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Abstract—Demand for multi-process resource The main obstacle to the commercial uptake of peral
invariably outstrips supply and users must ofteareh computing is the complexity and cost of the asgedia
some common provision. Where batch-based, whoboftware development process. A promising way to
processor allocation proves inflexible, user pragia overcome the problems of parallel programming is to
must compete at runtime for the same resource &0 tlexploit generic programs structures, called skeleto
load is changeable and unpredictable. We arg17]. Skeletons captursommon algorithms which can
exploring a mechanism to balance the runtime logd bbe used as components for building programs. The
moving computations between processors to optimiz@ain advantage of the skeleton approach is thahall
resource use. In this paper, we present a generiparallelism and communication are embedded in the
algorithmic farm skeleton which is able to move keor set of skeletons.
tasks between processors in a heterogeneous
architecture at runtime guided by a simple dynamic We are exploring a mechanism to balance the
load model. Our experiments suggest that thisuntime load by moving computations between
mechanism is able to effectively compensate fogprocessors to optimize resource use. In this paper,
unpredictable load variations. present a generic algorithmic farm skeleton whigh i
able to move worker tasks between processors in a
heterogeneous architecture at runtime guided by a
simple dynamic load model. Our experiments suggest
PDPTA’12 that this mechanism is able to effectively comptnsa
for unpredictable load variations.

Keywords:Skeleton , Mobile, Grid, Computing, Load
balancing.

1 Introduction

In recent years, there has been a dramatic increasé Background and related work

in the amount of available computing and storage, b - ) )
dedicated High-Performance Computers are expensive Mobility, which refers to the change of location
and rare resources. Emerging multiprocessoRchieved by system entities [10], involves moving
architecture techniques offer the opportunity toCOMputations amongst processors on a network to
integrate individual high-performance computersiat ~ distribute the load, giving better use of resourmed a
unitary high-performance system. This entails saiver faster performance [25, 27]. Mobility has different
technical challenges: difficulty of effective usitition, ~ forms: hardware and software mobility, process

high communication latency, and unpredictablemigr?‘,tion’ mobile languages, weak and strong
effective speeds. mobility. Hardware mobility means the mobility of

devices, such as laptops and PDAs. In contrast,

Researchers are investigating the possibility ofSOftwaremobility moves the computations from one
location to another location [6], typically through

exploiting the computational power and resources . bile | |
available in global networks. Mobile computatiorais P'0¢€SS migration or mobile languages. In process
way to use the resources available on both locdl anMigration, the system determines load movement e.g.

global networks. Mobile computation gives the MOSIX [4]3 Whi_Ch is an operatir_lg system that supor
programmer control over the placement of code ofPfOCesS m'gratr']on- In contrast, 'r? m(l;l%!le Iangu”aq?
active computations across a network to chart andYStem glve?/\} ekprog(;ammert e%'l'l ity to COI batl |
better use the available computational resources. ovement. Weak and strong mobiiity are alternative
mobile program can transport its state and code td°rMs of mobility defined by Fuggutta and Picco and

another location where it resumes execution [AY]ns f igna [5]'| Wegk mObI|ItthnVOS|VGS mowg% th_e code
an application that uses mobile computation, theffom One location to another. Strong mobility inves
program can move between locations for betterMOVINg the code and state .|nformat|on frqm one
utilisation of computational resources. By usingdo |0cation to another and resuming the execution from
Jhe stop state [26]. Strong mobility is also knoas

management techniques, the program has a mechani L=l X
for distributing the tasks to worker locations thieve ~ U@nsparent migration. Many mobile languages suppor
weak and strong mobility, e.g. JavaGo [2], but Java

performance goals (balancing the load or minimising »
the execution time). Voyager _[3] ~ supports onIy_ vyeak _mob|I|ty.
Checkpointing is the main operation in mobile syste



