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Abstract—Demand for multi-process resource 
invariably outstrips supply and users must often share 
some common provision. Where batch-based, whole 
processor allocation proves inflexible, user programs 
must compete at runtime for the same resource so the 
load is changeable and unpredictable. We are 
exploring a mechanism to balance the runtime load by 
moving computations between processors to optimize 
resource use. In this paper, we present a generic 
algorithmic farm skeleton which is able to move worker 
tasks between processors in a heterogeneous 
architecture at runtime guided by a simple dynamic 
load model. Our experiments suggest that this 
mechanism is able to effectively compensate for 
unpredictable load variations. 

Keywords: Skeleton , Mobile, Grid, Computing, Load 
balancing. 
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1 Introduction 
In recent years, there has been a dramatic increase 

in the amount of available computing and storage, but 
dedicated High-Performance Computers are expensive 
and rare resources. Emerging multiprocessor 
architecture techniques offer the opportunity to 
integrate individual high-performance computers into a 
unitary high-performance system. This entails several 
technical challenges: difficulty of effective utilization, 
high communication latency, and unpredictable 
effective speeds. 

Researchers are investigating the possibility of 
exploiting the computational power and resources 
available in global networks. Mobile computation is a 
way to use the resources available on both local and 
global networks. Mobile computation gives the 
programmer control over the placement of code or 
active computations across a network to chart and 
better use the available computational resources. A 
mobile program can transport its state and code to 
another location where it resumes execution [27], so in 
an application that uses mobile computation, the 
program can move between locations for better 
utilisation of computational resources. By using load 
management techniques, the program has a mechanism 
for distributing the tasks to worker locations to achieve 
performance goals (balancing the load or minimising 
the execution time).  

The main obstacle to the commercial uptake of parallel 
computing is the complexity and cost of the associated 
software development process. A promising way to 
overcome the problems of parallel programming is to 
exploit generic programs structures, called skeleton 
[17]. Skeletons capture common algorithms which can 
be used as components for building programs. The 
main advantage of the skeleton approach is that all the 
parallelism and communication are embedded in the 
set of skeletons.  

     We are exploring a mechanism to balance the 
runtime load by moving computations between 
processors to optimize resource use. In this paper, we 
present a generic algorithmic farm skeleton which is 
able to move worker tasks between processors in a 
heterogeneous architecture at runtime guided by a 
simple dynamic load model. Our experiments suggest 
that this mechanism is able to effectively compensate 
for unpredictable load variations. 

2 Background and related work 
Mobility, which refers to the change of location 

achieved by system entities [10], involves moving 
computations amongst processors on a network to 
distribute the load, giving better use of resources and a 
faster performance [25, 27]. Mobility has different 
forms: hardware and software mobility, process 
migration, mobile languages, weak and strong 
mobility. Hardware mobility means the mobility of 
devices, such as laptops and PDAs. In contrast, 
software mobility moves the computations from one 
location to another location [6], typically through 
process migration or mobile languages. In process 
migration, the system determines load movement e.g. 
MOSIX [4], which is an operating system that supports 
process migration. In contrast, in mobile languages, the 
system gives the programmer the ability to control load 
movement. Weak and strong mobility are alternative 
forms of mobility defined by Fuggutta and Picco and 
Vigna [5]. Weak mobility involves moving the code 
from one location to another. Strong mobility involves 
moving the code and state information from one 
location to another and resuming the execution from 
the stop state [26].  Strong mobility is also known as 
transparent migration. Many mobile languages support 
weak and strong mobility, e.g. JavaGo [2], but Java 
Voyager [3] supports only weak mobility. 
Checkpointing is the main operation in mobile systems 



to move computations amongst processors in a 
network or cluster by snapshotting the state of 
application [14], e.g. CONDOR [11]. 

A novel Autonomous Mobile Program (AMP) 
decentralised load management technique has been 
developed by Deng [25].  AMPs seek to execute on 
“better” locations and take movement decisions 
depending on whether the resource needs can be 
served locally or on another location. This movement 
decision also depends on future resource needs, and 
whether it is better to continue locally or to move to 
another location.  

