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Dynamic factor analysis models with time-varying parameters offer a valuable

tool for evaluating multivariate time series data with time-varying dynamics and/or

measurement properties. We use the Dynamic Model of Activation proposed by

Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to

construct a dynamic factor model with vector autoregressive relations and time-

varying cross-regression parameters at the factor level. Using techniques drawn

from the state-space literature, the model was fitted to a set of daily affect data (over

71 days) from 10 participants who had been diagnosed with Parkinson’s disease.

Our empirical results lend partial support and some potential refinement to the

Dynamic Model of Activation with regard to how the time dependencies between

positive and negative affects change over time. A simulation study is conducted to

examine the performance of the proposed techniques when (a) changes in the time-

varying parameters are represented using the true model of change, (b) supposedly

time-invariant parameters are represented as time-varying, and (c) the time-varying

parameters show discrete shifts that are approximated using an autoregressive

model of differences.

Correspondence concerning this article should be addressed to Sy-Miin Chow, University of

North Carolina, CB#3270 Davie Hall, Chapel Hill, NC 27599-3270. E-mail: symiin@email.unc.edu
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304 CHOW, ZU, SHIFREN, ZHANG

Many psychological concepts are unobserved and usually represented as latent

factors apprehended through multiple observed indicators. With the increased

prevalence of longitudinal—in particular, intensive repeated measures—data in

psychology (Heron & Smyth, 2010), models that can describe both the structure

and time-lagged relationships of latent factors have become essential alternatives

to studying intraindividual change. Dynamic factor analysis models fulfill these

purposes by combining factor analysis and time series analysis (Browne &

Nesselroade, 2005; Browne & Zhang, 2007; Engle & Watson, 1981; Forni,

Hallin, Lippi, & Reichlin, 2000, 2005; Geweke, 1977; Geweke & Singleton,

1981; Molenaar, 1985; Nesselroade, McArdle, Aggen, & Meyers, 2002).

Substantively, dynamic factor analysis models have been used to study psy-

chophysiological processes (Molenaar, 1994a), affective processes of couples

(Ferrer & Nesselroade, 2003), emotions of patients with Parkinson’s disease

(S.-M. Chow, Nesselroade, Shifren, & McArdle, 2004), emotion process after a

romantic breakup (Sbarra & Ferrer, 2006) and relationship between children’s

perceived control and school performance (Musher, Nesselroade, & Schmitz,

2002). Methodologically, a number of methods have been proposed over the

years for estimating dynamic factor analysis models, including LISREL maxi-

mum likelihood (ML) estimation with block Toeplitz matrices (Molenaar, 1985),

generalized least squares estimation with block Toeplitz matrices (Molenaar &

Nesselroade, 1998), ordinary least squares estimation with lagged correlation

matrices (Browne & Zhang, 2007), raw data ML estimation with the Kalman

filter (Engle & Watson, 1981; Hamaker, Dolan, & Molenaar, 2005), and the

Bayesian approach (Z. Zhang, Hamaker, & Nesselroade, 2008).

In standard dynamic factor analysis models, all modeling parameters are

assumed to be constant throughout the entire span of a study. Thus, they are

only plausible for stationary time series.1 Under strict stationarity, the proba-

bility distribution of a stochastic process is assumed to be constant over time,

whereas weak stationarity only requires the first two moments of a probability

distribution to be time invariant (Chatfield, 2004). Unfortunately, nonstationary

data are frequently observed and to some extent inevitable in empirical studies

(Boker, Xu, Rotondo, & King, 2002; Houtveen & Molenaar, 2001; Kiryu, Saitoh,

& Ishioka, 1992; Schack, Bareshova, Grieszbach, & Witte, 1995; Tarvainen,

Hiltunen, Ranta-aho, & Karjalainen, 2004; Weber, Molenaar, & Van der Molen,

1992).

Dynamic factor analysis models with time-varying parameters are one way of

accommodating a specific kind of nonstationarity. Most time-varying parameter

models have been developed for univariate time series. Some examples of

popular univariate time-varying parameter models are the local level model

1Having time-invariant parameters is a necessary but insufficient condition for stationarity; some

processes may have time-invariant parameters and yet are nonstationary.
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 305

(Durbin & Koopman, 2001), the local linear trend model (Harvey, 1989), time-

varying autoregressive moving average (ARMA) model (Tarvainen, Georgiadis,

Ranta–aho, & Karjalainen, 2006; Weiss, 1985), and stochastic regression model

(Pagan, 1980). These models are typically formulated within the state-space

framework in which the time-varying parameters are formulated as state (i.e.,

latent) variables. A dynamic model of choice—usually a nonparametric model or

related variations that are deemed flexible enough to capture a variety of different

change trajectories—is then used to approximate the changes in the time-varying

parameters (e.g., Molenaar & Newell, 2003; Tarvainen et al., 2006; Tarvainen

et al., 2004).

Relatively few researchers in psychology or psychometrics have considered

extending dynamic factor analysis models to include time-varying parameters.

The few exceptions include the work of Molenaar (1994b), who considered a

one-factor dynamic factor model that conformed to a first-order autoregressive

[AR(1)] process at the latent level. Polynomial functions of time were used to

represent the dynamics of the time-varying parameters, including AR(1) and

factor loading parameters. Several other examples of dynamic factor analysis

with time-varying parameters can be found in the statistical and econometrics

literature. For instance, Del Negro and Otrok (2008) examined a dynamic fac-

tor model with time-varying factor loadings within a Bayesian framework. In

addition, Stock and Watson (2008) presented an exploratory analysis aimed at

identifying structural breaks (i.e., discrete shifts) in the factor loadings and time

series parameters of a dynamic factor analysis model by means of the Chow test

(G. C. Chow, 1960).

In this study, we use a theoretical model of affect, namely, the Dynamic

Model of Activation proposed by Zautra and colleagues (Reich, Zautra, &

Davis, 2003; Zautra, Potter, & Reich, 1997; Zautra, Reich, Davis, Potter, &

Nicolson, 2000), to construct a motivating example on which illustrations of

the proposed techniques for detecting time-varying parameters are based. Our

proposed approach differs from other exploratory applications (e.g., Stock &

Watson, 2008) in that a confirmatory model is devised explicitly to test postulates

from the Dynamic Model of Activation. Unlike the Bayesian approach taken by

Del Negro and Otrok (2008), we perform model inferences within the frequentist

framework using techniques drawn from the state-space and Kalman filtering

literature. This article also extends the earlier work of Molenaar and colleagues

(Molenaar, 1994b; Molenaar, de Gooijer, & Schmitz, 1992) in several ways.

First, we consider a bivariate as opposed to a one-factor dynamic factor model.

Second, we seek to examine properties of the point as well as standard error

(SE) estimates obtained from the proposed approach. Molenaar (1994b) used

the expectation-maximization (EM) algorithm to estimate other time-invariant

parameters in his model. Standard errors of the associated parameters are not

available from the EM procedure. The author thus suggested issues pertaining
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306 CHOW, ZU, SHIFREN, ZHANG

to SE estimation as a future research topic at that point.2 In the present context,

we use a numerical Newton-Raphson procedure to obtain the Gaussian ML

estimator of the model parameters. Standard errors can be readily obtained from

the observed or expected information matrix of the associated raw data log-

likelihood function. Third, in addition to assessing point and SE estimates, we

also address issues such as coverage rates and Type I error rates (i.e., cases

where time-invariant parameters are incorrectly classified as time-varying).

Finally and perhaps most important, whereas Molenaar (1994b) and others

(e.g., Del Negro & Otrok, 2008; Stock & Watson, 2008) considered single-

subject time series data, we evaluate the performance of the proposed techniques

when used with multiple-subject time series data. Frequently encountered in

ecological momentary assessment studies (Heron & Smyth, 2010), such data are

typically characterized by finite time lengths and a small to moderate number of

participants. In light of the finite time lengths of such data, we utilize information

from all individuals for parameter estimation purposes by constraining all but a

subset of time-varying modeling parameters to be invariant across persons. This

is in contrast to standard time series approaches that focus on modeling at the

individual level. When the assumption of invariance holds across persons (see,

e.g., Nesselroade & Molenaar, 1999), such designs offer one way of pooling

information from multiple participants for model estimation purposes.

The remainder of the article is organized as follows: We first describe our

proposed model and the empirical data set used for illustration purposes. We

then outline the estimation procedures used in this article and summarize results

from empirical model fitting. This is followed by results from a Monte Carlo

simulation study, including some brief illustrations of how the proposed model

and techniques can be used to approximate the dynamics of time-varying pa-

rameters under different change scenarios. We conclude with some remarks on

the strengths and limitations of the proposed techniques.

MOTIVATING EXAMPLE

According to the Dynamic Model of Activation (Reich et al., 2003; Zautra

et al., 1997; Zautra et al., 2000), positive affect (PA) and negative affect (NA)

are independent under low stress (activation) conditions. However, they tend to

collapse into a unidimensional, bipolar structure under high activation. Thus,

from a within-person perspective, the concurrent linkage (i.e., correlation) be-

2When the EM algorithm is used, bootstrap procedures such as the nonparametric variation

presented by Stoffer and Wall (1991) can be used to obtain the associated SE estimates. We do not

consider this particular approach here. Interested readers are referred elsewhere (Ho, Shumway, &

Ombao, 2006; Shumway & Stoffer, 2000) for examples and implementation details.
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 307

tween PA and NA is posited to change over time as a function of a time-

varying covariate, namely, activation level. When formulated within a dynamic

framework, we can further disentangle the directionality of the PA-NA linkage

by considering how the lead-lag relationship between PA and NA changes

over time. Specifically, we represent the reciprocal PA-NA linkages as cross-

regression parameters in a process factor analysis model (Browne & Nesselroade,

2005; McArdle, 1982) with vector autoregressive relations at the factor level. In

this regard, our modeling results offer a refinement of Zautra and colleagues’

model by providing insights into how the time dependencies between PA and

NA change as they vary in intensity levels.