to move computations amongst processors in aomputation and communication cost. Many cost
network or cluster by snapshotting the state ofmodels have been developed for algorithmic sketeton
application [14], e.g. CONDOR [11]. on parallel architecture. Some models determine the
task placement statically [15], while others det@en
A novel Autonomous Mobile Program (AMP) the whole skeleton placement dynamically [24].
decentralised load management technique has been
developed by Deng [25]. AMPs seek to execute on Our approach is based on dynamic task placement
“better” locations and take movement decisionsfor skeletal programming. We have developed a
depending on whether the resource needs can bgarallel farm skeleton using C with MPI functions
served locally or on another location. This movemen which is able to move tasks between workers while
decision also depends on future resource needs, amgteserving the execution state during moving
whether it is better to continue locally or to maee operation. We have explored three approaches to
another location. implementing mobility in our skeleton: data molyilit
data and state mobility, and data, state and code
Algorithmic skeletons offer an approach in parallel mobility.
programming to abstract the complexities that eixist
the parallel implementations [17]. They are common Data mobility involves moving the data between
parallel programming patterns that avoid the pakall locations on a network [14]. For state mobilitye th
and communications details for the programmer ab th program can correctly save its state and resumé wor
they are not responsible for the synchronizationfrom the saved point properly. Code mobility invedv
between the application parts. Skeletons are gloselmoving the whole program code, as well as the data
related to functional languages, so higher orderand execution state, to a different machine [5]isTh
functional structures can be produced by usingpaper proposes as task mobility approach of moving
skeletons [9]. Each skeleton has an implicit pakal the data and state for a sub-computation between
implementation hidden from the application usere Th processors, rather than the whole program. Our
main advantages of using skeletons are havingtehig skeleton is implemented using C and MPI, but MPI
order programming interface and a generalclones the code to the workers so there is no fared
implementation for portability and efficiency. moving the code. Code mobility is difficult to
implement in heterogeneous structures, and this
Skeletons are polymorphic higher order functions,remains future work for our research: our work is a
so that there are various kinds of skeletons tcecov first step in implementing a skeleton fully ablenove
different program classes over different data typesarbitrary code amongst machines on a network.
[13]. These functions are implemented by libraries.
Many implementations of computations on distributed3 An overview of hwFarm skeleton
and parallel architectures support skeletal lilsri
which offer task parallel and data parallel skeisto Our skeleton has the narhesFarm.In general, the
An example of a C library with MPI functions is ek main idea of skeleton is to abstract all the palialin
[18], and an example of a C++ library with MPI and communication details, but theFarmskeleton is
functions is SkeTo [16]. also able to move tasks amongst the worker processo
at run-time.
Google developed a C++ library that offers parallel
programming model, called MapReduce [12]. The The hwFarm skeleton:
MapReduce skeleton is a programming model for
processing large sets of data. This model has an
abstraction level where it is possible to perform ; :
computational operations while hiding communication another one during task execution when the
and parallelism details, fault-tolerance, and data overhead increases;
distribution. This mOdel has tWO prlmlthQ_'Bap and_ ° Supports para”e"sm on a distributed memory,
reduce The map operation applies a function to pairs high-performance architecture;
of keyl/value to produce output key/value; tieeluce
operation combines the shared key results to peoduc * hides parallelism and communication details
the final result. The mapped function is writtenthg from the program;
user, and the user specifies the data sets witts.pai . . .
Similarly, the reducedpfunction is also written tiryeIO presents a high-level function implemented
using C and MPI [20].
user. The closely related open-source Apache Hadoop

is a Java library used to process large data gsets 3.1 Definition of hwFarm skeleton
distributed parallel architecture such as clustér [ )

is self-mobile which means that our skeleton is
able to mobilize the task from one worker to

The term task farming is used to describe parallel
A cost or performance model may be used toapplications that have specific properties. Ordered
estimate the costs of programs such as time arnmkspastructured collections of data items, known as gask
[24, 7]. While algorithmic skeletons involve the are each processed by the same operation. Progessin
parallelism process, communication and coordinatiorthe task can be performed in parallel becauseattiest
[8], their cost models typically measure the are independent [19]. In general, the static sclmglu



of tasks to a similar number of processes gives poo
load balancing. A task farm solves this by
implementing dynamic scheduling to ensure a better
balance. The farmer acts as the scheduler while the
workers process the tasks assigned by the farnher. T
hwfarm skeleton has the same characteristics but with
the ability to move its tasks amongst workers.

The implementation is divided into three steps:
1) Implementing skeleton with workers without @

mobility: This is a simple skeleton which contains a
farmer responsible for distributing the tasks te th
workers executing these tasks, as shown in “Fig. 1"

i T(Data+state)]

Figure3. Skeleton with task mobility (data and st

3.2 How to move state?

The mobility process needs to save the state of
. execution to continue working from the stop sté#s.

