
Dynamic Farm Skeleton Task Allocation Through
Task Mobility

Turkey Alsalkini 1, Greg Michaelson1

1Computer Science Department, Heriot-Watt University, Edinburgh, UK
(ta160, G.Michaelson) @ hw.ac.uk

Abstract—Demand for multi-process resource
invariably outstrips supply and users must often share
some common provision. Where batch-based, whole
processor allocation proves inflexible, user programs
must compete at runtime for the same resource so the
load is changeable and unpredictable. We are
exploring a mechanism to balance the runtime load by
moving computations between processors to optimize
resource use. In this paper, we present a generic
algorithmic farm skeleton which is able to move worker
tasks between processors in a heterogeneous
architecture at runtime guided by a simple dynamic
load model. Our experiments suggest that this
mechanism is able to effectively compensate for
unpredictable load variations.

Keywords: Skeleton , Mobile, Grid, Computing, Load
balancing.

PDPTA’12

1 Introduction
In recent years, there has been a dramatic increase

in the amount of available computing and storage, but
dedicated High-Performance Computers are expensive
and rare resources. Emerging multiprocessor
architecture techniques offer the opportunity to
integrate individual high-performance computers into a
unitary high-performance system. This entails several
technical challenges: difficulty of effective utilization,
high communication latency, and unpredictable
effective speeds.

Researchers are investigating the possibility of
exploiting the computational power and resources
available in global networks. Mobile computation is a
way to use the resources available on both local and
global networks. Mobile computation gives the
programmer control over the placement of code or
active computations across a network to chart and
better use the available computational resources. A
mobile program can transport its state and code to
another location where it resumes execution [27], so in
an application that uses mobile computation, the
program can move between locations for better
utilisation of computational resources. By using load
management techniques, the program has a mechanism
for distributing the tasks to worker locations to achieve
performance goals (balancing the load or minimising
the execution time).

The main obstacle to the commercial uptake of parallel
computing is the complexity and cost of the associated
software development process. A promising way to
overcome the problems of parallel programming is to
exploit generic programs structures, called skeleton
[17]. Skeletons capture common algorithms which can
be used as components for building programs. The
main advantage of the skeleton approach is that all the
parallelism and communication are embedded in the
set of skeletons.

 We are exploring a mechanism to balance the
runtime load by moving computations between
processors to optimize resource use. In this paper, we
present a generic algorithmic farm skeleton which is
able to move worker tasks between processors in a
heterogeneous architecture at runtime guided by a
simple dynamic load model. Our experiments suggest
that this mechanism is able to effectively compensate
for unpredictable load variations.

2 Background and related work
Mobility, which refers to the change of location

achieved by system entities [10], involves moving
computations amongst processors on a network to
distribute the load, giving better use of resources and a
faster performance [25, 27]. Mobility has different
forms: hardware and software mobility, process
migration, mobile languages, weak and strong
mobility. Hardware mobility means the mobility of
devices, such as laptops and PDAs. In contrast,
software mobility moves the computations from one
location to another location [6], typically through
process migration or mobile languages. In process
migration, the system determines load movement e.g.
MOSIX [4], which is an operating system that supports
process migration. In contrast, in mobile languages, the
system gives the programmer the ability to control load
movement. Weak and strong mobility are alternative
forms of mobility defined by Fuggutta and Picco and
Vigna [5]. Weak mobility involves moving the code
from one location to another. Strong mobility involves
moving the code and state information from one
location to another and resuming the execution from
the stop state [26]. Strong mobility is also known as
transparent migration. Many mobile languages support
weak and strong mobility, e.g. JavaGo [2], but Java
Voyager [3] supports only weak mobility.
Checkpointing is the main operation in mobile systems

to move computations amongst processors in a
network or cluster by snapshotting the state of
application [14], e.g. CONDOR [11].

A novel Autonomous Mobile Program (AMP)
decentralised load management technique has been
developed by Deng [25]. AMPs seek to execute on
“better” locations and take movement decisions
depending on whether the resource needs can be
served locally or on another location. This movement
decision also depends on future resource needs, and
whether it is better to continue locally or to move to
another location.