In the context of a process factor analysis model, the correlation between

two latent factors (i.e., PA and NA) is a function of a number of time series

parameters (see, e.g., Browne & Nesselroade, 2005). We focus specifically on

capturing changes that arise from over-time fluctuations in the cross-regression

parameters. Doing so allows us to clarify whether changes in PA-NA linkage

stem more from changes in the PA ! NA or NA ! PA influence. Because

we do not have a time-varying indicator of stress or activation level in our

illustrative data set, we approximate the deviations in the PA ! NA and NA !

PA cross-regression parameters from their respective baseline values using a first-

order autoregressive [AR(1)] model. The proposed process factor analysis model

consists of two submodels. The first model, a measurement model, written as

y i;t D ƒ˜i;t C –i;t ; (1)

is used to express y i;t , a vector of manifest variables, as a linear function of

a vector of latent variables, ˜i;t , and unique variables, –i;t , with factor loading

matrix, ƒ.

The second model is a dynamic model that expresses the lagged relationships

among the latent variables over time. Our illustrative dynamic model consists

of four equations, written as

PAi;t D aP PAi;t�1 C bPN;i;t�1NAi;t�1 C —PA;i;t

NAi;t D aN NAi;t�1 C bNP;i;t�1PAi;t�1 C —NA;i;t

.bPN;i;t � “PN0/ D “PN1.bPN;i;t�1 � “PN0/ C —PN;i;t

.bNP;i;t � “NP 0/ D “NP1.bNP;i;t�1 � “NP 0/ C —NP;i;t ; (2)

where the latent variable vector, ˜i;t D ŒPAi;t NAi;t bPN;i;t bNP;i;t �
0

, includes

the two latent factors corresponding to person i ’s PA and NA factor score at

time t , respectively, the lag-1 NA ! PA cross-regression weight, bPN;i;t , and
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308 CHOW, ZU, SHIFREN, ZHANG

the corresponding lag-1 PA ! NA cross-regression weight, bNP;i;t . In other

words, an individual’s PA and NA are hypothesized to conform to a vector

AR(1) process with autoregression parameter aP and aN , respectively, and time-

varying cross-regression parameter, bPN;i;t and bNP;i;t , respectively. The cross-

regression parameters are formulated as latent variables whose changes over time

are represented using the third and fourth equations in Equation (2), referred to

herein as the AR(1) of differences model. In addition, we assume that all the

shock variables or process noise components, denoted as —i;t D Œ—PA;i;t —NA;i;t

—PN;i;t —NP;i;t �
0, are distributed as

—i;t � MVN

0
BB@

2
664

0

0

0

0

3
775 ;

2
664

¢2
—PA

¢—PA;—NA
0 0

¢—PA;—NA
¢2

—NA
0 0

0 0 ¢2
—PN

0

0 0 0 ¢2
—NP

3
775

1
CCA ; (3)

where MVN.�; †/ indicates a multivariate normal distribution with mean �

and covariance matrix †.

According to the AR(1) of differences model, within-person, over-time devia-

tions in the PA ! NA and NA ! PA cross-regression weights from the baseline

cross-regression weights (i.e., “PN0 and “NP 0) are hypothesized to fluctuate over

time following an AR(1) processs. The AR parameters, “PN1 and “NP1, govern

the rates at which such deviations diminish (if j“PN1j and j“NP1j < 1.0) or

amplify (if j“PN1j and j“NP1j � 1.0) over time, with higher values indicating

slower decay or greater amplifications. When j“PN1j and j“NP1j < 1.0, this is

consistent with the view that whenever individuals are “perturbed” or are moved

away from their affective equilibrium or “set-point,” they are able to regulate

their emotions by minimizing the discrepancies between their current emotion

states and their affective set-points (R. J. Larsen, 2000).

The specification in Equation (2) allows each individual to have his or

her own cross-regression weights, bPN;i;t and bNP;i;t , that are also allowed

to vary over time as latent variables. As distinct from conventional single-

subject time series analysis, we “borrow strengths” from all individuals’ data

in estimating the person-specific cross-regression weights by constraining 11

additional time series parameters to be equal across persons. These parameters

include (a) the AR(1) parameters for PA and NA, aP and aN ; (b) the baseline

lag-1 NA ! PA and PA ! NA cross-regression weights, “PN0 and “NP 0;

(c) the AR(1) parameters governing the fluctuations in cross-regression weights,

“PN1 and “NP1; and (d) the process noise variance and covariance parameters,

¢2
—PA

, ¢2
—NA

, ¢2
—PN

, ¢2
—NP

, and ¢—PA;—NA
. All parameters in the measurement equation

in Equation (1) are also constrained to be invariant across persons. Another

implication of the specification in Equation (2) is that current latent variable

scores in ˜i;t are indirectly affected by previous latent variable scores beyond
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 309

the immediately preceding time point and previous shock variables through the

effects encapsulated in ˜i;t�1.

Kitagawa (1981) referred to models with time-varying parameters as self-

organizing state-space models because the intrinsic dynamics of the modeling

parameters are capable of inducing complex dynamics in a system. The AR(1)

of differences model allows individuals’ PA and NA to “self-organize” over time

through changes in PA, NA, and the associated cross-regression weights. In this

way, PA and NA may fluctuate differently at different points in time: they may at

times fluctuate in ways that are entirely independent of each other (i.e., with zero

coupling or cross-regression influence); at other times, they may show opposing

(e.g., when NA is very high and PA is very low) as well as convergent trends

(e.g., during “bittersweet” moments when an individual reminisces about some

of their happiest times with a diseased spouse; J. T. Larsen, 2001). Examples of

these scenarios are depicted in Figure 1.

The modeling choice depicted in Equations (1) and (2) is simply one example

of the many time series models that can be used to describe patterns of change

in a multivariate time series.3 Other examples include the shock factor analysis

model (Molenaar, 1985) and vector autoregressive moving average (VARMA)

models for manifest variables. We chose the AR of differences model as an

approximation model because it is flexible enough to approximate a variety of

change trajectories, and the parameters in this model offer interesting insights

from an affect standpoint. From an estimation standpoint, allowing the cross-

regression weights to be estimated as latent variables introduces nonlinearity

into the model. For example, from Equation (2), the term bPN;i;t�1NAi;t�1 (and

by the same token, bNP;i;t�1PAi;t�1) involves the multiplication of two latent

variables, which constitutes a source of nonlinearity in the model. We account

for these nonlinearities using estimation techniques developed within the state-

space framework.

ESTIMATION PROCEDURES

Nonlinear State-Space Modeling Framework

The model summarized in Equations (1–2) can be viewed as a special case of a

3For instance, if stress is available as a time-varying covariate, the model for bNP;i;t can be

modified as bNP;i;t D “NP 0 C ”NP st ressi;t C —NP;i;t . The model for bPN;i;t is modified likewise.

Alternatively, if stress is represented as a latent variable (e.g., either as a true score or as a latent

factor indicated by multiple observed variables), the dynamic model can be further expanded to

represent stress and its associated changes as part of a vector autoregressive moving average [e.g.,

VARMA(1,1)] process influenced by previous stress, concurrent and previous random shocks as well

as the lagged effects of PA and NA. These alternative specifications offer even more direct ways of

assessing the Dynamic Model of Activation than the AR(1) of differences model used in this study.
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310 CHOW, ZU, SHIFREN, ZHANG

FIGURE 1 Hypothetical trajectories of positive affect (PA) and negative affect (NA)

generated using the first two equations in Equation (2) to illustrate the self-organizing

properties of models with time-varying parameters. In all scenarios, the equilibrium points of

PA and NA are set to be zero. Process noise was added to PA and NA only in scenario (d).

(a): bPN;i;t and bNP;i;t are constrained to be zero over time; (b): bNP;i;t becomes negative

when either PA or NA exceeds certain threshold values (specifically, lower than �.5 or

higher than .5). The negative weight of bNP;i;t leads to distinctly low NA levels while PA is

high (specifically, for t � 5); (c): bNP;i;t becomes positive when either PA or NA exceeds

the predefined threshold values. The positive weight of bNP;i;t leads to heightened levels of

NA while PA is high; (d): Both bNP;i;t and bPN;i;t are allowed to deviate from zero when

either PA or NA exceeds the predefined threshold values. PA and NA now show complex,

time-varying relationship with respect to each other contingent upon changes in the cross-

regression weights. Hyp PA & Hyp NA D hypothetical PA and NA, respectively; bPN D

bPN;i;t ; bNP D bNP;i;t .
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 311

nonlinear state-space model. Broadly speaking, a state-space model encompasses

a dynamic model and a measurement model. Our proposed model of interest is

a nonlinear multiple-subject or group-based state-space model wherein certain

modeling parameters are held invariant across persons and time. This nonlinear

model can be expressed as

˜i;t D g.˜i;t�1; ™; xi;t / C —i;t ; —i;t

i:i:d
� MVN.0; †—/ (4)

y i;t D h.˜i;t ; ™; xi;t / C –i;t ; –i;t
i:i:d
� MVN.0; †–/ (5)

˜i;1 � Nw.a; †0/; t D 1; : : : ; T I i D 1; : : : n;

where g.˜i;t ; ™; xi;t / is a set of differentiable linear or nonlinear regression

functions, ˜i;t is a w �1 vector of latent variables (also called “state variables”),

™ is a vector of time-invariant parameters, xi;t is a vector of time-varying

covariates, and —i;t is a vector of process noise components. h.˜i;t ; ™; xi;t / is

a set of differentiable linear or nonlinear regression functions dictating the

measurement relations between the latent variables and the p � 1 vector of

manifest variables y i t ; —i;t and –i;t are w � 1 and p � 1 vectors of process

noise and unique components, respectively. In the state-space context, initial

condition (specifically, the mean, a, and covariance matrix, †0) of the latent

variables, ˜i;1, has to be specified. Such information reflects the distributional

properties of the latent variables prior to the first observed time point. In our

empirical and simulation studies, we adopted a diffuse prior, namely, a was set

to be a vector of zeroes and †0 was set to be a diagonal matrix with large

values in its diagonal entries.