2) Implementing skeleton where data has beerhoted, the skeleton hides the parallel and
sent between two workerdhis is the first step in communication details from the programmer so that
making a task mobile, but the task will be procddse the programmer is not responsible for the
the worker from the beginninGee “Fig. 2". synchronisation between application parts. The
programmer has to write their own general function
that should be executed by the skeleton. This fonct
has three arguments: the input data to be processed
output data which is the result, and parametershier
user function. An array of parameters contains the
variables that the function needs to process tha. da
The state of execution depends on the values skthe
parameters. During mobility, the skeleton moves the
input data that was not yet processed by the first
worker, the sub-the result of the processed dadatam
array of parameters for the function at stop poiitte
new worker receives this data and continues prowess
from the stop point.

Figure 1. Standard skeleton

3.3 Movement decision:

One of the biggest issues in parallel and disteibut
systems is developing techniques for distributing
processes to multiple locations [24, 23], to miei
the execution time and increase performance. Our
skeleton balances load by using information codléct

3) Implementing skeleton where data and statefrom machines at run time to move a task from Hgavi
have been sent between two work@&itse skeleton can loaded processors to lightly loaded processors.
move the data and state of the task between workers
The moved elements contain the processed data and The movable element in our skeleton is the task.
unprocessed data, so the target machine will starthe task computes the function for specific datéoso
processing not from the beginning of the data buf task mobility we should move the function and the

the beginning of the unprocessed data. A fu”e,data. Since the function already exists in all veosk
explanation of the implementation will be giventire we only move the data and state between workers.

next section. See “Fig. 3".
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Figure2. Skeleton with task mobility (data on

A movement decision by a skeleton depends on
several polices:
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Information  policy: Determines the load algorithm is used to produce an image by imaginary
information to make a task placement or taskrays of light from the viewer’s eye through pixesthe
mobility. This information is collected from the objects in the scene [22].
processors at runtime to know their load changes.

4.1 Platform:

Selection policy: Decides what task should be

moved. The movement decision is taken by The hwFarm skeleton is tested with a Beowulf
collaboration between the master and workers. Acluster located at Heriot-Watt University. The thrs
worker decides if its task should be movedconsists of 32 eight-core machines (8 quad-core
depending on its load and the load on free workersintel(R) Xeon(R) CPU E5504, running GNU/Linux at
When the worker decides to move its task, it send2.00GHz with 4096 kb L2 cache and using 12GB
a request to the master. RAM).

Placement policy: Identifies where a task should beg 2 Eyaluation:

transferred. The worker, after deciding that it is

unable to process its task, or becomes heavilyThe skeleton is tested in 4 modes:

loaded, determines the best free worker available t o Static task allocationThe skeleton places the tasks

process the task. without using load information; we will refer to
this mode a$tatic See “Table 1”.

3.4 Activities of hwFarm skeleton:

o Dynamic task allocatianThe skeleton depends on

The sequence of activities that may happen duhiag t load information collected from [processors for
execution of the skeleton is: placing the tasks but without mobility; we will

refer to this mode d3ynamic See “Table 2"