Algorithmic skeletons offer an approach in parallel
programming to abstract the complexities that exist in
the parallel implementations [17]. They are common
parallel programming patterns that avoid the parallel
and communications details for the programmer so that
they are not responsible for the synchronization
between the application parts. Skeletons are closely
related to functional languages, so higher order
functional structures can be produced by using
skeletons [9]. Each skeleton has an implicit parallel
implementation hidden from the application user. The
main advantages of using skeletons are having a higher
order programming interface and a general
implementation for portability and efficiency.

Skeletons are polymorphic higher order functions,
so that there are various kinds of skeletons to cover
different program classes over different data types
[13]. These functions are implemented by libraries.
Many implementations of computations on distributed
and parallel architectures support skeletal libraries
which offer task parallel and data parallel skeletons.
An example of a C library with MPI functions is eSkel
[18], and an example of a C++ library with MPI
functions is SkeTo [16].

Google developed a C++ library that offers parallel
programming model, called MapReduce [12]. The
MapReduce skeleton is a programming model for
processing large sets of data. This model has an
abstraction level where it is possible to perform
computational operations while hiding communication
and parallelism details, fault-tolerance, and data
distribution. This model has two primitives map and
reduce. The map operation applies a function to pairs
of key/value to produce output key/value; the reduce
operation combines the shared key results to produce
the final result. The mapped function is written by the
user, and the user specifies the data sets with pairs.
Similarly, the reduced function is also written by the
user. The closely related open-source Apache Hadoop
is a Java library used to process large data sets on
distributed parallel architecture such as cluster [1].

A cost or performance model may be used to
estimate the costs of programs such as time and space
[24, 7]. While algorithmic skeletons involve the
parallelism process, communication and coordination
[8], their cost models typically measure the

computation and communication cost. Many cost
models have been developed for algorithmic skeletons
on parallel architecture. Some models determine the
task placement statically [15], while others determine
the whole skeleton placement dynamically [24].

Our approach is based on dynamic task placement
for skeletal programming. We have developed a
parallel farm skeleton using C with MPI functions
which is able to move tasks between workers while
preserving the execution state during moving
operation. We have explored three approaches to
implementing mobility in our skeleton: data mobility,
data and state mobility, and data, state and code
mobility.

Data mobility involves moving the data between
locations on a network [14]. For state mobility, the
program can correctly save its state and resume work
from the saved point properly. Code mobility involves
moving the whole program code, as well as the data
and execution state, to a different machine [5]. This
paper proposes as task mobility approach of moving
the data and state for a sub-computation between
processors, rather than the whole program. Our
skeleton is implemented using C and MPI, but MPI
clones the code to the workers so there is no need for
moving the code. Code mobility is difficult to
implement in heterogeneous structures, and this
remains future work for our research: our work is a
first step in implementing a skeleton fully able to move
arbitrary code amongst machines on a network.

3 An overview of hwFarm skeleton
Our skeleton has the name hwFarm. In general, the

main idea of skeleton is to abstract all the parallelism
and communication details, but the hwFarm skeleton is
also able to move tasks amongst the worker processors
at run-time.

The hwFarm skeleton:

• is self-mobile which means that our skeleton is
able to mobilize the task from one worker to
another one during task execution when the
overhead increases;

• supports parallelism on a distributed memory,
high-performance architecture;

• hides parallelism and communication details
from the program;

• presents a high-level function implemented
using C and MPI [20].

3.1 Definition of hwFarm skeleton
The term task farming is used to describe parallel

applications that have specific properties. Ordered and
structured collections of data items, known as tasks,
are each processed by the same operation. Processing
the task can be performed in parallel because the tasks
are independent [19]. In general, the static scheduling

Figure 2. Skeleton with task mobility (data only)

Figure 1. Standard skeleton

Figure 3. Skeleton with task mobility (data and state)

of tasks to a similar number of processes gives poor
load balancing. A task farm solves this by
implementing dynamic scheduling to ensure a better
balance. The farmer acts as the scheduler while the
workers process the tasks assigned by the farmer. The
hwfarm skeleton has the same characteristics but with
the ability to move its tasks amongst workers.

The implementation is divided into three steps:

1) Implementing skeleton with workers without
mobility: This is a simple skeleton which contains a
farmer responsible for distributing the tasks to the
workers executing these tasks, as shown in “Fig. 1”.