Algorithmic skeletons offer an approach in parallel 
programming to abstract the complexities that exist in 
the parallel implementations [17]. They are common 
parallel programming patterns that avoid the parallel 
and communications details for the programmer so that 
they are not responsible for the synchronization 
between the application parts. Skeletons are closely 
related to functional languages, so higher order 
functional structures can be produced by using 
skeletons [9].  Each skeleton has an implicit parallel 
implementation hidden from the application user. The 
main advantages of using skeletons are having a higher 
order programming interface and a general 
implementation for portability and efficiency.  

Skeletons are polymorphic higher order functions, 
so that there are various kinds of skeletons to cover 
different program classes over different data types 
[13]. These functions are implemented by libraries. 
Many implementations of computations on distributed 
and parallel architectures support skeletal libraries 
which offer task parallel and data parallel skeletons. 
An example of a C library with MPI functions is eSkel 
[18], and an example of a C++ library with MPI 
functions is SkeTo [16]. 

Google developed a C++ library that offers parallel 
programming model, called MapReduce [12]. The 
MapReduce skeleton is a programming model for 
processing large sets of data. This model has an 
abstraction level where it is possible to perform 
computational operations while hiding communication 
and parallelism details, fault-tolerance, and data 
distribution. This model has two primitives map and 
reduce. The map operation applies a function to pairs 
of key/value to produce output key/value; the reduce 
operation combines the shared key results to produce 
the final result. The mapped function is written by the 
user, and the user specifies the data sets with pairs. 
Similarly, the reduced function is also written by the 
user. The closely related open-source Apache Hadoop 
is a Java library used to process large data sets on 
distributed parallel architecture such as cluster [1]. 

A cost or performance model may be used to 
estimate the costs of programs such as time and space 
[24, 7].  While algorithmic skeletons involve the 
parallelism process, communication and coordination 
[8], their cost models typically measure the 

computation and communication cost. Many cost 
models have been developed for algorithmic skeletons 
on parallel architecture. Some models determine the 
task placement statically [15], while others determine 
the whole skeleton placement dynamically [24].  

Our approach is based on dynamic task placement 
for skeletal programming. We have developed a 
parallel farm skeleton using C with MPI functions 
which is able to move tasks between workers while 
preserving the execution state during moving 
operation. We have explored three approaches to 
implementing mobility in our skeleton: data mobility, 
data and state mobility, and data, state and code 
mobility.      

Data mobility involves moving the data between 
locations on a network [14]. For state mobility, the 
program can correctly save its state and resume work 
from the saved point properly. Code mobility involves 
moving the whole program code, as well as the data 
and execution state, to a different machine [5]. This 
paper proposes as task mobility approach of moving 
the data and state for a sub-computation between 
processors, rather than the whole program. Our 
skeleton is implemented using C and MPI, but MPI 
clones the code to the workers so there is no need for 
moving the code. Code mobility is difficult to 
implement in heterogeneous structures, and this 
remains future work for our research: our work is a 
first step in implementing a skeleton fully able to move 
arbitrary code amongst machines on a network. 

3 An overview of hwFarm skeleton 
Our skeleton has the name hwFarm. In general, the 

main idea of skeleton is to abstract all the parallelism 
and communication details, but the hwFarm skeleton is 
also able to move tasks amongst the worker processors 
at run-time. 

The hwFarm skeleton: 

• is self-mobile which means that our skeleton is 
able to mobilize the task from one worker to 
another one during task execution when the 
overhead increases; 

• supports parallelism on a distributed memory, 
high-performance architecture;  

• hides parallelism and communication details 
from the program;  

• presents a high-level function implemented 
using C and MPI [20]. 

3.1  Definition of hwFarm skeleton  
The term task farming is used to describe parallel 

applications that have specific properties. Ordered and 
structured collections of data items, known as tasks, 
are each processed by the same operation. Processing 
the task can be performed in parallel because the tasks 
are independent [19]. In general, the static scheduling 



 
Figure 2. Skeleton with task mobility (data only) 

 
Figure 1. Standard skeleton 

 
Figure 3. Skeleton with task mobility (data and state) 

of tasks to a similar number of processes gives poor 
load balancing. A task farm solves this by 
implementing dynamic scheduling to ensure a better 
balance. The farmer acts as the scheduler while the 
workers process the tasks assigned by the farmer. The 
hwfarm skeleton has the same characteristics but with 
the ability to move its tasks amongst workers. 