0 The load of all workers in a system is acquired; 4 pynamic task allocation with load and no mobility
The skeleton uses the load information for placing
0 The best workers are chosen where the number of the tasks but without mobility. In this case,
workers is static. The system load in a workem als additional loads will be applied in different
known as its load average, is the measure of the periods to some workers; we will refer to this
amount of work that a computer system performs. mode ad.oad See “Table 3".
E;% Igsgrzve;?%%rgfptriﬁf:nftsi;hri:s\ieéggﬁ system o Dynamic task allocation with load and mobility
lable f P host ) i e | );h f The skeleton balances the load by moving tasks
a}/arlla e rorga oi.orf)era Ing syshem In the Iormd from heavily loaded workers to lightly loaded
of three numbers which represent the system loa workers where additional loads are applied to
during the last one, five-, and fifteen-minute pdri workers: we will refer to this mode adobility.
[21]. The hwFarm skeleton assumes that the load See “Table 4”.
for the last one-minute period; ) )
The results of these experiments presented in the
o Each worker sends load information to the masterfollowing tables:
and then the master sends the load information to Table 1. STATIC TASK ALLOCATION TIME (SEQ
all workers;
o Tasks 1 2 3 4 5
0 The tasks are distributed to the chosen workers; Worker
0 The master (farmer) awaits the results from workers ' 160568 | 164034 168470 167443 188686
and distributes new tasks; 2 186.681 | 97.948 121.437 97.304 110.80p
0 When the master receives a result, it will cheak th 3 187.031 | 97.580 | 68674 | 88.795| 74.177
load for all free workers and then choose the best 4 186276 | 97.411| 69121 50.945 | 71.665
one to send the next task to;
. . 5 186.321 97.707 68.602 51.323 43.105
o Depending on the load and percentage of increased
load in this worker and the load on free workehs, t
worker decides if the task should be moved toa fre  Table 1 shows that our skeleton gives good speed
worker or not. with the ray tracer program and static task alliocat
0 The task may then be moved from one worker to a Table 2. D
new worker, and the destination worker continues able 2. DYNAMIC TASK ALLOCATION TIME (SEQ
executing the task from the stop point. Worklasks 1 2 3 4 5
4 Experiments 1 193.168 | 186.973| 185559  187.703  185.98
In these experiments, we evaluate the performance 2 193.227| 96.788 | 120.203| 93854 107.92p
and the behaviour of the hwFarm skeleton on 3 193.664 | 97.462| 70462 | 87.707 | 74.052
heterogeneous distributed memory architecture. ¥ée u . 102076 | o8460| co216l 83102 | 71751
a ray tracer program that generates the image @or 1 : : : : :
rays for 150000 objects in the scene. A ray tgcin 5 193.043 | 98.474| 69.074  52.97] 43.500




Table 2 shows show that our skeleton retains googbrocess the task, so the execution time will bellema
speed with some modest difference in result fromThe task will not be moved when there are no free

collecting and computing load information. workers.
Table 3. DYNAMIC TASK ALLOCATION WITH LOAD AND NO MOBILITY
TIME(SEQ) 340
Tasks )‘
Worker: 1 2 3 4 5 290 ——
1 335.513 292.372 316.453 309.019 294.252 -g
8240
2 332.121 | 166.745 192.063 154.189 162.842 g \
=190
3 207.027 | 167.259| 113712 | 140.200| 12147 5 \
4 298.318 | 163.596| 116.96] 95.658 | 80.906 140 m
5 300.889 | 151.549| 110554  93.43( 79.428 90 i—
Workers 1 2 3 4 5

Table 3 shows that the skeleton may retain speed —=¢=Static == Dynamic Load ==<=Mobility
when there is additional external load but worker

performance deteriorates and execution time became Figure5. 1-5 Workers.2 Tasls
slower. Figure 5 shows the time for executing two tasks on
Table 4. DYNAMIC TASK ALLOCATION WITH LOAD AND MOBILITY 1-5 \.NOI'ke.I'S. In. thestatic a.nd dynamlc modes, the
TIME(SEQ execution time is approximately the same. The
s improvement in thenobility mode comes from moving
Workar 1 2 3 4 5 the tasks from heavily loaded workers to lightlpded
1 320445 | 315008 31286 311980 201spr  WOTKers.
2 195.449 | 137.300 | 131.514| 135443 121701 400
3 196.673 127.245( 103.468 93.554 94.028
300 -
4 197.781 109.565 92.112| 71.096 73.512 ho]
c
5 197.454 | 105680 83.069  69.25] 62.329 §200
(%]

Table 4 shows that the performance is improved§100 i
with task mobility when local loads change. However

the performance is still worse than for tsatic and 0 ' : : '
dynamicmodes. Workers 1 2 3 4 5
==@—Static =fll=Dynamic Load ==¢=Mobility
The following graphs compare the execution time
of the program with different numbers of tasks on Figure 6. 1-5 Workers, 3 Task
different numbers of workers. Figure 6 shows the time for executing three tasks

on 1 - 5 workers. The improvement of execution time
in the mobility mode is related to the availability of

360 X free workers.
o]
§310 400
£60
= X
S \ - 300
210 o
'=b='==‘ 3200 -
160 T T T T 1 g
Workers 1 2 3 4 5 E 100 -
=@ Static =lll=Dynamic Load ==¢=Mobility
Figure 4. 1-5 Workers, 1 Tasks 0 ! ! ! !
Workers 1 2 3 4 5