2) Implementing skeleton where data has been
sent between two workers: This is the first step in
making a task mobile, but the task will be processed by
the worker from the beginning. See “Fig. 2”.

3) Implementing skeleton where data and state
have been sent between two workers: The skeleton can
move the data and state of the task between workers.
The moved elements contain the processed data and
unprocessed data, so the target machine will start
processing not from the beginning of the data but from
the beginning of the unprocessed data. A fuller
explanation of the implementation will be given in the
next section. See “Fig. 3”.

3.2 How to move state?
The mobility process needs to save the state of

execution to continue working from the stop state. As
noted, the skeleton hides the parallel and
communication details from the programmer so that
the programmer is not responsible for the
synchronisation between application parts. The
programmer has to write their own general function
that should be executed by the skeleton. This function
has three arguments: the input data to be processed, the
output data which is the result, and parameters for the
user function. An array of parameters contains the
variables that the function needs to process the data.
The state of execution depends on the values of these
parameters. During mobility, the skeleton moves the
input data that was not yet processed by the first
worker, the sub-the result of the processed data and the
array of parameters for the function at stop point. The
new worker receives this data and continues processing
from the stop point.

3.3 Movement decision:
One of the biggest issues in parallel and distributed

systems is developing techniques for distributing
processes to multiple locations [24, 23], to minimize
the execution time and increase performance. Our
skeleton balances load by using information collected
from machines at run time to move a task from heavily
loaded processors to lightly loaded processors.

The movable element in our skeleton is the task.
The task computes the function for specific data so for
task mobility we should move the function and the
data. Since the function already exists in all workers,
we only move the data and state between workers.

A movement decision by a skeleton depends on
several polices:

o Information policy: Determines the load
information to make a task placement or task
mobility. This information is collected from the
processors at runtime to know their load changes.

o Selection policy: Decides what task should be
moved. The movement decision is taken by
collaboration between the master and workers. A
worker decides if its task should be moved
depending on its load and the load on free workers.
When the worker decides to move its task, it sends
a request to the master.

o Placement policy: Identifies where a task should be
transferred. The worker, after deciding that it is
unable to process its task, or becomes heavily-
loaded, determines the best free worker available to
process the task.

3.4 Activities of hwFarm skeleton:

The sequence of activities that may happen during the
execution of the skeleton is:

o The load of all workers in a system is acquired;

o The best workers are chosen where the number of
workers is static. The system load in a worker, also
known as its load average, is the measure of the
amount of work that a computer system performs.
The load average represents the average system
load over a period of time. It is most easily
available from a host operating system in the form
of three numbers which represent the system load
during the last one, five-, and fifteen-minute period
[21]. The hwFarm skeleton assumes that the load
for the last one-minute period;

o Each worker sends load information to the master,
and then the master sends the load information to
all workers;

o The tasks are distributed to the chosen workers;

o The master (farmer) awaits the results from workers
and distributes new tasks;

o When the master receives a result, it will check the
load for all free workers and then choose the best
one to send the next task to;

o Depending on the load and percentage of increased
load in this worker and the load on free workers, the
worker decides if the task should be moved to a free
worker or not.

o The task may then be moved from one worker to a
new worker, and the destination worker continues
executing the task from the stop point.

4 Experiments
In these experiments, we evaluate the performance

and the behaviour of the hwFarm skeleton on
heterogeneous distributed memory architecture. We use
a ray tracer program that generates the image for 100
rays for 150000 objects in the scene. A ray tracing

algorithm is used to produce an image by imaginary
rays of light from the viewer’s eye through pixels to the
objects in the scene [22].

4.1 Platform:
The hwFarm skeleton is tested with a Beowulf

cluster located at Heriot-Watt University. The cluster
consists of 32 eight-core machines (8 quad-core
Intel(R) Xeon(R) CPU E5504, running GNU/Linux at
2.00GHz with 4096 kb L2 cache and using 12GB
RAM).

