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Dynamic Faulting under Rate-dependent Friction 

ALAIN COCHARD 1 and  RAI~IL MADARIAGA 1 

Abstract--We discuss the effects of rate-dependent friction on the propagation of seismic rupture 

on active faults. Several physicists using Burridge and Knopoff's box and spring model of faulting have 

proposed that fault complexity may arise from the spontaneous development of a self-similar stress 

distribution on the fault plane. If this model proves to be correct, it has important consequences for the 

origin of the complexity of seismic sources. In order to test these ideas on a more realistic earthquake 

model, we developed a new boundary integral equation method for studying rupture propagation along 

an antiplane fault in the presence of nonlinear rate-dependent friction. We study rupture dynamics of 
models with single and twin asperities. In our models, asperities are places on the fault with a higher 

value of prestress. Otherwise all fault parameters are homogeneous. We show that for models with such 

asperities, a slip velocity weakening friction leads to the propagation of supersonic healing phases and 

to the spontaneous arrest of fracture if the prestress outside the asperities is low enough. For models 

with asperities, we can also observe narrow slip velocity pulses, qualitatively similar to the so-called 

Heaton pulses observed in some earthquake aceelerograms. We also observe a complex distribution of 

stress after the rupture that depends on details of the initial distribution of asperities and on the details 

of the friction law. 
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1. In troduct ion  

In the last 15 years,  several  a l te rna t ive  hypotheses  have been discussed in the 

l i te ra ture  address ing  the or igin o f  e a r t hquake  complex i ty  and,  therefore,  the rad ia -  

t ion o f  seismic waves f rom complex  events (KANAMORI and  STEWART, 1978; DAS 

and  AKI, 1977b; MADARIAGA, 1979, etc.). Two ext reme views o f  this p r o b l e m  have 

been advanced .  F r o m  the first v iewpoint ,  complex i ty  is due to p e r m a n e n t  geometr i -  

cal features  on the faul t  surface, which con t ro l  the ini t ia t ion,  arrest  and  r ad ia t ion  

f rom seismic faults.  Seismologis ts  refer to them as barr iers  and  asperi t ies.  In  

ano the r  app roach ,  e.g., CARLSON and  LANGER (1989), the complex i ty  o f  faul t ing 

is cons idered  as a dynamic  fea ture  o f  faul t  zones.  Stress on the faul t  zone would  

cons tan t ly  evolve, but  would  stay at  a cri t ical  s tate such tha t  complexi t ies  o f  all 

scales would  be con t inuous ly  crea ted  and  des t royed .  These two mode l s  have direct  

bear ing  on  the genera t ion  o f  accelerograms,  because  r ad i a t i on  o f  h igh-f requency 

Drpartement de Sismologie, Institut de Physique du Globe de Paris et Universit~ Paris 7, 4, Place 
Jussieu (Tour 14-24), Bolte 89, 75252 PARIS CEDEX 05, France. 



420 Alain Cochard and Rafil Madariaga PAGEOPH, 

waves is the product of the interaction of an expanding rupture front with 

heterogeneitibs on the fault (MADARIAGA, 1983). 

In general, seismic source complexity may be due either to heterogeneities in the 

state of stress of the fault, or to variations of strength. The latter is most probably 

due to the geometrical discontinuity of natural fault systems and may be considered 

as a permanent feature of faults--at least for time scales of less than a few 

thousand years. Stress heterogeneities, on the other hand, are a consequence of 

previous activity on the fault and may be dynamically controlled. Even though it is 

not always clearly stated in the literature, many authors do not necessarily consider 

barriers and asperities as permanent features on active faults. An extreme model of 

heterogeneity, that has become very popular in recent years, is the so-called 

characteristic earthquake model of SCHWARTZ and COPPERSMITH (1984). In this 

model, geometrical discontinuities on the fault persist for a very long time con- 

trolling the size of earthquakes. Although seismic activity in many subduction zones 

does not seem to agree with the simplest versions of the characteristic earthquake 

model (see, e.g. the seismicity of central Chile, KORRAT and MADARIAGA, 1986; 

COMPTE et al., 1986), the relative role of permanent and transient heterogeneities 

on fault systems is presently unclear. The study of different models for the 

heterogeneity--geometric, static or dynamic control--is very difficult. Most of the 

crucial observations that would be needed to explore the origin of heterogeneity 

depend on the availability of geometrical information concerning the rupture 

process, on frictional behavior at high slip velocities, and on the details of the 

distribution of fault strength. Until such data are available, most of the research 

must be based upon careful numerical simulation using fracture models and friction 

laws that are as realistic as possible. This is the main goal of this paper. 