Whereas some similarities have been noted between the structural equation

modeling tradition and the linear counterpart of the state-space model depicted in

Equations (4–5) (S.-M. Chow & Zhang, 2008; MacCallum & Ashby, 1986; Ot-

ter, 1986; Oud, van den Bercken, & Essers, 1990), there have been very few

empirical applications involving nonlinear state-space models. Because different

measurement occasions of the same variables are treated as different manifest

variables within the structural equation modeling (SEM) framework, numerical

difficulties could arise in the structural equation framework in instances involving

large T , especially when T > N (for details see S.-M. Chow & Zhang, 2008;

Hamaker, Dolan, & Molenaar, 2003). In contrast, the state-space framework

is structured around a set of one-step-ahead difference equations (see, e.g.,

Equation (4)); the data likelihood function and the associated estimation tools are

well suited for handling data sets with larger T , even when T > N . Nonlinear

state-space models share the same merits as linear state-space models in terms

of their flexibility in handling data with longer time lengths. Because of the
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312 CHOW, ZU, SHIFREN, ZHANG

nonlinearities in Equations (4–5), however, standard linear estimation procedures

can no longer be used. Of all the nonlinear Kalman filter approaches, the

extended Kalman filter and the corresponding extended Kalman smoother is

by far the most commonly endorsed estimation approach (Gelb, 1974; Molenaar

& Newell, 2003). These are the estimation procedures adopted in the present

article.

The Extended Kalman Filter, the Extended Kalman
Smoother, and the Prediction Error Decomposition Function

Once a model has been expressed in state-space form, the extended Kalman

filter and the related extended Kalman smoother can be used to derive lon-

gitudinal factor or latent variable scores at each time point (i.e., estimates of

˜i;t conditional on the data). Specifically, suppose the data set Yi;t D ŒY 1;i;t ,

Y 2;i;t , : : : , Y p;i;t �
0 from person i is available, where Y k;i;t is itself a t � 1 time

series that contains the values of the kth manifest variable from time t D 1 to

t . The extended Kalman filter can be used to derive conditional state estimates

based on manifest observations up to time t (i.e., E.˜i;t jYi;t /), denoted herein as

˜i;tjt . Procedures for implementing the extended Kalman filter are summarized

in Equations (7–12) in the Appendix.

In one possible Kalman smoother, the fixed interval smoother (Anderson &

Moore, 1979), the aim is to derive conditional state estimates using all available

data (Anderson & Moore, 1979), yielding E.˜i;t jYi;T ), denoted herein as ˜i;tjT .

In practice, this can be accomplished by first performing the extended Kalman

filter procedure forward in time (i.e., from t D 1, : : : , T ; using Equations (7–

12)), followed by backward smoothing from t D T , : : : , 1 (see Equation (13)

in the Appendix) to yield smoothed estimates of the latent variables.

To estimate the person- (and time-) invariant parameters in ™, a log-likelihood

function, referred to herein as the multiple-subject prediction error decomposi-

tion function (Caines & Rissanen, 1974; Schweppe, 1965), can be constructed

using output from the extended Kalman filter. The specific nonlinear state-space

model considered in our empirical application has several features that simplify

estimation of the time-invariant parameters. In particular, all the nonlinearities

reside in the deterministic portion (i.e., not in the process noise components)

of the dynamic model (see Equation (2)) and the process noise components

enter the model in an additive fashion. Thus, provided that ˜i;1 and —i;t are

multivariate normally distributed (or alternatively, ˜i;1 is fixed), the conditional

distribution ˜i;t j ˜i;t�1 is also multivariate normally distributed. Subsequently,

because h.:/ consists only of linear functions, the distribution of y i;t jYi;t�1 is

also multivariate normally distributed if the uniquenesses in –i;t are multivariate

normally distributed. Thus, a raw data log-likelihood function can be constructed

based on the distribution of y i;t jYi;t�1 , which is simply a multivariate Gaussian
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 313

distribution.4 We refer to the corresponding log-likelihood function (see Equa-

tion (14) in the Appendix) as the multiple-subject version of the prediction error

decomposition function. This function can then be optimized with respect to the

modeling parameters in ™ to yield ML estimates of these parameters. Smoothed

latent variable scores can then be computed using the extended Kalman smoother

by fixing the parameter values at their ML estimates.

In sum, our proposed approach utilizes the extended Kalman filter, the ex-

tended Kalman smoother, and the prediction error decomposition function. This

results in ML point estimates for all the time-invariant parameters and smoothed

estimates of all the latent variables, including the cross-regression weights,

bPN;i;t and bNP;i;t . Standard errors of all the time-invariant parameters can be

obtained by taking the square root of the diagonal elements of I
�1, where I is the

observed information (i.e., negative numerical Hessian) matrix of the prediction

error decomposition function.

EMPIRICAL ILLUSTRATION

A set of previously published data (for details, see S.-M. Chow et al., 2004;

Shifren, Hooker, Wood, & Nesselroade, 1997) was used for empirical illustration

purposes. The sample consisted of 12 individuals (7 women, 5 men) who

had been diagnosed with Parkinson’s disease. The participants ages ranged

from 59 to 81 years (M D 68:75, SD D 7:24). They were instructed to give

daily self-reports of their feelings on a 5-point scale (with 1 representing not

at all and 5 representing all the time) with respect to 10 PA and 10 NA

items for 71 consecutive days. The PA items were enthusiastic, interested,

determined, excited, alert, active, strong, proud, inspired, and attentive. The

NA items included the following terms: scared, afraid, upset, nervous, ashamed,

guilty, distressed, jittery, irritable, and hostile.

Following the data-processing steps used in S.-M. Chow et al. (2004), we

used item parceling (Cattell, 1956, 1974; Kishton & Widaman, 1994) to derive

three composite indicators for PA and NA, respectively, using the raw item

4Note that standard structural equation modeling approaches of fitting dynamic factor models

to manifest variable lagged correlation or covariance matrices (e.g., Browne & Zhang, 2007; S.-M.

Chow et al., 2004; Molenaar, 1985; Molenaar & Nesselroade, 1998) cannot be used in the present

context because such approaches inherently assume stationarity whereas time-varying parameters

by definition produce nonstationarity. It is therefore necessary to perform model formulation and

estimation at the raw data level and the proposed approach provides one of the most computationally

efficient ways of doing so when the nonlinearity, normality, and additive noise assumptions

mentioned herein are met. The raw data approach endorsed here also provides a straightforward

way to incorporate additional trends into the dynamic model in Equation (4) by specifying time as

one of the time-varying covariates in xi;t if deemed necessary.
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314 CHOW, ZU, SHIFREN, ZHANG

scores. Linear trends were removed separately from each individual’s parcel

scores before further analysis. Inspection of the residuals revealed no evidence

for higher order trends. Based on the results reported in S.-M. Chow et al.

(2004), 10 out of the 12 participants were identified as showing homogeneous

lag-0 and lag-1 correlational structures using the homogeneity test proposed

by Nesselroade and Molenaar (1999). We thus used the detrended item parcel

scores from these 10 participants for model fitting purposes. Summary statistics,

lag-0, and lag-1 correlation matrices of the 10 participants’ pooled data are

shown in Table 1. Approximately 4% of all the measurement occasions were

missing, with missingness scattered randomly throughout the 71-day study span.

Assuming that the data were missing at random, the missingness can be handled

directly by the raw data likelihood form of the prediction error decomposition

function.

In S.-M. Chow et al. (2004), a time-invariant dynamic factor analysis model

with first-order vector autoregressive [VAR(1)] relations at the latent level was

fitted to these data. In the present context, the nonlinear state-space model

summarized in Equations (1) and (2) was fitted to the empirical data. Con-

sistent with the results reported in S.-M. Chow et al. (2004), the concurrent

covariance between the process noises of PA and NA was not statistically

TABLE 1

Summary Statistics, Lag-0, and Lag-1 Correlations Among the 6 Item Parcels

of the 10 Participants in the Empirical Data Set

P1;t P2;t P3;t N1;t N2;t N3;t

SD 0.53 0.56 0.47 0.50 0.46 0.39

Lag-0 P1;t 1.00

P2;t 0.34 1.00

P3;t 0.46 0.61 1.00

N1;t �0.30 �0.37 �0.37 1.00

N2;t �0.14 �0.31 �0.30 0.50 1.00

N3;t �0.21 �0.40 �0.32 0.67 0.52 1.00

Lag-1 P1;t�1 0.40 0.20 0.31 �0.19 �0.06 �0.17

P2;t�1 0.25 0.45 0.39 �0.30 �0.23 �0.29

P3;t�1 0.37 0.39 0.52 �0.29 �0.18 �0.26

N1;t�1 �0.25 �0.32 �0.27 0.42 0.29 0.37

N2;t�1 �0.10 �0.25 �0.18 0.24 0.27 0.22

N3;t�1 �0.16 �0.29 �0.24 0.36 0.29 0.42

Note. P1;j , P2;j , and P3;j are the three indicators for positive affect (PA) at time j (j D t

and t � 1); N1;j , N1;j , and N1;j are the three indicators for negative affect (NA) at time j . Linear

trends were removed from the parcel scores separately for each participant after these scores were

formed and the corresponding residuals were used for model fitting purposes. Thus, the means of

all parcels were, by definition, close to zero and are not reported here.
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 315

significant. In addition, the process noise variance for the NA ! PA cross-

regression parameter, ¢2
—PN

, was also not statistically significantly different from

zero. This, in conjunction with the finding that “PN1 was also not statistically

different from zero, indicated that the cross-regression effect from NA to PA

was statistically invariant over time. All other parameters were found to be

statistically different from zero. Parameter estimates from the final model in

which only the statistically significant parameters were retained are summarized

in Table 2. All subsequent discussions are based on this particular model.5

Compared with the fluctuations in NA, the participants’ fluctuations in PA

were characterized by greater variability (¢2
—PA

D .09, compared with ¢2
—NA

D

.03) and slower decay (aP D .54, compared with aN D .01). The smaller

process noise variance and near-zero autoregression weight of NA suggested that

individuals’ NA tended to fluctuate in small magnitudes and did not show strong

continuity beyond a particular day. Allowing the PA ! NA cross-regression

weight to vary over time led to two notable differences in our current results

compared with those reported in S.-M. Chow et al. (2004). First, the autoregres-

sive coefficient for NA, aN , was greatly attenuated (i.e., closer to zero) once the

lagged influence from PA to NA was allowed to vary over time. Second, whereas

the lagged influence between PA and NA, as a whole, was bidirectional in nature

(i.e., both “PN0 and “NP 0 were statistically different from zero), the coupling

effect from PA to NA was more volatile. Namely, the PA ! NA coupling effect

was found to show significant variations over time whereas the coupling effect

from NA to PA was time-invariant.