4.2 Evaluation:

The skeleton is tested in 4 modes:
o Static task allocation: The skeleton places the tasks

without using load information; we will refer to
this mode as Static. See “Table 1”.

o Dynamic task allocation: The skeleton depends on
load information collected from [processors for
placing the tasks but without mobility; we will
refer to this mode as Dynamic. See “Table 2”.

o Dynamic task allocation with load and no mobility:
The skeleton uses the load information for placing
the tasks but without mobility. In this case,
additional loads will be applied in different
periods to some workers; we will refer to this
mode as Load. See “Table 3”.

o Dynamic task allocation with load and mobility:
The skeleton balances the load by moving tasks
from heavily loaded workers to lightly loaded
workers where additional loads are applied to
workers; we will refer to this mode as Mobility.
See “Table 4”.

The results of these experiments presented in the
following tables:

Table 1 shows that our skeleton gives good speed
with the ray tracer program and static task allocation.

Table 1. STATIC TASK ALLOCATION TIME (SEC)

 Tasks
Workers

1 2 3 4 5

1 186.363 184.034 188.476 187.443 188.626

2 186.681 97.948 121.437 97.304 110.800

3 187.031 97.580 68.674 88.795 74.177

4 186.276 97.411 69.121 50.945 71.665

5 186.321 97.707 68.602 51.323 43.105

Table 2. DYNAMIC TASK ALLOCATION TIME (SEC)

 Tasks
Workers

1 2 3 4 5

1 193.168 186.973 185.559 187.703 185.978

2 193.227 96.788 120.203 93.854 107.920

3 193.664 97.462 70.462 87.707 74.052

4 194.076 98.460 69.216 53.102 71.751

5 193.043 98.474 69.074 52.977 43.500

Figure 4. 1-5 Workers, 1 Tasks

160

210

260

310

360

1 2 3 4 5

M
il

li
se

co
n

d

Workers

Static Dynamic Load Mobility

Figure 6. 1-5 Workers, 3 Task

0

100

200

300

400

1 2 3 4 5

M
il

li
se

co
n

d

Workers

Static Dynamic Load Mobility

Figure 7. 1-5 Workers, 4 Tasks

0

100

200

300

400

1 2 3 4 5

M
il

li
se

co
n

d

Workers

Static Dynamic Load Mobility

Figure 5. 1-5 Workers, 2 Tasks

90

140

190

240

290

340

1 2 3 4 5

M
il

li
se

co
n

d

Workers

Static Dynamic Load Mobility

Table 2 shows show that our skeleton retains good
speed with some modest difference in result from
collecting and computing load information.

Table 3 shows that the skeleton may retain speed
when there is additional external load but worker
performance deteriorates and execution time became
slower.

Table 4 shows that the performance is improved
with task mobility when local loads change. However,
the performance is still worse than for the static and
dynamic modes.

The following graphs compare the execution time
of the program with different numbers of tasks on
different numbers of workers.

Figure 4 shows the time for executing one task on 1
- 5 workers. The execution time in the static and
dynamic modes is approximately the same; the
difference comes from the cost of computing and
collecting load. The execution time in the load mode
depends on the load applied to the workers. In the
mobility mode, the task is moved to a free worker
when the current worker becomes unable to effectively

process the task, so the execution time will be smaller.
The task will not be moved when there are no free
workers.

Figure 5 shows the time for executing two tasks on
1 - 5 workers. In the static and dynamic modes, the
execution time is approximately the same. The
improvement in the mobility mode comes from moving
the tasks from heavily loaded workers to lightly loaded
workers.

Figure 6 shows the time for executing three tasks
on 1 - 5 workers. The improvement of execution time
in the mobility mode is related to the availability of
free workers.

Figure 7 shows the time for executing four tasks on
1 - 5 workers. The time in the mobility mode
approaches the time in the static and dynamic modes.

