the desired circular trajectory in the refer-
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Fig. 7. Force and position tracking (without the neural compen-
sator).
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Fig. 8. Force and position tracking (with the neural compen-
sator).

ence frame are

x(t) = 0.106 cos
(

2π

T
t

)
+ 0.424,

yd(t) = 0.15 sin
(

2π

T
t

)
+ 0.3,

zd(t) = 0.1 cos
(

2π

T
t

)
,

with T = 8 s. To evaluate the robustness of our ap-
proach, we introduced the following uncertainties in the
robot models and the environment:

• Tool attached to end effector m = 10 kg.

• Coulomb friction, and viscous friction forces added
to each joint, given by

τf = 0.8q̇ + 0.5sign(q̇).
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Fig. 9. Disturbance tracking (without the neural compensator).
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Fig. 10. Disturbance tracking (with the neural compensator).

Fig. 11. Three-link robot with a tilted surface.

• The discontinuous stiffness profile given by

ke =

⎧⎪⎪⎨
⎪⎪⎩

10000 N/m,
40000 N/m,
20000 N/m,
30000 N/m.

Using the same values of the control parameters, the simu-
lation data are represented by Figs. 12–18. One can notice
a clear improvement in the trajectory following in the di-
rection Y (free motion) (Figs. 12 and 13) by introducing
the neural compensator (the errors in the directions X and
Z represent the penetration of the effector in the wall). In
the case of the effort response, Figs. 14 and 15 show that
the introduction of abrupt variations in the stiffness gener-
ates a damped oscillation at the beginning of the variation
in the stiffness, but it is quickly driven to the desired force
with a convergence time less than 0.5 s by introducing the
neural compensator. The comparison of Figs. 16 and 17
clearly shows that the disturbances are compensated by
our neuronal approach. Figure 18 shows a circular trajec-
tory tracking with a neural compensator.
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Fig. 12. Position tracking (without the neural compensator).

Simulation 3. The third simulation suggested in this ar-
ticle consists in making the end effector follow a trajectory
on a curved surface. Let us recall that a task force/position
control consists in following a trajectory on the surface
considered by imposing a normal force Fd. The trajectory
Xd(t) to be followed by the end effector is supposed to
be known at every time moment. When this trajectory is
in the environment, it is additionally necessary to ensure
a normal force whose norm |Fd| is imposed. The com-
ponents of the desired vector �Fd can then be deduced in
the analysis of the task by the calculation of the normal
�n at each point of the trajectory. Consider a sine-shaped
surface given by

xe = xes + Δz sin
(

2π

l
(ze − zes)

)
, (42)
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Fig. 13. Position tracking (with the neural compensator).
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Fig. 14. Force tracking (without the neural compensator).
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Fig. 15. Force tracking (with the neural compensator).
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Fig. 16. Disturbance tracking (without the neural compensator).
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Fig. 17. Disturbance tracking (with the neural compensator).

where xes is the average amplitude of the surface, and Δz,
l and zes are respectively the amplitude, period and shift
of the sine-wave along the ze direction. The expression
of the normal to the surface at the rest point is given by
(Chiaverini and Sciavesco, 1993)

n(Xe) =
1√

1 +
(

Δz 2π
l cos(2π

l (ze − zes))
)2

×
⎛
⎝ 1

0
Δz 2π

l cos(2π
l (ze − zes))

⎞
⎠ .

(43)

To validate our approach, we consider Eqn. (42)
characterized by the values of the following parameters
zes = 0 m, Δz = 0.03 m, l = 0.3 m and xes = 0.2 m.
The velocity on the surface is equal to 0.05 m/s and the
norm of the normal force applied is |Fd| = 5 N. The
desired task consists in making the effector move from
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Fig. 18. End effector tracking of circular trajectory (with the
neural compensator).

the position A = (0.175, 0.3, 0.2) m towards the posi-
tion B = (0.175, 0.3, 0.5) m by continuing the surface
defined by (42). We considered the same disturbances as
previously, except that the variation in the stiffness in this
case is supposed to be constant and known. The adjust-
ment of the parameters of the controllers is maintained
the same and the simulation results obtained are as fol-
lows (Figs. 19–25).

One can notice a clear improvement of the precision
in position according to the fixed direction Y (Figs. 19
and 20) by introducing the neural compensator (the er-
ror directions X and Z represent the penetration of the
effector in surface). In the case of the follow-up of the
effort applied (Figs. 21 and 22), it is seen that the force
tracking errors are very large for the classical structure,
whereas the efforts are clearly followed while using the
neuronal compensator, with a convergence time less than
0.5 s. The comparison between Figs. 23 and 24 clearly
shows the compensation of the disturbances by our neural
approach. Figure 25 represents the end point tracking of a
curved surface in the plane (X, Z).

7. Conclusion

In this article, a neural network force/position strategy has
been proposed. We used a classical external force feed-
back loop for which we developed its dynamic structure
in Cartesian coordinates space. To improve the perfor-
mance of this control structure, we implemented a neu-
ral compensator around this structure to compensate the
possible disturbance on the system. This control structure
was tested in simulations while supposing that the robot
is equipped with effort, position, and velocity sensors and
controlled by an effective calculator permitting implemen-
tation of this control scheme in real time. We considered
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Fig. 19. Position tracking (without the neural compensator).
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Fig. 20. Position tracking (with the neural compensator).
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Fig. 21. Force tracking (without the neural compensator).
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Fig. 23. Disturbance tracking (without the neural compensator).
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Fig. 24. Disturbance tracking (with the neural compensator).
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Fig. 25. End effector tracking of circular trajectory (with the
neural compensator).

the uncertain case for the modeling of the robot and its
environment (with variations in the payload, environment
stiffness, and dry and viscous frictions). The results ob-
tained by our approach improve in a meaningful way the
performance of some conventional control structures pro-
posed in the literature (Schuter and Van Brussel, 1988).
Future work will consist in validating the results obtained
on a complete simulation model of the robot PUMA 560
implementing the proposed control structures on a real
robot and comparing our results with other approaches.
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