Smoothed estimates of all the latent variables, including the PA ! NA

and NA ! PA cross-regression weights, are shown in Figures 2–3 for the 10

participants.6 For 9 of the 10 participants, the coupling from PA ! NA became

more negative around the days when PA and NA showed opposite trends (i.e.,

when PA was high and NA was low, or vice versa). This can be seen, for instance,

in the estimates for Participant 1 around Day 10, Participant 2 around Day 10,

Participant 3 around Day 40, Participant 4 around Day 50, Participant 5 around

5It may be useful to mention that we also performed some additional exploratory analysis

before selecting this final model as our best-fitting model. For example, exploratory tests had been

performed elsewhere (S.-M. Chow et al., 2004) to determine the appropriate lag order of the VAR

process for this particular data set. We also performed a preliminary simulation study to evaluate the

empirical identifiability of the parameters in Equations (1) and (2) and a few other models prior to

choosing Equation (2) as our model for the time-varying cross-regression weights. Such exploratory

results are omitted here due to space constraints.
6Even though the NA ! PA coupling was found to be statistically invariant over time, the

associated trajectory of bPN;i;t , obtained by fixing “PN1 and ¢2
—PN

to be zero, constituted a special

case of the full model in Equation (2). We thus estimated the trajectory of bPN;i;t D “PN 0 by

means of the extended Kalman smoother as opposed to specifying this parameter as a time-invariant

parameter to be estimated by means of ML.
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TABLE 2

Parameter Estimates From the Best-Fitting Model

Parameters Estimates SE

œP1 = 1.00 —

œP 2 0.75 0.06

œP 3 0.84 0.05

œN1 = 1.00 —

œN 2 1.49 0.14

œN 3 1.80 0.17

aP 0.54 0.05

aN 0.01 0.004

“PN 0 �0.18 0.05

“NP 0 �0.26 0.10

“NP1 0.91 0.04

¢2
—PA

0.09 0.01

¢2
—NA

0.03 0.01

¢2
—NP

0.05 0.02

¢2
–P1

0.11 0.01

¢2
–P 2

0.15 0.01

¢2
–P 3

0.06 0.01

¢2
–N1

0.22 0.01

¢2
–N 2

0.18 0.01

¢2
–N 3

0.04 0.01

Note. Parameters that were set to zero in the final model included ¢2
—PN

,

“PN1, and covariances between the process noise components of different latent

variables. œP1 – œP 3 D factor loadings of positive affect (PA) on the three

observed PA parcels; œN1 – œN 3 D factor loadings of negative affect (NA)

on the three observed NA parcels; aP & aN D autoregressive weight for PA

and NA, respectively; “NP 0 & “PN 0 D baseline PA ! NA and NA ! PA

cross-regression weight, respectively; “NP1 & “PN1 D AR(1) parameter for the

deviations in PA ! NA and NA ! PA cross-regression weight, respectively;

¢2
—PA

, ¢2
—NA

, ¢2
—NP

and ¢2
—PN

D process noise variance for PA, NA, and the PA !

NA and NA ! PA cross-regression weights, respectively; ¢2
–P1

– ¢2
–N1

unique

variances of the observed parcel scores.

Day 35, Participant 6 around Day 10, Participant 8 after Day 50, Participant 9

between Days 45 and 55, and Participant 10 between Days 40 and 55.

For some participants, the PA ! NA coupling coefficient became notably

more positive when PA and NA showed converging trends (see, e.g., Participant 4

between Days 5 and 20 and Participant 9 between Days 2 and 18). Such incidents

where PA and NA ebbed and flowed concurrently with changes in the PA !

NA linkage help provide some insights into the dynamic changes that underlie

the “bittersweet” feelings discussed by affect researchers (J. T. Larsen, 2001).

That is, the increased positive coupling from PA to NA appears to be the driving

force in sustaining individuals’ bittersweet feelings over a longer time scale.
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FIGURE 2 Smoothed latent variable estimates for Participants 1 to 5.

Even though no causal statement can be made regarding the changes in

PA, NA, and bPN;i;t , our findings did lend partial support, and some potential

refinement to Zautra and colleagues’ (1997; Reich et al., 2003; Zautra et al.,

2000) Dynamic Model of Activation. Our empirical results suggest that one

way in which the correlation between PA and NA might change around the

more emotional days (e.g., the days on which both PA and NA are high or when

they show opposite trends) is through changes in the lagged influence of PA on

NA. That is, the changes in PA ! NA as opposed to NA ! PA coupling appear

to be the key driving force in altering the dynamic interrelationship between PA
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318 CHOW, ZU, SHIFREN, ZHANG

FIGURE 3 Smoothed latent variable estimates for Participants 6 to 10.

and NA. This may suggest, for instance, that it would be more difficult for an

individual to alter his or her ability to use yesterday’s low NA to increase today’s

PA (as the NA ! PA coupling tends to stay invariant over time) than learning

to draw on yesterday’s high PA to lower today’s NA.

The greater time-related volatility of the PA ! NA coupling may stem

from two important features of self-report PA and NA data, namely, (a) the

generally low variability of and lack of continuity in the NA reported by the

participants and (b) the relatively stable, high-amplitude fluctuations evidenced
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 319

in self-report PA.7 These features are not uncommon in retrospective self-report

affect data, however (see, e.g., Ram et al., 2005). They are regarded as part of

the participants’ subject experiences as opposed to mere data artifacts (Gilbert,

2007). In fact, another study that used a slightly different nonlinear dynamic

factor model to evaluate PA-NA linkage among a group of college students

(S.-M. Chow, Tang, Yuan, Song, & Zhu, 2011) also reported a similar finding,

namely, the PA ! NA, but not the NA ! PA coupling, was found to be

reliably different from zero. Collectively, these findings provide new insights

into the important role of PA in emotion regulation.

SIMULATION STUDY

Simulation Designs

The primary purpose of the simulation study is to demonstrate the performance

of the proposed methodological approach in recovering the true parameter val-

ues; their associated SEs; and the true latent variable scores, including values of

the time-varying parameters. Two combinations of sample sizes and time series

lengths were considered, namely, with T D 70, n D 10, and T D 28, n D 25.

The first condition was specifically selected to mirror the sample size/time series

length of our empirical data. The second condition was chosen to yield the same

total number of n � T observations and to provide a more realistic representation

of time series data available from the social and behavioral sciences (with T

being much smaller than 100). Missing data were not the focus of this study.

We included 4% of missingness in the simulated data following a missing

completely at random mechanism to yield comparable total sample size to our

empirical data.

The best-fitting model from empirical model fitting was used as a basis to

construct our simulation models. To mirror the parameter space of our empirical

illustration, the population values of all the time-invariant parameters were

chosen to closely approximate those obtained from empirical model fitting.

We set

ƒ D

2
664

1 :75 :84 0 0 0

0 0 0 1 1:49 1:80

0 0 0 0 0 0

0 0 0 0 0 0

3
775

0

.

The uniquenesses, –i;t , were specified to be normally distributed with zero means

and covariance matrix †– D diagŒ.11 .15 .06 .22 .18 .04]. The process noise

7Our results did not stem from difference in means between PA and NA, however, because all

model fitting was performed using the residual scores.
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320 CHOW, ZU, SHIFREN, ZHANG

covariance matrix was set to be †— D diagŒ.09 .03 .00 .05]. Thus, consistent with

the empirical finding that the cross-regression weight from NA to PA, bPN;i;t ,

did not show statistically significant fluctuations over time, the third diagonal

element of †—, ¢2
—NP

, was fixed at zero. In contrast, the cross-regression weight

from PA to NA, bNP;i;t , was specified to fluctuate over time according to three

hypothesized models, denoted here as (1) the true model, (2) a time-invariant

model, and (3) a discrete-change model. This yielded a total of 2 (sample

size/time series length combinations) � 3 (change scenarios) D 6 conditions

in our simulation study. We conducted N = 8,000 Monte Carlo replications for

each condition. The same dynamic model (i.e., Equation (2)) was fitted to the

data from all conditions.

(1) True model. In the first condition, the true cross-regression weights

were specified to change according to the AR(1) of differences model sum-

marized in Equation (2). The parameter values were set to be the same as the

estimates from empirical model fitting (see Table 2), with aP D 0.54, aN D 0.01,

“PN0 D -0.18, “NP 0 D �0.26, “PN1 D 0.00, and bPN1 D 0.91. With “PN1 and

¢2
—NP

set to zero, the coupling effect from NA to PA reduced to a time-invariant

value, namely, bPN;i;t D “PN0 D �0.18. The coupling effect from PA to NA, in

contrast, were specified to show variations over time. Because the fitted model

was the true model on which data generation was based, this condition served

as a baseline condition against which other conditions were compared.