Table 3. DYNAMIC TASK ALLOCATION WITH LOAD AND NO MOBILITY
TIME(SEC)

 Tasks
Workers

1 2 3 4 5

1 335.513 292.372 316.453 309.019 294.252

2 332.121 166.745 192.063 154.189 162.842

3 297.927 167.259 113.712 140.200 121.476

4 298.318 163.596 116.965 95.658 80.906

5 300.889 151.549 110.554 93.430 79.428

Table 4. DYNAMIC TASK ALLOCATION WITH LOAD AND MOBILITY
TIME(SEC)

 Tasks
Workers

1 2 3 4 5

1 329.445 315.098 312.860 311.969 291.501

2 195.449 137.300 131.514 135.443 121.701

3 196.673 127.245 103.468 93.554 94.028

4 197.781 109.565 92.112 71.096 73.512

5 197.454 105.680 83.069 69.257 62.329

Figure 8. 1-5 Workers, 5 Tasks

0

100

200

300

400

1 2 3 4 5

M
il

li
se

co
n

d

workers

Static Dynamic Load Mobility

Figure 8 shows the time for executing five tasks on
1 - 5 workers. The executing time in mobility mode is
better than the executing time in load mode but is still
worse than the static and dynamic modes.

5 Conclution and future work
We have proposed a new type of skeleton for high

performance, distributed memory architecture. This
skeleton is implemented using C and MPI library. This
skeleton is self-mobile and able to move tasks from a
heavily- loaded to a lightly-loaded worker. Our
experiments show that, for the ray tracer program with
small numbers of processors, the hwFarm skeleton is
able to mitigate the performance effects of external
load on individual processors by dynamically moving
tasks across processors

We next intend to conduct considerably larger scale
experiments, on much larger numbers of processors,
with a variety of applications, systematically exploring
mobile task behaviour in the presence of different
patterns of external load. To aid this, we propose to
construct a “load skeleton” which runs alongside an
hwFarm application program to apply additional loads
in predictable ways.

 In future work, the hwFarm skeleton will be
extended to be able to move code, as well as data and
state, amongst processing units. In addition, we will
define a richer cost model for the skeleton to take
account of heterogeneity in the processing
environment.

6 References
[1] Apache Hadoop Project. http://hadoop.apache.org/, 2010.

[2] T. Sekiguchi. “JavaGo”, http://homepage.mac.com
/t.sekiguchi/javago/index.html, May 2006.

[3] “voyager user guide,” ”http://www.recursionsw.com”, 2005.

[4] A. Barak, S. Guday, and R. G. Wheeler, The MOSIX
Distributed Operating System: Load Balancing for UNIX.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1993.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code
mobility,” IEEE Trans. Softw. Eng., vol. 24, no. 5, pp. 342–
361, May 1998.

[6] A. R. D. Bois, “Mobile Computation in a Purely Functional
Language,” Ph.D. thesis, School of Mathematical and
Computer Science, Heriot-Watt University, United Kingdom,
Aug 2005.

[7] A. Merlin and G. Hains, “A generic cost model for concurrent
and data-parallel meta-computing,” Electronic Notes in
Theoretical Computer Science, vol. 128, no. 6, pp. 3 – 19, May
2005.

[8] D. K. G. Campbell, “Clumps: A Candidate Model Of Efficient,
General Purpose Parallel Computation,” Ph.D. thesis,
Department of Computer Science, University of Exeter, United
Kingdom, Oct 1994.

[9] F. A. Rabhi and S. Gorlatch, eds., Patterns and skeletons for
parallel and distributed computing. London, UK: Springer-
Verlag, 2003.

[10] G. Cabri, L. Leonardi, and F. Zambonelli, “Weak and strong
mobility in mobile agent applications,” in Proc. 2nd
International Conference and Exhibition on The Practical
Application of Java (PA JAVA 2000), Manchester (UK), April
2000.

[11] J. Basney and M. Livny, High Performance Cluster
Computing: Architectures and Systems, Volume 1, ch.
Deploying a High Throughput Computing Cluster. Prentice
Hall, 1999.

[12] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,no. 1, pp.
107–113, January 2008.

[13] J. Fischer, S. Gorlatch, and H. Bischof, Foundations of data-
parallel skeletons, pp. 1–27. London, UK: Springer-Verlag,
2003.

[14] J. G. Hansen, “VIRTUAL MACHINE MOBILITY WITH
SELF-MIGRATION,” Ph.D. thesis, Department of Computer
Science, University of Copenhagen, Apr 2009.

[15] K. Armih, Greg Michaelson, and Phil Trinder, “Cache size in a
cost model for heterogeneous skeletons,” In Proc. fifth int.
workshop on High-level parallel programming and
applications (HLPP '11), 2011.