2. Models of Source Heterogeneity 

In this paper we study a model of seismic rupture in which we consider that 

earthquakes are due to the fast, catastrophic development of a frictional instability 

along a pre-existing fault surface. A fault is considered to be the result of numerous 

events upon which have taken place. These mature fault zones are the site of intense 

seismic activity with earthquakes of a wide spectrum of magnitudes or seismic 

moment occurring at any given site on these faults. 

In a recent paper, CARLSON and LANGER (1989) (CL in the following) 

revitalized the block-and-spring model of BURRIDGE and KNOPOFF (1967) (B-K in 

the following). In most other studies of the B-K model--with a few exceptions like 

CAt and AKI (1986)--the frictional law of BRACE and BYERLY (1966) was 

applied. In this law, friction is assumed to be linearly proportional to the normal 

pressure across the fault, but to be independent of slip or slip velocity on the fault. 

Following BURRIDGE and KNOPOFF (1967), CARLSON and LANGER (1989) used a 
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simple rate-dependent frictional law in their simulations. Starting from a very small 

stress initial heterogeneity CL observed that heterogeneity developed in a natural 

way until it reached a self-similar distribution. Slip events (earthquakes) of all sizes 

were observed on the same stretch of the fault and they found that these events 

obeyed a Gutenberg-Richter law. CL attributed this behavior to the intrinsic 

instability of the rate-dependent friction. 

In the B-K model each block obeys well-posed mechanical equations and 

reproduces, at least locally, the frictional interaction that is widely believed to be 

the cause of earthquakes. Unfortunately, this model has several limitations well- 

known to seismologists: it does not radiate seismic waves and it does not include 

long-range elastic forces. RICE (1993) has raised the even stronger objection, 

namely, that this model may be intrinsically discrete such that the observed 

heterogeneity may be due to inadequate sampling of the friction law on the fault. 

In order to test the applicability of CL results to earthquakes it is dearly 

necessary to study a more realistic earthquake model, based on the elastodynamics 

of  rupture propagation. As a first step in that direction, we present a study of  the 

properties of an antiplane fracture model, employing a general rate-dependent 

model for friction. To our knowledge, the only previous work on the dynamic of 

faulting in a continuum with rate-dependent friction is that of OKUBO (1989) who 

used the friction law proposed by DIETERICH (1972). His results did not show any 

heterogeneity of the final stress. Our results are different: using the same models as 

OKUBO (1989) with the friction law used by CL, we will show that the final stress 

on the fault becomes heterogeneous. 

3. A Shear-crack Model 

We study the elastodynamic field due to a flat antiplane crack F that extends 

along the z = 0 line in a homogeneous linearly elastic medium of rigidity #, density 

p and shear wave velocity fl = x / ~  (Fig. 1). The only displacement component in 

this case is Uy(X, z, t) that will be denoted simply u in the following, and the only 

nonzero elements of the stress tensor are ayx = # Ou/Sx and cry~ = # Ou/Sz. 

The equation of motion is 

1 82u 
- W u .  ( 1 )  

fl~ Ot 2 

The boundary conditions on the fault plane are 

~ y z ( x , t ) = - T ( x , t )  on F 
(2) 

Au(x, 0 = 0 on the complement of F 

where the slip across the fault is defined as Au = u(x, 0 +, t ) -  u(x, 0-,  t), the 

traction change T across the fault being affected by a minus sign because the 
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L=O 

Figure 1 
Geometry of the antiplane shear crack. The fault area is located on the z = 0 plane of an infinite, 
homogeneous, isotropic medium. The system is invariant with respect to translation along the Y axis. No 
opening of the crack is allowed. Slip u and discontinuity of slip are allowed along the Y direction. The 

fault can expand along the X axis. 

normal to the upper half space (z > 0) points downwards. Usual radiation condi- 

tions are assumed at infinity. 

Although the problem is extremely simplified, the mixed boundary value prob- 

lem (1, 2) can be solved exactly only for very simple forms of the crack F and for 

special values of  the traction change T in the cracked part  of  the interface. Here we 

are interested in studying the effect of  friction so that the absolute traction Tabs is 

in fact a function of  the slip velocity AS. The boundary value problem becomes 

nonlinear and it can only be solved by numerical methods. 

We seek solutions of  the problem (1, 2) by the boundary integral equation (BIE) 

method. This is relatively easy for the problem at hand because we know the Green 

function in closed form. We start from the classical Betti representation theorem. 

Displacement inside the elastic body is given by 

f ;o u(x, z, t) = Au(4, z)Z(x, z, 4, t - z) dz d4, (3) 

where Z = p 8 G / 8 z  is the y z  element of  the stress tensor associated with the 2D 

Green function 

1 H ( t  - r /f l )  
G(x,  z, 4, t) - - -  (4) 

2 ~  x / t  2 _ r2/[~2 
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where r --= x / ~ -  ~)2 + Z2 and H is the Heaviside function. When z ~ 0 ,  (3) reduces 

to an identity, so that this version of  the representation theorem does not lead to 

a useful BIE. 