(2) Time-invariant model. In this condition, both of the cross-regression

weights were specified to be invariant over time. This is a special case of the

full AR(1) of differences model, with the last diagonal element in †— (i.e., ¢2
—NP

)

as well as “NP1 set to zero. This condition provided a basis for testing Type I

error rate, namely, the probability that a time-invariant parameter was incorrectly

concluded to be time-varying. All other parameter values remained the same as

in Condition 1.

(3) Discrete-change model. In this condition, the true PA ! NA cross-

regression weight was specified to show discrete changes as

bNP;i;t D

8
<̂

:̂

�:26 if t � integer.T=3/

:26 if integer.T=3/ < t � 2 � integer.T=3/

�:26 if t > 2 � integer.T=3/;

(6)

whereas bNP;i;t was still specified to be invariant over time as in Conditions 1

and 2. All other parameter values remained the same as in Condition 1. In this

condition, the fitted model in Equation (2), which posits that bNP;i;t changes
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over time in a continuous manner, was used to approximate the discrete shifts

in bNP;i;t . This condition thus provided one way of testing the extent to which

the point and SE estimates obtained from the proposed procedures were affected

by the presence of model misspecification.

Simulation Results

Latent variable estimation and recovery of the time-varying parameter.

To provide a brief demonstration of the performance of the extended Kalman

smoother in recovering latent variable scores, the latent variable estimates from

one randomly selected Monte Carlo replication in Conditions 1–3, with n D
10 and T D 70, were plotted in Figures 4a–c. It can be seen that in Condition

2, the time-invariant bPN;i;t can in fact be represented as a special case of a

time-varying parameter with no change (see Panel b). In Condition 3, despite

the presence of mild model misspecification, the proposed model still yielded

reasonable approximation to the discrete shifts in the time-varying parameter.

However, substantial approximation errors were observed near the turning points,

as would be expected.

Results from estimating all the latent variable scores using the extended

Kalman filter and the extended Kalman smoother are summarized in Table 3.

TABLE 3

Root Mean Squared Errors (RMSEs) of the Latent Variable Estimates Across

All Time Points for All Conditions

T D 70, n D 10 T D 28, n D 25

Model Variable EKF EKS EKF EKS

True model PAi;t 0.178 0.165 0.176 0.164

NAi;t 0.104 0.103 0.102 0.101

bPN;i;t 0.045 0.045 0.051 0.051

bNP;i;t 0.404 0.326 0.405 0.338

Time-invariant model PAi;t 0.184 0.172 0.189 0.176

NAi;t 0.099 0.099 0.103 0.103

bPN;i;t 0.073 0.073 0.075 0.075

bNP;i;t 0.039 0.046 0.042 0.049

Discrete-change PAi;t 0.178 0.169 0.176 0.168

model NAi;t 0.100 0.099 0.098 0.098

bPN;i;t 0.060 0.060 0.062 0.062

bNP;i;t 0.273 0.232 0.265 0.240

Note. EKF D Extended Kalman filter; EKS D Extended Kalman smoother; RMSE in this case

is defined to be the square root of the mean squared error between each latent variable’s true and

estimated scores across all time points and persons.
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322 CHOW, ZU, SHIFREN, ZHANG

FIGURE 4 The true and latent variable estimates obtained using the extended Kalman

smoother when the model in Equation (2) was fitted to data generated during one Monte

Carlo replication with n D 10 and T D 70 using (a) the true model, (b) a time-invariant

model that is nested within the true model, and (c) a model dictating discrete changes in

bNP;i;t (i.e., a misspecified model).
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When the true model was fitted, both the extended Kalman filter and the extended

Kalman smoother performed well in estimating factor scores. Greater root mean

squared errors (RMSEs) were observed in the estimates of the time-varying

parameter, bNP;i;t , than all other latent variables. In particular, although PAi;t

was associated with a larger process noise or shock variance, which often leads to

greater estimation errors, lower RMSEs were observed in the estimates of PAi;t

than in the estimates of bNP;i;t . This is to be expected, however. It is generally

more difficult to track time-varying parameters than latent factors because a time-

varying parameter is not indicated directly by an observed variable but rather

is identified indirectly through its linkage to other latent factors (i.e., PAi;t

and NAi;t ). Thus, time-varying parameters tend to share less covariance with

the observed time series than the latent factors, thus yielding smaller values

in the gain matrices, Ki;t D Cov.˜i;t ; y i;t / Var.y i;t /
�1, in the updating stage.

Longer time series lengths (i.e., T ) are typically needed to track changes in

time-varying parameters, especially when a diffuse prior is used. In contrast,

the RMSE of bPN;i;t was much smaller because this parameter did not vary

over time.

Generally, improvements in estimation accuracy due to smoothing are greater

when the process noise variances are large.8 Thus, improvements from smooth-

ing when the extended Kalman smoother, as opposed to the extended Kalman

filter, was used were particularly pronounced in the estimation of the time-

varying parameter, bNP;i;t . Slight improvements were also observed when the

extended Kalman smoother was used to estimate the factor scores of PAi;t but

not NAi;t . This is not surprising because the former was characterized by a larger

process noise variance (¢2
—PA

D 0:09) than the latter (¢2
—NA

D 0:03). No difference

was observed between the filtered and smoothed estimates of the time-invariant

bPN;i;t , whose process noise variance was equal to zero.

Condition 2 constituted a somewhat extreme case in that two latent variables

(the two cross-regression weights) had zero process noise variances. It can be

seen that the smoothed estimates of bNP;i;t from the extended Kalman smoother

were actually characterized by a larger RMSE than the filtered estimates from

the extended Kalman filter. In most Monte Carlo runs, estimation errors from the

extended Kalman smoother are typically close to or equal to those associated

with the filtered estimates. Larger errors were observed among the smoothed

estimates, however, in Monte Carlo trials where “NP1, whose true population

value was equal to zero, was estimated to have a negative value. Under such

a circumstance, incorporating more measurement occasions actually captured

8This is related to the smoothability condition of a dynamic system. A latent variable is said

to be smoothable if the smoother provides more accurate predictions than those obtained from

running the Kalman filter backward in time. Only latent variables that are driven by process noise

are smoothable (for details see Gelb, 1974; Thijssen, de Jong, Kateman, & Smit, 1985).
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324 CHOW, ZU, SHIFREN, ZHANG

some of the rapid, noisy fluctuations around the baseline cross-regression pa-

rameter, “NP 0, thus resulting in higher RMSEs for the smoothed estimates. This

was not the case for the other time-invariant cross-regression parameter, bPN;i;t ,

because in the fitted model, parameters such as “PN0 and ¢2
—PN

were already

fixed at the true population value of zero.

In Condition 3 where the fitted model was misspecified, most of the latent

variable estimates actually showed lower RMSEs than those observed in Con-

dition 1 in which the true model was fitted. This was because the time-varying

parameter bNP;i;t only showed deterministic shifts at selected time points that

were easier to track compared with Condition 1 in which an AR(1) of differences

process was used as the true model. This result, of course, was specific to the

type of misspecification adopted in the present context.

Estimation of time-invariant parameters. Statistical properties of the ML

estimators across all conditions are summarized in Tables 4–9. The RMSE and

relative bias were used to quantify the performance of the ML point estimator.

The empirical SE of a parameter (i.e., the standard deviation of the parameter

estimates across all Monte Carlo runs) was used as the “true” standard error. We

also included the estimated coefficient of variation (dCV ) and average relative

deviance of an SE estimate (aRDSE) of an estimator. dCV is defined to be the

ratio between the empirical SE to the mean parameter estimates. It measures the

relative variation of an estimator. The aRDSE is the difference between an SE

estimate and the true SE over the true SE, averaged across Monte Carlo runs. It

is a measure of the relative performance of the SE estimates.

Ninety-five percent confidence intervals (CIs) were constructed for each of

the N D 8; 000 simulation samples in each condition by adding and subtracting

1.96*SE estimate in each replication to the parameter estimate from the replica-

tion. The coverage performance of a CI was assessed with its empirical coverage

rates, namely, the proportion of 95% CIs covering ™ across the 8,000 samples.

For a parameter whose true value was equal to zero, 1 minus this coverage rate

served as a measure of Type I error rate.

Comparing across the two sample size configurations, the design with T D

70 and n D 10 generally yielded point estimates with lower RMSEs and relative

biases compared with the condition where T D 28 and n D 25 across all change

scenarios. When the true model was fitted to the simulated data (Condition

1), the point estimates were generally unbiased, except that the autoregression

parameter for NA, aN , was overestimated. All SE estimates were close to the true

empirical standard errors, with the exception of the slightly larger aRDSE for

aN and “PN0. Slightly more precise SE estimates were observed in the condition

with larger T , but the differences were relatively minor. The empirical coverage

rates of the CI for aN , “PN0 , “NP 0, ¢2
—NA

; and ¢2
—NP

were smaller than the 95%

nominal rate, whereas those associated with other parameters were close to 95%.
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DYNAMIC FACTOR MODELS WITH TIME-VARYING PARAMETERS 325

TABLE 4

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the True Model Condition (Condition 1) With T D 70, n D 10

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.75 0.005 �0.008 0.05 0.07 0.05 0.00 .96