The implementation is divided into three steps: 

1) Implementing skeleton with workers without 
mobility: This is a simple skeleton which contains a 
farmer responsible for distributing the tasks to the 
workers executing these tasks, as shown in “Fig. 1”. 

2) Implementing skeleton where data has been 
sent between two workers: This is the first step in 
making a task mobile, but the task will be processed by 
the worker from the beginning. See “Fig. 2”. 

3) Implementing skeleton where data and state 
have been sent between two workers: The skeleton can 
move the data and state of the task between workers. 
The moved elements contain the processed data and 
unprocessed data, so the target machine will start 
processing not from the beginning of the data but from 
the beginning of the unprocessed data. A fuller 
explanation of the implementation will be given in the 
next section. See “Fig. 3”. 

3.2 How to move state? 
The mobility process needs to save the state of 

execution to continue working from the stop state. As 
noted, the skeleton hides the parallel and 
communication details from the programmer so that 
the programmer is not responsible for the 
synchronisation between application parts. The 
programmer has to write their own general function 
that should be executed by the skeleton. This function 
has three arguments: the input data to be processed, the 
output data which is the result, and parameters for the 
user function. An array of parameters contains the 
variables that the function needs to process the data. 
The state of execution depends on the values of these 
parameters. During mobility, the skeleton moves the 
input data that was not yet processed by the first 
worker, the sub-the result of the processed data and the 
array of parameters for the function at stop point. The 
new worker receives this data and continues processing 
from the stop point. 

3.3  Movement decision: 
One of the biggest issues in parallel and distributed 

systems is developing techniques for distributing 
processes to multiple locations [24, 23], to minimize 
the execution time and increase performance. Our 
skeleton balances load by using information collected 
from machines at run time to move a task from heavily 
loaded processors to lightly loaded processors.  

The movable element in our skeleton is the task. 
The task computes the function for specific data so for 
task mobility we should move the function and the 
data. Since the function already exists in all workers, 
we only move the data and state between workers. 

A movement decision by a skeleton depends on 
several polices:  



o Information policy: Determines the load 
information to make a task placement or task 
mobility. This information is collected from the 
processors at runtime to know their load changes. 

o Selection policy: Decides what task should be 
moved. The movement decision is taken by 
collaboration between the master and workers. A 
worker decides if its task should be moved 
depending on its load and the load on free workers. 
When the worker decides to move its task, it sends 
a request to the master. 

o Placement policy: Identifies where a task should be 
transferred. The worker, after deciding that it is 
unable to process its task, or becomes heavily-
loaded, determines the best free worker available to 
process the task. 

3.4 Activities of hwFarm skeleton: 

The sequence of activities that may happen during the 
execution of the skeleton is: 

o The  load of all workers in a system is acquired; 

o The best workers are chosen where the number of 
workers is static. The system load in a worker, also 
known as its load average, is the measure of the 
amount of work that a computer system performs. 
The load average represents the average system 
load over a period of time. It is most easily 
available from a host operating system in the form 
of three numbers which represent the system load 
during the last one, five-, and fifteen-minute period 
[21]. The hwFarm skeleton assumes that the load 
for the last one-minute period; 

o Each worker sends load information to the master, 
and then the master sends the load information to 
all workers; 

o The tasks are distributed to the chosen workers; 

o The master (farmer) awaits the results from workers 
and distributes new tasks; 

o When the master receives a result, it will check the 
load for all free workers and then choose the best 
one to send the next task to; 

o Depending on the load and percentage of increased 
load in this worker and the load on free workers, the 
worker decides if the task should be moved to a free 
worker or not. 

o The task may then be moved from one worker to a 
new worker, and the destination worker continues 
executing the task from the stop point. 

4 Experiments 
In these experiments, we evaluate the performance 

and the behaviour of the hwFarm skeleton on 
heterogeneous distributed memory architecture. We use 
a ray tracer program that generates the image for 100 
rays for 150000 objects in the scene.  A ray tracing 

algorithm is used to produce an image by imaginary 
rays of light from the viewer’s eye through pixels to the 
objects in the scene [22]. 