In order to get an integral equation we calculate first the change in the stress 

field o-y z due to the slip Au. Then we let z--* 0. 

From (3) we get the integral equation: 

T(x ,  t) = -- Au(r r)# 2 G(x,  O, r t - r) dz de. (5) 

Replacing the two-dimensional Green's function in (5) we get finally 

T ( x , t ) -   fr; Au(r 2rcfl 2 [(t - ~)2 _ (x  - r dr d~ (6) 

where Tm = max(0, t -- llx -- r II/fl)" This appears to be a very simple integral equa- 

tion, unfortunately, it cannot be used as it is because it is hyper-singular near the 

source point, when ~--* x and z--* t. 

To obtain a proper integral equation we use the general method proposed by 

KOLLER et al. (1992). Assuming that Au and its derivative with respect to x (the 

dislocation density) are continuous, we can transform (6) into the following 

regularized integral equation (i.e., an integral equation with an integrable kernel): 

2re x { O {  k i t ( { ' z ) + ~  k i l ( { ' ~ ) f g ( t - z ; x - { ) & d {  (7) 

where ff(t - z ; x  - g.) = ((t - z) a - (x  - ~)2/fl 2)- ,/2, ~,~ = max(0, t - []x - { !1/fl) 

and kzi is the slip velocity. The domain of  integration of  equation (7) is shown in 

Figure 2. This form of the integral equation is particularly useful for setting up 

numerical methods for the solution of  the boundary value problem. 

'13) 

x 

FAULT 

Figure 2 

Domain of ~integration of the integral equation: a point can receive information of all the other points 

that lie inside the causality cone defined by the shear wave speed ft. 
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Integral equation (7) is regular everywhere except near ~ ~ x  where it must be 

interpreted in the usual sense of a Cauchy integral. Equation (7) has been 

regularized but is not symmetric. The first term relates stress on the boundary to 

the time and space derivative of the slip. In the parlance of dislocation theory, 

8r Ali can be simply written !~ where b is the Burger's vector or dislocation density. 

The second term of this integral equation contains the second-order time deriva- 

tive of slip. This term has a more complex structure: it contains the instantaneous 

response of a crack to stress change. This instantaneous response is associated 

with the radiation of a plane wave from the crack. The second term also contains 

a response to laterally heterogeneous slip functions such that it would be prefer- 

able to rewrite it in terms of some Burger's vector rate as the first term. In order 

to do this we must separate the instantaneous response from the BIE. This is a 

relatively difficult problem to solve in the space-time formulation. For this reason 

we prefer to introduce double Laplace transforms in space and time and we invert 

the Laplace transforms using the convolution theorem and Cagniard's method. 

This is done in Appendix 1. We obtain 

T(x , t )=-  Au(x, t) - -~x -~Z~-~(x-~ tg--~Ait(e,z)dzdr (8) 

With this formulation, we immediately see that an instantaneous traction change 

produces a Heaviside like change in slip velocity. 

Similar to integral equation (7), integral equation (8) is regular everywhere 

except near ~ ~ x  where it must be interpreted in the usual sense of a Cauchy 

integral. This Cauchy like singularity is associated with the static field of a 

dislocation. The second term in (8) is the effect of diffraction of waves by the 

dislocation distribution on the fault. This term contains both long-range elastic 

interactions--inversely proportional to x -  ~ - - a n d  wave interactions due to the 

wavefront singularities that propagate the shear wave speed (fl) along the fault. 

4. Rate-dependent Friction 

With the previously mentioned exception of the paper by OKUBO (1989) and 

the approximate discussion in HEATON (1990), all previous work on fracture 

simulation has been accomplished either with a constant kinematic friction or a 

slip weakening friction law. Recently, based on experimental data, several authors 

(e.g., DmTERICH, 1972; RICE and RUINA, 1983; Gu et al. 1984) have proposed 

that friction is a nonlinear function of slip velocity and a number of hidden 

thermodynamic variables that describe the state of the fault at the time of the 

earthquake. This was the friction law used by OKUBO (1989). 
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Friction, Absolute Traction Tab s 

Threshold i 

SeN t 

V0 S=ScNt Slip Velocity D 

Figure 3 

Slip velocity weakening friction law and the mechanism of instability for one element of the crack line. 

There is a jump in slip velocity and absolute traction for this element at the beginning and at the end 

of slip along the radiation damping lines. 

In their study of  the B-K model, CARLSON and LANGER (1989) on the other 

hand used a simplified velocity-dependent friction law initially proposed by BuR- 

RIDGE and KNOPOFF (1967).  This law shown in Figure 3 contains no internal state 

variable nor scale length: 

Vo 
Tab,(Aft) = Tthres Vo + Au (9) 

where To.bs is the absolute traction, Au is the slip velocity, V 0 is a reference velocity 

that determines the rate of  slip velocity weakening in the model and Zthre s is the 

traction threshold or equivalently the maximum traction drop, reached when the 

slip velocity is very large. 