œP 3 0.84 0.84 0.005 �0.005 0.05 0.06 0.05 �0.02 .95

œN 2 1.49 1.51 0.016 0.011 0.12 0.08 0.12 �0.02 .96

œN 3 1.80 1.82 0.024 0.013 0.15 0.08 0.14 �0.06 .95

aP 0.54 0.52 0.021 �0.039 0.04 0.08 0.04 �0.02 .93

aN 0.01 0.05 0.037 3.681 0.06 1.26 0.05 �0.23 .80

“PN 0 �0.18 �0.18 0.008 0.047 0.06 �0.30 0.04 �0.34 .81

“NP 0 �0.26 �0.27 0.009 0.033 0.11 �0.42 0.10 �0.14 .91

“NP1 0.91 0.90 0.011 �0.012 0.04 0.04 0.03 �0.15 .94

¢2
—PA

0.09 0.09 0.002 0.024 0.01 0.10 0.01 0.02 .96

¢2
—NA

0.03 0.04 0.005 0.182 0.01 0.17 0.01 �0.03 .89

¢2
—NP

0.05 0.05 0.001 0.015 0.02 0.42 0.02 �0.12 .89

¢2
–P1

0.11 0.11 0.001 �0.010 0.01 0.08 0.01 �0.02 .94

¢2
–P 2

0.15 0.15 0.000 �0.002 0.01 0.06 0.01 0.00 .95

¢2
–P 3

0.06 0.06 0.000 �0.006 0.01 0.09 0.01 �0.02 .95

¢2
–N1

0.22 0.22 0.000 0.001 0.01 0.06 0.01 0.02 .95

¢2
–N 2

0.18 0.18 0.000 �0.002 0.01 0.07 0.01 �0.03 .94

¢2
–N 3

0.04 0.04 0.001 �0.011 0.04 0.28 0.01 �0.06 .95

Note. ™ D true value of a parameter; aO™ D 1
N

PN
kD1

O™k , where O™k D estimate of ™ from the

kth Monte Carlo replication; root mean squared error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D

relative bias D 1
N

PN
k .O™k � ™/=™; SE D standard deviation of estimates across Monte Carlo runs;

dC V D estimated coefficient of variation D SE=aO™; adSE D average standard error estimate across

Monte Carlo runs; aRDSE D average relative deviance of dSE D .adSE � SE/=SE; coverage D

number of 95% confidence intervals across the Monte Carlo runs that contain the true ™.

The affected parameters were generally parameters in the dynamic model that

had smaller effect sizes (i.e., their true values were very close to zero).

As in Condition 1, parameters whose true population values were close to zero

also tended to show larger biases and lower coverage rates in the time-invariant

condition (i.e., Condition 2). Some of the dCV values (e.g., those for aN and

“NP1) were arbitrarily inflated in this case by the near-zero point estimates even

though the associated empirical SEs were not very large. Estimates for “NP1,

whose true population value was equal to zero, were negatively biased with in-

flated Type I error rates. When compared with the average SE estimates across all

Monte Carlo runs (i.e., adSE), the mean parameter estimates (i.e., aO™ in Tables 6

and 7) did not differ significantly from zero. However, the null hypothesis that

“NP1 D 0 in the population was incorrectly rejected in 33% and 30% of the

Monte Carlo runs, respectively, for T D 70 and T D 28, yielding relatively
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TABLE 5

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the True Model Condition (Condition 1) With T D 28, n D 25

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.74 0.015 �0.019 0.05 0.07 0.05 �0.02 .94

œP 3 0.84 0.83 0.014 �0.017 0.05 0.06 0.05 �0.02 .93

œN 2 1.49 1.52 0.033 0.022 0.13 0.09 0.12 �0.07 .95

œN 3 1.80 1.85 0.049 0.027 0.16 0.08 0.14 �0.10 .94

aP 0.54 0.50 0.043 �0.079 0.04 0.08 0.04 �0.02 .93

aN 0.01 0.07 0.059 5.908 0.07 1.00 0.04 �0.39 .61

“PN 0 �0.18 �0.20 0.024 �0.131 0.06 �0.29 0.04 �0.34 .79

“NP 0 �0.26 �0.28 0.021 0.081 0.14 �0.51 0.11 �0.20 .92

“NP1 0.91 0.90 0.010 �0.011 0.04 0.05 0.04 �0.15 .93

¢2
—PA

0.09 0.10 0.005 0.050 0.01 0.10 0.01 0.02 .95

¢2
—NA

0.03 0.04 0.006 0.188 0.01 0.18 0.01 �0.05 .89

¢2
—NP

0.05 0.05 0.000 �0.003 0.02 0.47 0.02 �0.15 .86

¢2
–P1

0.11 0.11 0.002 �0.017 0.01 0.08 0.01 �0.02 .94

¢2
–P 2

0.15 0.15 0.000 �0.002 0.01 0.06 0.01 �0.02 .95

¢2
–P 3

0.06 0.06 0.000 �0.005 0.01 0.09 0.01 �0.03 .94

¢2
–N1

0.22 0.22 0.001 0.002 0.01 0.06 0.01 0.00 .96

¢2
–N 2

0.18 0.18 0.000 0.002 0.01 0.07 0.01 �0.02 .95

¢2
–N 3

0.04 0.04 0.001 �0.031 0.01 0.30 0.01 �0.09 .94

Note. ™ D true value of a parameter; aO™ D 1
N

PN
kD1

O™k , where O™k D estimate of ™ from the

kth Monte Carlo replication; root mean squared error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D

relative bias D 1
N

PN
k .O™k � ™/=™; SE D standard deviation of estimates across Monte Carlo runs;

dC V D estimated coefficient of variation D SE=aO™; adSE D average standard error estimate across

Monte Carlo runs; aRDSE D average relative deviance of dSE D .adSE � SE/=SE; coverage D

number of 95% confidence intervals across the Monte Carlo runs that contain the true ™.

high Type I error rates. The longer time series length in the T D 70 condition

actually led to slightly greater negative bias in the estimates of “NP1 on average.

In both sample size conditions, the now time-invariant bNP;i;t was estimated to

show rapid, random fluctuations around “NP 0, as reflected in the negative value

of “NP1.9 Other parameters were accurately recovered and the corresponding

SEs were also close to the true SEs despite the elevated Type I error rates.

In the discrete-change condition (i.e., Condition 3), aN was found to be

overestimated. The SEs of the time-varying parameter-related parameters (e.g.,

9Post hoc evaluations of the “NP1 estimates in all Monte Carlo trials revealed that the generally

high biases associated with “NP1 in both sample size conditions were due largely to the existence

of a few extreme outliers. We retained all cases, however, to give a more realistic summary of the

simulation results.
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TABLE 6

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the Time-Invariant Condition (Condition 2) With T D 70, n D 10

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.75 0.005 �0.006 0.06 0.08 0.06 �0.01 .93

œP 3 0.84 0.84 0.005 �0.006 0.05 0.06 0.05 �0.01 .94

œN 2 1.49 1.46 0.028 �0.019 0.17 0.12 0.17 0.00 .92

œN 3 1.80 1.75 0.053 �0.029 0.22 0.12 0.22 �0.01 .90

aP 0.54 0.53 0.013 �0.024 0.05 0.09 0.05 �0.01 .93

aN 0.01 0.01 0.001 0.121 0.05 4.19 0.05 0.03 .95

“PN 0 �0.18 �0.18 0.003 0.014 0.09 �0.50 0.06 �0.35 .80

“NP 0 �0.26 �0.27 0.008 0.031 0.04 �0.16 0.04 �0.03 .93

“NP1 0.00 �0.12 0.122 —* 0.50 �4.09 0.51 0.02 .67

¢2
—PA

0.09 0.09 0.001 0.014 0.01 0.11 0.01 0.01 .94

¢2
—NA

0.03 0.03 0.001 0.032 0.01 0.21 0.01 0.02 .94

¢2
—NP

0.00 0.01 0.006 —* 0.01 1.67 0.01 �0.23 .93

¢2
–P1

0.11 0.11 0.001 �0.009 0.01 0.08 0.01 �0.01 .94

¢2
–P 2

0.15 0.15 0.000 �0.001 0.01 0.06 0.01 0.00 .94

¢2
–P 3

0.06 0.06 0.000 0.001 0.01 0.10 0.01 �0.02 .94

¢2
–N1

0.22 0.22 0.001 �0.006 0.01 0.06 0.01 0.00 .93

¢2
–N 2

0.18 0.18 0.002 �0.009 0.01 0.07 0.01 �0.02 .93

¢2
–N 3

0.04 0.04 0.001 0.034 0.01 0.29 0.01 �0.03 .93

Note. —* D undefined due to division by zero; ™ D true value of a parameter; aO™ D
1
N

PN
kD1

O™k , where O™k D estimate of ™ from the kth Monte Carlo replication; root mean squared

error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D relative bias D 1

N

PN
k .O™k � ™/=™; SE D standard

deviation of estimates across Monte Carlo runs; dC V D estimated coefficient of variation D SE=aO™;

adSE D average standard error estimate across Monte Carlo runs; aRDSE D average relative deviance

of dSE D .adSE �SE/=SE; coverage D number of 95% confidence intervals across the Monte Carlo

runs that contain the true ™.

“PN0 , “NP 0, “NP1, and ¢2
—NP

) were slightly underestimated. In addition, the

empirical coverage rates of the CIs for aN and “PN0 were also lower than the

95% nominal rate. All other point and SE estimates were essentially unbiased.

In particular, point and SE estimates for all the parameters in the measurement

model were robust to the misspecification of the dynamic model of bNP;i;t .

In fact, because the time-varying parameter only showed deterministic shifts

at selected time points that were easier to track compared with Condition 1 in

which the AR(1) of differences process was used as the true model, the biases in

the measurement parameters were actually lower in the misspecificied condition.