4.1 Platform: 
The hwFarm skeleton is tested with a Beowulf 

cluster located at Heriot-Watt University. The cluster 
consists of 32 eight-core machines (8 quad-core 
Intel(R) Xeon(R) CPU E5504, running GNU/Linux at 
2.00GHz with 4096 kb L2 cache and using 12GB 
RAM). 

4.2 Evaluation: 

The skeleton is tested in 4 modes: 
o Static task allocation: The skeleton places the tasks 

without using load information; we will refer to 
this mode as Static. See “Table 1”. 

o Dynamic task allocation: The skeleton depends on 
load information collected from [processors for 
placing the tasks but without mobility; we will 
refer to this mode as Dynamic. See “Table 2”. 

o Dynamic task allocation with load and no mobility: 
The skeleton uses the load information for placing 
the tasks but without mobility. In this case, 
additional loads will be applied in different 
periods to some workers; we will refer to this 
mode as Load. See “Table 3”. 

o Dynamic task allocation with load and mobility: 
The skeleton balances the load by moving tasks 
from heavily loaded workers to lightly loaded 
workers where additional loads are applied to 
workers; we will refer to this mode as Mobility. 
See “Table 4”. 

The results of these experiments presented in the 
following tables: 

 

 
 
 
 
 
 
 
 
 
 

Table 1 shows that our skeleton gives good speed 
with the ray tracer program and static task allocation. 

 
 
 
 
 
 
 
 
 
 

Table 1. STATIC TASK ALLOCATION TIME (SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 186.363 184.034 188.476 187.443 188.626 

2 186.681 97.948 121.437 97.304 110.800 

3 187.031 97.580 68.674 88.795 74.177 

4 186.276 97.411 69.121 50.945 71.665 

5 186.321 97.707 68.602 51.323 43.105 

 

Table 2. DYNAMIC TASK ALLOCATION TIME (SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 193.168 186.973 185.559 187.703 185.978 

2 193.227 96.788 120.203 93.854 107.920 

3 193.664 97.462 70.462 87.707 74.052 

4 194.076 98.460 69.216 53.102 71.751 

5 193.043 98.474 69.074 52.977 43.500 

 



 
Figure 4. 1-5 Workers, 1 Tasks 
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Figure 6. 1-5 Workers, 3 Task 
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Figure 7. 1-5 Workers, 4 Tasks 
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Figure 5. 1-5 Workers, 2 Tasks 
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Table 2 shows show that our skeleton retains good 
speed with some modest difference in result from 
collecting and computing load information. 

  
 
 
 
 
 
 
 
 
 
 

Table 3 shows that the skeleton may retain speed 
when there is additional external load but worker 
performance deteriorates and execution time became 
slower. 

 
 

 
 
 
 
 
 
 
 
 

Table 4 shows that the performance is improved 
with task mobility when local loads change. However, 
the performance is still worse than for the static and 
dynamic modes. 

The following graphs compare the execution time 
of the program with different numbers of tasks on 
different numbers of workers.  

Figure 4 shows the time for executing one task on 1 
- 5 workers. The execution time in the static and 
dynamic modes is approximately the same; the 
difference comes from the cost of computing and 
collecting load. The execution time in the load mode 
depends on the load applied to the workers. In the 
mobility mode, the task is moved to a free worker 
when the current worker becomes unable to effectively 

process the task, so the execution time will be smaller. 
The task will not be moved when there are no free 
workers. 

Figure 5 shows the time for executing two tasks on 
1 - 5 workers. In the static and dynamic modes, the 
execution time is approximately the same. The 
improvement in the mobility mode comes from moving 
the tasks from heavily loaded workers to lightly loaded 
workers.  

Figure 6 shows the time for executing three tasks 
on 1 - 5 workers. The improvement of execution time 
in the mobility mode is related to the availability of 
free workers.  

Figure 7 shows the time for executing four tasks on 
1 - 5 workers. The time in the mobility mode 
approaches the time in the static and dynamic modes. 