[16] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. "A library of
constructive skeletons for sequential style of parallel
programming,” In InfoScale ’06: Proceedings of the 1st
international conference on Scalable information systems, New
York, NY, USA, 2006. ACM. ISBN 1-59593-428-6.

[17] M. Cole, Algorithmic skeletons: structured management of
parallel computation. MIT Press, 1989.

[18] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Parallel
Comput., vol. 30, no. 3, pp. 389–406, 2004.

[19] M. Cole, eSkel: The Edinburgh SKEleton Library, Tutorial
Introduction. Internal Paper, School of Informatics, University
of Edinburgh, 2002.

[20] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-
Lederman. MPI: The Complete Reference. MIT Press,
Cambridge, MA, USA, 1995. ISBN 0262691841.

[21] R. Walker, “Examining load average,” Linux J, vol. 2006, no.
152, pp. 5--, December 2006.

[22] S. Schneider, Concurrent and Real Time Systems: The CSP
Approach (1st ed.). John Wiley & Sons, Inc., New York, NY,
USA, 1999

[23] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in
general-purpose distributed computing systems,” IEEE Trans.
Softw. Eng., vol. 14, no. 2, pp. 141–154, February 1988.

[24] X. Y. Deng, “Cost-Driven Autonomous Mobility,” Ph.D. thesis,
Heriot-Watt University, United Kingdom, May 2007.

[25] X. Y. Deng, G. Michaelson, and P. Trinder, “Cost-driven
autonomous mobility,” Computer Languages. Systems and
Structures. vol. 36, no. 1, pp. 34 – 59, Apr 2010.

[26] X. Y. Deng, G. Michaelson, and P. Trinder, “Autonomous
mobility skeletons,” Parallel Comput., vol. 32, no. 7, pp. 463–
478, September 2006.

[27] Z. Kirli, “Mobile Computation with Functions,” Ph.D. thesis,
University of Edinburgh, Laboratory for Foundations of
Computer Science:Division of Informatics, 2001.

Appendix:

Using hwFarm skeleton
The prototype of hwFarm skeleton is implemented

in C and MPI. Our skeleton gives the programmer the
ability to write their program in a sequential manner in
C . They should specify the input data and identify the
high-ordered function which represents our skeleton to
run the program with all data in an implicit, parallel
manner. Our implementation uses the MPI library to
provide the communication, so we need to initialise the
library before calling the skeleton.

 There are some constraints on the programmer in
writing the function which must have six parameters:
the input data and its length, the output data and its
length, and an array of parameters used in the function
and its length, and these values should be initialised
before function.

The main steps to write a parallel program using
hwFarm skeleton are:

o Write the sequential code that should be
executed in parallel on the data items as a
parameterised function above.

o Initialise the MPI library.

o Initialise the input data.

o Call the hwFarm skeleton.

o Finalise the MPI library.

The prototype of the main function of hwFarm

skeleton is :

void hwfarm(fp worker, int tasks,
 void *input,int inSize,
 int inLen, MPI_Datatype taskType,
 void* output, int outSize,
 int outLen, MPI_Datatype
 resultType, void*FunPars,
 int parsSize, int procCount)
 {...}

Glossary of parameters:

worker: worker function.
tasks: total number of tasks.
input: array of input data.
inSize: size of input data type.
inLen: size of one task.
taskType: type of MPI input data.
output: array to output data.
outSize: size of output data type
outLen: size of data in one
resultType: type of MPI output data
FunPars: array of function parameters
parsSize: size of parameters
procCount: number of processors

We assume that the chunk size and number of

workers are static but may be made dynamic by the
skeleton.

The prototype of the general function that the user
writes to be called from the hwFarm skeleton is:

void doProcessing(
 void *inputData,int inputLen,
 void *result, int outputLen,
 void* pars, int parsSize)
 {...}

Glossary of parameters:

inputData: input data.
inputLen: length of input data.
result: output data.
outputLen: length of input data.
pars: array of paremeters.
parsSize: length of parameters.

Each worker will execute their task by calling the
doProcessing function on their data chunk. All
variables the function need should be parameterised so
we can save the execution state of the function.