It is important to note that auto- and cross-regression parameters (and other

associated parameters that govern their dynamics, such as “PN0, “NP 0, and “NP1)

are generally correlated. For instance, the correlations between the estimates
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TABLE 7

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the Time-Invariant Condition (Condition 2) With T D 28, n D 25

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.74 0.013 �0.017 0.06 0.08 0.06 �0.02 .93

œP 3 0.84 0.83 0.013 �0.016 0.05 0.06 0.05 �0.01 .93

œN 2 1.49 1.41 0.082 �0.055 0.16 0.11 0.16 0.03 .88

œN 3 1.80 1.65 0.153 �0.085 0.18 0.11 0.19 0.04 .82

aP 0.54 0.51 0.034 �0.064 0.05 0.10 0.05 �0.03 .89

aN 0.01 0.01 0.002 0.232 0.04 3.50 0.05 0.08 .96

“PN 0 �0.18 �0.19 0.012 0.064 0.09 �0.49 0.06 �0.35 .80

“NP 0 �0.26 �0.28 0.021 0.082 0.04 �0.16 0.04 �0.03 .94

“NP1 0.00 �0.09 0.091 —* 0.47 �5.18 0.45 �0.05 .70

¢2
—PA

0.09 0.09 0.003 0.032 0.01 0.11 0.01 0.03 .95

¢2
—NA

0.03 0.03 0.003 0.107 0.01 0.20 0.01 0.02 .95

¢2
—NP

0.00 0.01 0.007 —* 0.01 1.70 0.01 �0.24 .96

¢2
–P1

0.11 0.11 0.002 �0.014 0.01 0.09 0.01 �0.02 .93

¢2
–P 2

0.15 0.15 0.000 �0.002 0.01 0.07 0.01 �0.02 .94

¢2
–P 3

0.06 0.06 0.000 0.001 0.01 0.10 0.01 �0.01 .94

¢2
–N1

0.22 0.22 0.002 �0.010 0.01 0.06 0.01 0.00 .94

¢2
–N 2

0.18 0.18 0.003 �0.014 0.01 0.07 0.01 0.00 .93

¢2
–N 3

0.04 0.04 0.004 0.106 0.01 0.25 0.01 0.02 .93

Note. —* D undefined due to division by zero; ™ D true value of a parameter; aO™ D
1
N

PN
kD1

O™k , where O™k D estimate of ™ from the kth Monte Carlo replication; root mean squared

error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D relative bias D 1

N

PN
k .O™k � ™/=™; SE D standard

deviation of estimates across Monte Carlo runs; dC V D estimated coefficient of variation D SE=aO™;

adSE D average standard error estimate across Monte Carlo runs; aRDSE D average relative deviance

of dSE D .adSE�SE/=SE; coverage D number of 95% confidence intervals across the Monte Carlo

runs that contain the true ™.

of aP and “PN0 across all Monte Carlo replications were .43, �.17, and .36,

respectively, in Conditions 1–3 when n = 10 and T D 70. Thus, biases in

estimating some of these parameters may “spill over” to influence other related

parameters. In our simulation results in Condition 2, we found that aN , whose

true value was close to zero and showed relatively high biases in Conditions

1 and 3, was characterized by very low biases in Condition 2 for both sample

size configurations. This is because the time-invariant model in Condition 2

is a simpler model than the simulation models employed in Conditions 1 and

3. When both of the cross-regression parameters were invariant over time, it

was easier to recover the autoregression parameters accurately even when one

of them (i.e., aN ) was characterized by a very small effect size. By the same

token, if supposedly time-varying cross-regression parameters were constrained
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TABLE 8

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the Discrete-Change Condition (Condition 3) With T D 70, n D 10

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.75 0.003 �0.005 0.06 0.08 0.06 �0.01 .96

œP 3 0.84 0.84 0.003 �0.004 0.05 0.06 0.05 �0.01 .95

œN 2 1.49 1.48 0.013 �0.009 0.15 0.10 0.15 �0.01 .95

œN 3 1.80 1.76 0.038 �0.021 0.19 0.11 0.19 �0.03 .93

aP 0.54 0.52 0.017 �0.033 0.04 0.08 0.04 0.00 .94

aN 0.01 0.04 0.026 2.589 0.06 1.62 0.05 �0.17 .86

“PN 0 �0.18 �0.18 0.003 0.017 0.07 �0.41 0.05 �0.38 .80

“NP 0 NA �0.15 NA NA 0.12 �0.83 0.07 �0.45 NA

“NP1 NA �0.12 NA NA 0.07 0.08 0.05 �0.33 NA

¢2
—PA

0.09 0.09 0.002 0.017 0.01 0.11 0.01 0.01 .96

¢2
—NA

0.03 0.03 0.004 0.140 0.01 0.19 0.01 0.00 .94

¢2
—NP

NA 0.01 NA NA 0.02 0.72 0.01 �0.37 NA

¢2
–P1

0.11 0.11 0.001 �0.009 0.01 0.08 0.01 �0.02 .94

¢2
–P 2

0.15 0.15 0.000 �0.003 0.01 0.06 0.01 �0.01 .95

¢2
–P 3

0.06 0.06 0.000 �0.005 0.01 0.09 0.01 0.00 .96

¢2
–N1

0.22 0.22 0.001 �0.003 0.01 0.06 0.01 0.03 .95

¢2
–N 2

0.18 0.18 0.002 �0.008 0.01 0.08 0.01 �0.03 .94

¢2
–N 3

0.04 0.04 0.001 0.034 0.01 0.30 0.01 �0.03 .95

Note. NA D not applicable because true parameter does not exist; ™ D true value of a

parameter; aO™ D 1
N

PN
kD1

O™k , where O™k D estimate of ™ from the kth Monte Carlo replication; root

mean squared error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D relative bias D 1

N

PN
k .O™k � ™/=™;

SE D standard deviation of estimates across Monte Carlo runs; dC V D estimated coefficient of

variation D SE=aO™; adSE D average standard error estimate across Monte Carlo runs; aRDSE D

average relative deviance of dSE D .adSE � SE/=SE; coverage D number of 95% confidence

intervals across the Monte Carlo runs that contain the true ™.

and estimated as time-invariant parameters, the misspecification would likely

affect not only the cross-regression but also the autoregression parameters. In

the present context, we allowed the cross-regression parameters but not the

autoregression parameters to be time-varying parameters for theoretical and

practical reasons. Better diagnostic tests are needed to help assess the need

to incorporate other modeling parameters as time-varying parameters.

Summary of simulation results. Several key conclusions can be drawn

from our simulation results. First, improvements in estimation accuracy when

the extended Kalman smoother as opposed to the extended Kalman filter was

used were more substantial when the process noise variances were large. The

advantage of smoothing was especially salient in deriving latent variable esti-

mates for time-varying parameters. Second, the point and SE estimates obtained
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TABLE 9

Summary Statistics Pertaining to the Point and SE Estimates for the Time-Invariant

Parameters in the Discrete-Change Condition (Condition 3) With T D 28, n D 25

Parameter ™ aO™ RMSE rBias SE dC V adSE aRDSE Coverage

œP 2 0.75 0.74 0.014 �0.019 0.06 0.08 0.06 �0.01 .94

œP 3 0.84 0.83 0.014 �0.016 0.05 0.06 0.05 �0.01 .93

œN 2 1.49 1.48 0.007 �0.004 0.16 0.11 0.14 �0.11 .93

œN 3 1.80 1.77 0.033 �0.018 0.21 0.12 0.17 �0.18 .89

aP 0.54 0.50 0.038 �0.070 0.05 0.09 0.04 �0.05 .86

aN 0.01 0.07 0.055 5.511 0.07 1.03 0.04 �0.34 .66

“PN 0 �0.18 �0.19 0.014 0.075 0.07 �0.38 0.05 �0.37 .79

“NP 0 NA �0.19 NA NA 0.16 �0.80 0.08 �0.51 NA

“NP1 NA �0.09 NA NA 0.14 0.17 0.08 �0.46 NA

¢2
—PA

0.09 0.09 0.004 0.045 0.01 0.11 0.01 0.02 .96

¢2
—NA

0.03 0.04 0.006 0.189 0.01 0.18 0.01 �0.01 .91

¢2
—NP

NA 0.007 NA NA 0.02 0.54 0.02 �0.11 NA

¢2
–P1

0.11 0.11 0.002 �0.017 0.01 0.08 0.01 �0.02 .94

¢2
–P 2

0.15 0.15 0.000 �0.002 0.01 0.06 0.01 �0.01 .95

¢2
–P 3

0.06 0.06 0.000 �0.002 0.01 0.09 0.01 �0.02 .95

¢2
–N1

0.22 0.22 0.001 �0.003 0.01 0.06 0.01 �0.01 .95

¢2
–N 2

0.18 0.18 0.001 �0.008 0.01 0.07 0.01 �0.01 .95

¢2
–N 3

0.04 0.04 0.001 0.036 0.01 0.30 0.01 �0.07 .93

Note. NA D not applicable because true parameter does not exist; ™ D true value of a

parameter; aO™ D 1
N

PN
kD1

O™k , where O™k D estimate of ™ from the kth Monte Carlo replication; root

mean squared error (RMSE) D

q
1
N

PN
kD1.O™k � ™/2; rBias D relative bias D 1

N

PN
k .O™k � ™/=™;

SE D standard deviation of estimates across Monte Carlo runs; dC V D estimated coefficient of

variation D SE=aO™; adSE D average standard error estimate across Monte Carlo runs; aRDSE D

average relative deviance of dSE D .adSE � SE/=SE; coverage D number of 95% confidence

intervals across the Monte Carlo runs that contain the true ™.

from the proposed approach were generally satisfactory, although parameters

with very small effect sizes tended to show greater biases and lower coverage

rates. Third, when all the modeling assumptions were approximately valid (e.g.,

all individuals were independent samples from the same population and model

misspecification was mild), increasing the number of time points generally led

to more accurate results than increasing the number of participants. Fourth, rela-

tively high Type I error rates (i.e., proportions of cases where the time-invariant

bNP;i t were incorrectly identified as time-varying) were observed in the time-

invariant condition. Better diagnostic tests are thus needed to supplement the

simple measure of using the statistical significance of the process noise variance

of a time-varying parameter to determine whether the parameter indeed varies

over time. Fifth, when the dynamic process governing a time-varying parameter

was misspecified, some of the dynamic parameters were affected by the model
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misspecification but all the measurement parameters were unaffected. The extent

of the bias depends on the nature and degree of model misspecification.

DISCUSSION

In this article, we represented time-varying parameters in a dynamic factor

analysis model as latent variables and estimated their trajectories jointly with

other latent variables (e.g., latent factors). The techniques considered in this

article expand the work of many others who have used both exploratory as

well as confirmatory methods to represent changes in the statistical properties

of a system over time—namely, nonstationarities. Directly relevant is the work

of Molenaar and colleagues (Molenaar, 1994b; Molenaar et al., 1992), who

presented some of the first applications of dynamic factor analysis model with

time-varying parameters in psychology, and Heath (2000), who used the Kalman

filter to detect sudden changes in the parameters of AR models.