Table 3. DYNAMIC TASK ALLOCATION WITH LOAD AND NO MOBILITY 
TIME(SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 335.513 292.372 316.453 309.019 294.252 

2 332.121 166.745 192.063 154.189 162.842 

3 297.927 167.259 113.712 140.200 121.476 

4 298.318 163.596 116.965 95.658 80.906 

5 300.889 151.549 110.554 93.430 79.428 

Table 4.  DYNAMIC TASK ALLOCATION WITH LOAD AND MOBILITY 
TIME(SEC) 

        Tasks 
Workers 

1 2 3 4 5 

1 329.445 315.098 312.860 311.969 291.501 

2 195.449 137.300 131.514 135.443 121.701 

3 196.673 127.245 103.468 93.554 94.028 

4 197.781 109.565 92.112 71.096 73.512 

5 197.454 105.680 83.069 69.257 62.329 

 



 
Figure 8. 1-5 Workers, 5 Tasks 

0

100

200

300

400

1 2 3 4 5

M
il

li
se

co
n

d

workers

Static Dynamic Load Mobility

Figure 8 shows the time for executing five tasks on 
1 - 5 workers. The executing time in mobility mode is 
better than the executing time in load mode but is still 
worse than the static and dynamic modes. 

5 Conclution and future work 
We have proposed a new type of skeleton for high 

performance, distributed memory architecture. This 
skeleton is implemented using C and MPI library. This 
skeleton is self-mobile and able to move tasks from a 
heavily- loaded to a lightly-loaded worker. Our 
experiments show that, for the ray tracer program with 
small numbers of processors, the hwFarm skeleton is 
able to mitigate the performance effects of external 
load on individual processors by dynamically moving 
tasks across processors 

We next intend to conduct considerably larger scale 
experiments, on much larger numbers of processors, 
with a variety of applications, systematically exploring 
mobile task behaviour in the presence of different 
patterns of external load. To aid this, we propose to 
construct a “load skeleton” which runs alongside an 
hwFarm application program to apply additional loads 
in predictable ways. 

 In future work, the hwFarm skeleton will be 
extended to be able to move code, as well as data and 
state, amongst processing units. In addition, we will 
define a richer cost model for the skeleton to take 
account of heterogeneity in the processing 
environment. 
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Appendix: 
 

Using hwFarm skeleton 
The prototype of hwFarm skeleton is implemented 

in C and MPI. Our skeleton gives the programmer the 
ability to write their program in a sequential manner in 
C . They should specify the input data and identify the 
high-ordered function which represents our skeleton to 
run the program with all data in an implicit, parallel 
manner. Our implementation uses the MPI library to 
provide the communication, so we need to initialise the 
library before calling the skeleton. 

 There are some constraints on the programmer in 
writing the function which must have six parameters: 
the input data and its length, the output data and its 
length, and an array of parameters used in the function 
and its length, and these values should be initialised 
before function. 

The main steps to write a parallel program using 
hwFarm skeleton are: 

o Write the sequential code that should be 
executed in parallel on the data items as  a 
parameterised function above. 

o Initialise the MPI library. 

o Initialise the input data. 

o Call the hwFarm skeleton. 

o Finalise the MPI library. 

 
The prototype of the main function of hwFarm 

skeleton is : 

void hwfarm(fp worker, int tasks,  
    void *input,int inSize, 
    int inLen, MPI_Datatype taskType, 
    void* output, int outSize, 
    int outLen, MPI_Datatype   
 resultType, void*FunPars,  
 int parsSize, int procCount) 
 {...} 

 
Glossary of parameters: 

worker:  worker function. 
tasks:  total number of tasks. 
input:  array of input data. 
inSize:  size of input data type. 
inLen:  size of one task. 
taskType:  type of MPI input data. 
output:  array to output data.  
outSize:  size of output data type 
outLen:  size of data in one  
resultType: type of MPI output data 
FunPars:  array of function parameters  
parsSize:  size of parameters 
procCount: number of processors 

 
We assume that the chunk size and number of 

workers are static but may be made dynamic by the 
skeleton. 

 

 

The prototype of the general function that the user 
writes to  be called from the hwFarm skeleton is: 

void doProcessing( 
 void *inputData,int inputLen,  
 void *result, int outputLen, 
 void* pars, int parsSize) 
 {...} 
 

Glossary of parameters: 

inputData:  input data. 
inputLen:  length of input data. 
result:  output data. 
outputLen:  length of input data. 
pars:   array of paremeters. 
parsSize:  length of parameters. 
 

Each worker will execute their task by calling the 
doProcessing function on their data chunk. All 
variables the function need should be parameterised so 
we can save the execution state of the function. 