Figure 4 shows the time for executing one task on 1 o= Static == Dynamic Load === Mobility
- 5 workers. The execution time in tlstatic and

dynamic modes is approximately the same; the Figure7. 1-5 Workers, 4 Tass

difference comes from the cost of computing and  rig re 7 shows the time for executing four tasks on
collecting load. The execution time in thead mode 1 _ 5 \orkers. The time in thenobility mode

depends on the load applied to the workers. In the,, o3 hes the time in teaticanddynamicmodes.
mobility mode, the task is moved to a free worker
when the current worker becomes unable to effelgtive
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workers
=@ Static =ill=Dynamic

0

0

Figure 8 shows the time for executing five tasks on

1 2 3 4 5

Load ==¢=Mobility

Figure8. 1-5 Workers, 5 Tass

1 - 5 workers. The executing time imobility mode is
better than the executing timeload mode but is still
worse than thetaticanddynamicmodes.

5 Conclution and future work

We have proposed a new type of skeleton for highy3

performance, distributed memory architecture. This

skeleton is implemented using C and MPI libraryisTh
skeleton is self-mobile and able to move tasks feom [14]

heavily- loaded to a lightly-loaded worker.

Our

experiments show that, for the ray tracer progrdath w
small numbers of processors, the hwFarm skeleton &S]
able to mitigate the performance effects of externa
load on individual processors by dynamically moving
tasks across processors

mobile task behaviour in the presence of different

(7]

(8]

(9]

(10]

(11]

(12]

(16]

We next intend to conduct considerably larger scale
experiments, on much larger numbers of processors,
with a variety of applications, systematically exjig

patterns of external load. To aid this, we proptse

construct a “load skeleton” which runs alongside an

hwFarm application program to apply additional l®ad
in predictable ways.

extended to be able to move code, as well as data a [20

In future work, the hwFarm skeleton will be

state, amongst processing units. In addition, wigé wi
define a richer cost model for the skeleton to take

(17]

(18]

(29]

: . b A
account of heterogeneity in the processmg[ ]
environment. [22]
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Appendix

Using hwFarm skeleton o The prototype of the general function that the user
~ The prototype of hwFarm skeleton is implementedwyrites to be called from the hwFarm skeleton is:
in C and MPI. Our skeleton gives the programmer the

ability to write their program in a sequential manm voi d doProcessi ng( o

C . They should specify the input data and iderttify vol g ! npult Data,int i npuELen,

high-ordered function which represents our skeléton xg: a* rzf: t’i nltm a?gtsg)lzjte)en’

run the program with all data in an implicit, pdeal { } pars, P

manner. Our implementation uses the MPI library to T

provide the communication, so we need to initiaffse Glossary of parameters:

library before calling the skeleton.
i nput Data: input data.

There are some constraints on the programmer in | "PutLen:length of iinput data.

writing the function which must have six parameters :)ﬁtSUIu: i_en- log:]pt’:] g?t |an Ut data
the input data and its length, the output data itsd parrs)_ : arrgy of pargmet ers.
length, and an array of parameters used in theibhmc par sSi ze: length of parameters.

and its length, and these values should be irs&dli

before function. Each worker will execute their task by calling the

doProcessing function on their data chunk. All
variables the function need should be parametesgsed
we can save the execution state of the function.

The main steps to write a parallel program using
hwFarm skeleton are:

o Write the sequential code that should be
executed in parallel on the data items as a
parameterised function above.

Initialise the MPI library.
Initialise the input data.

Call the hwFarm skeleton.

O O o o

Finalise the MPI library.

The prototype of the main function of hwFarm
skeleton is :

void hwfarm(fp worker, int tasks,
void *input,int inSize,
int inLen, MPI_Datatype taskType,
voi d* output, int outSize,
int outLen, MPI_Datatype
resul t Type, voi d*FunPars,
int parsSize, int procCount)

{...}

Glossary of parameters:
wor ker : wor ker function.
t asks: total number of tasks.
i nput : array of input data.
inSi ze: size of input data type.
i nLen: size of one task.
t askType: type of MPl input data.
out put : array to output data.
out Si ze: size of output data type
out Len: size of data in one
resul t Type: type of MPl output data
FunPar s: array of function paraneters
parsSi ze: size of paraneters

procCount: nunber of processors

We assume that the chunk size and number of
workers are static but may be made dynamic by the
skeleton.