The AR(1) of differences model used as approximation model in this article

is but one possible model of change. This model serves as a reasonable approx-

imation to change processes that are expected to fluctuate around a baseline in

a less systematic manner (i.e., stochastically) while still allowing for the special

case of a time-invariant process. This is consistent with our conceptualization

of how the linkage between PA and NA changes over time. In cases where the

changes are expected to unfold in other distinct ways (e.g., showing unbounded

fluctuations or fluctuations around a changing mean, increasing/decreasing as a

linear function of time, manifesting stepwise monotonic increase/decrease as a

function of time), this model may not be appropriate. In instances where pre-

conceived notions of the change processes involved are unclear or unavailable,

other nonparametric models (e.g., polynomial and spline-based models; Harvey,

2001; Molenaar, 1994b; Ramsay & Silverman, 2005) may be used.

We took a group-based approach to constructing our illustrative examples.

Whether such group-based assumptions are tenable in practice is a separate

but important issue that deserves more thorough evaluations (Molenaar, 2004).

In this article, we capitalized on a set previously published data in which the

assumption of homogeneity across individuals had already been tested (S.-M.

Chow et al., 2004) to illustrate the proposed techniques. Along a similar line,

the extent to which different individuals show homogeneous factor structure that

warrants pooling also deserves careful consideration (Hamaker et al., 2005).

In our empirical analysis, we used item parceling to eliminate some of the

idiosyncratic interindividual differences in factor structure prior to model fitting.

Researchers who undertake this group-based approach to modeling in the future

should exercise caution in choosing between modeling at the individual versus

group level.
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Parameters in the measurement model were found to be unaffected by specifi-

cation errors in the dynamic model for the time-varying parameter. This finding

is potentially attributable to the orthogonality of the measurement parameters

with respect to the dynamic parameters that were misspecified. This issue was

discussed in the context of structural equation models by Yuan, Marshall, and

Bentler (2003). The approaches proposed by these authors for checking the

orthogonality of modeling parameters are also applicable to state-space models,

but this is beyond the scope of this article. From a practical standpoint, it

is encouraging to note that conclusions concerning the structures (e.g., factor

loadings and unique variances) of psychological constructs are still trustworthy

even though the corresponding dynamic model might be misspecified.

As we have illustrated, dynamic factor analysis models with time-varying

parameters provide a natural platform for testing certain psychological processes

of interest. Even though some of the theoretical postulates seen in the psycholog-

ical literature can be readily represented using dynamic models, they are rarely

put to the test using the model-fitting approach adopted in this article. More

often, carefully construed experiments are designed to detect possible changes

in certain modeling parameters of interest. The lack of readily accessible tools

for evaluating more complex dynamic models is one reason for the scarcity of

modeling work along this line. Another reason stems from many researchers’

lack of familiarity with modeling time-varying parameters and more generally,

with nonlinear dynamic models. We hope to have provided the reader with a

workable example of the potential utility of dynamic factor analysis models with

time-varying parameters.

Our consideration of issues pertaining to time-varying parameters is far from

exhaustive. In particular, our simulation study was designed to mirror several key

features of our empirical data (e.g., in sample size configuration and parameter

space). Thus, our simulation results may be limited in generalizability to other

conditions and models of change. In addition to considering a broader range

of models, sample size, and parameter configurations, a number of other issues

warrant further investigation in future studies. For instance, the choice of initial

latent variable specification (De Jong, 1991; De Jong & Lin, 2003; Oud, Jansen,

van Leeuwe, Aarnoutse, & Voeten, 1999) can often influence the estimation

results when time series data of finite lengths are involved. A more thorough

investigation of this issue is imperative. Other possible modeling extensions

include devising improved ways of diagnosing the presence of time-varying

parameters in dynamic models to lower Type I error rates (S.-M. Chow, Hamaker,

& Allaire, 2009; De Jong & Penzer, 1998), evaluating the effects of other

forms of model misspecification, exploring other point and SE estimators in

the presence of model misspecification and nonnormal data (e.g., bootstrap

approaches; Stoffer & Wall, 1991; G. Zhang & Browne, 2010a, 2010b; Z. Zhang

& Nesselroade, 2007), and developing alternative modeling extensions such as

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
p
t
i
m
i
s
e
d
:
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
r
t
h
 
C
a
r
o
l
i
n
a
-
C
h
a
p
e
l
 
H
i
l
l
]
 
A
t
:
 
2
1
:
0
0
 
8
 
M
a
y
 
2
0
1
1
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continuous-time dynamic factor analysis models and dynamic factor analysis

models with mixed effects (e.g., Jones, 1993; Shumway, 2000; Singer, 1998).
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APPENDIX

The Extended Kalman Filter, the Extended Kalman

Smoother, and the Prediction Error Decomposition Function

Suppose the data set Yi;t D ŒY 1;i;t , Y 2;i;t , : : : , Y p;i;t �
0 from person i is available

for estimation purposes, where Y k;i;t is itself a t � 1 time series for manifest

variable k. The extended Kalman filter (EKF; see Anderson & Moore, 1979) is

designed to estimate a subclass of nonlinear state-space models with additive,

Gaussian process and measurement noises. Once a model has been expressed

in the form of Equations (4–5), the EKF can be used to derive conditional

state estimates based on manifest observations up to time t and the associated

covariance matrix (i.e., ˜i;tjt D EŒ˜i;t jYi;t � and P i;tjt D CovŒ˜i;t jYi;t �). For each

time t , the nonlinear dynamic and measurement functions are linearized locally

around the current latent variable estimates, ˜i;tjt�1, using first-order Taylor

series expansion. The EKF is implemented as follows:

First, conditional on observed information from time t-1 and assuming the the

values for the parameters in ™ are known, the latent variable scores are projected

from time t � 1 to t as ˜i;tjt�1 D g.˜i;t�1jt�1; ™; xi;t /. Predicted observations

are then obtained as y i;tjt�1 D h.˜i;tjt�1; ™; xi t /. The dynamic and measurement

functions are linearized around the latent variable estimates, ˜i;t�1jt�1, to yield

the Jacobian matrices,

Gi;t D
@g.˜i;t ; ™; xi;t /

@˜i;t ; t

ˇ̌
ˇ
˜i;t�1jt�1

and Hi;t D
@h.˜i;t ; ™; xi;t /

@˜i;t

ˇ̌
ˇ
˜i;t jt�1

; (7)
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where the j th row and kth column of G i;t carries the partial derivative of the

j th dynamic function with respect to the k the latent variable, evaluated at

participant i ’s posterior latent variable estimates from time t � 1, ˜i;t�1jt�1. By

the same token, the j th colum and kth row of Hi;t carries the partial derivative of

the j th measurement function with respect to the kth latent variable, evaluated

at participant i ’s latent variable estimates at time t , ˜i;tjt�1 prior to incorporating

update from the manifest observation at time t . The subject index in Gi t and Hi t

is used to indicate that the associated Jacobian matrices have different numerical

values because they are evaluated at each person’s respective current state

estimates, not that the dynamic or measurement functions are subject dependent.

Once information is available at time t , the latent variable estimates and their

associated covariance matrix are updated as

˜i;tjt D ˜i;tjt�1 C Ki;t vi;t ; (8)

Pi;tjt D Pi;tjt�1 � Ki;t Hi;t Pi;tjt�1; (9)

vi;tjt D y i;t � y i;tjt�1; (10)

Fi;t D Hi;tPi;tjt�1H
0

i;t C †–; (11)

Ki;t D Pi;tjt�1H
0

i;tF
�1
i;t ; (12)

where Ki;t is referred to as the Kalman gain matrix, vi;tjt is termed the “inno-

vation vector” as it carries the new information available at time t that is not

accounted for by the prediction based on observations up to time t � 1; ˜i;tjt D

E.˜i;t jYi;t / and P i;tjt D Cov.˜i;t jYi;t / are the posterior latent variable estimates

and the associated covariance matrix. Thus, the EKF retains the first-order (i.e.,

linear) terms from Taylor series expansions of the associated nonlinear functions.

The fixed interval smoother (Anderson & Moore, 1979) is one possible

Kalman smoother, whose function is to derive conditional state estimates using

all available data, namely, EŒ˜i;t jYi;T ] D ˜i;tjT and the associated covariance

matrix, Pi;tjT . One version of the smoother (Shumway & Stoffer, 2000) can be

implemented by performing a backward recursion for t D T; : : : ; 1 as

˜i;tjT D ˜i;tjt C Ji;t .˜i;tC1jT � ˜i;tC1jt /;

Pi;tjT D Pi;tjt C Ji;t.Pi;tC1jT � Pi;tC1jt /J
0

i;t ; (13)

where Ji;t D Pi;tjt G
0

i;tC1P
�1
i;tC1jt .

In the estimation process, several by-products of the EKF are concurrently

substituted into a raw data log-likelihood function termed the prediction error

decomposition function (Caines & Rissanen, 1974; Harvey, 2001; Schweppe,
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1965). If the initial latent variable vector, ˜i;1, is regarded as fixed as opposed

to random, the log-likelihood function can be written solely as a function of

the individual innovation vector, vi;t , and its associated covariance matrix, Fi;t ,

yielding

log L.™/ D
1

2

nX

iD1

TX

tD1

�pi t log.2 / � log jFi;t j � v
0

i;t F
�1
i;t vi;t ; (14)

where pi t is the number of complete manifest variables at time t for person

i . This log-likelihood function is then optimized with respect to all the time-

invariant parameters in ™ to yield maximum likelihood (ML) estimates of these

parameters. Other modified recursions to improve the numerical stability of the

optimization process have been proposed elsewhere (Ansley & Kohn, 1985; De

Jong, 1991; Koopman, 1997).
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