This friction law is clearly unstable because the traction Tab s decreases with 

increasing slip velocity. It is very unstable for low values of  slip rate; for larger 

values of slip velocity, friction drop reaches a finite limit and instability decreases. 

5. Numerical Solution of  the Fault Model 

A general method for discretizing equation (7) was discussed by KOLLER et al. 

(1992). Their technique leads to a system of implicit equations for the determina- 
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tion of slip on the fault. This method cannot be used without major changes 

required to solve the nonlinear rate-dependent friction (9). For our purposes we 

introduce the following extremely simple discretization of the slip-velocity field 

inspired from the displacement discontinuity method: 

Aft(x, t) = ~ Dj,m d(x ,  t; x j ,  tin) (10) 
j,m 

where d(x ,  t; x j ,  tm) is a simple box-car function defined in the following fashion: 

d ( x , t ; x j ,  t m ) = l  if x j < x < x j + l  and t , , < t , , < - t < t m + l  

d (x ,  t; x j ,  tin) = 0  otherwise. (11) 

Noticing that d can be written in the following compact form 

d(x ,  t; x j ,  tin) = H ( x  - x j ) H ( t  -- t m ) -  n ( x  - x j+  1)H(t  - tin) 

- H ( x  - x j ) n ( t  - i n + l )  - f ' n ( x  - X j + l ) n ( t  - -  tin+l) , (12) 

and inserting the discretized slip-velocity field (10) in the integral equation (8) we 

obtain 

where 

T(x ,  t) = - #  ~ Dj, m K ( x ,  t; x j ,  tin) 
2B~,,. 

K ( x ,  t; x j ,  tin) = I ( x  - x~, t - tin) - I ( x  - x j+  1, t - tin) 

- I ( x  - x j ,  t - -  tin§ + I ( x  -- Xj+ l, t - t in+l)  

with 

I (x ,  t) = H ( t ) H ( x )  

- 2 

+1- H(t- IIx II/B)[ s in  I ( ~ / 1  - -  ( x / f l t ) 2 ) s ign (x ) ] .  

(13) 

(14) 

(15) 

We can reduce the integral equation (13) to a discrete problem by collocating the 

equation at a series of knots located inside each boundary element. These colloca- 

tion points are defined by the coordinates xi  + ex A x  and times t, + et At with 

ex, e, e [0, 1]. Writing 

T i ,  n = T(x i  + ex A x ,  t. + e, At) (16) 

and noticing by straightforward analysis of expression (14) that K can be written in 

the simpler form K(x ,  t; x j ,  tin) = K(X  -- x j .  t -- tin), we derive the linear system 

ri, .= 2~ n,,. + ~ Dj,mg~_j . . . .  (17) 
J 
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where 

K,_j  . . . .  = K(x,  - xj + ex zXx, t, - t m  + e, At). (18) 

Because Kk, l must be equal to K_k,t (by symmetry), e~ must be equal to �89 We found 

that e, = 1 produces the best results so this is the value that is used in the numerical 

simulations. 

5.1. Solution o f  the Integral Equation 

In ,order to solve the integral equation at any given time step n, we must 

distinguish between boundary elements that are in the process of  slipping for which 

we want to calculate the slip rate Di,., from boundary elements that are locked, for 

which either the rupture front has not yet arrived or that have already slid and 

healed. 

Knowing that T;,n is the traction change, we can rewrite equation (17) in the 

following way: 

r t - - [  

# - ~  Z 2 D J . ,  K' jn--m (19) Tab<, = -2--fi D,,, + ro/ 2fi, ,=o j ' " - '  

where To, is the initial traction of element i. 

The solution of  equation (19) for a boundary element i that is slipping at time 

n is 

where T.bs/.., 

crack: 

2J~  n - -  ! 

D,,. = - -  [ T a b s / . ,  - -  rOi.n ] ~- 2 2 Dj.mKi-j . . . .  ( 2 0 )  
m=Oj 

the absolute traction, is obtained from the friction law (9) in the 

v0 
T~bsi"(D"') = Tthres/ Vo + Dr,. (21) 

Equations (20, 21) must be solved simultaneously for Tabs/. and Di,.. 

For  an element i that was locked at time n - 1, we decide that it is going to slip 

at time n if its absolute traction assuming that it remains locked becomes greater 

than the friction threshold i.e., if 

We are aware of  the fact that this absolute rupture criterion is not a correct rupture 

criterion. But as we are only interested for the present paper in qualitative results 

on the effect of rate-dependent friction, we use it (as is often done), for the sake of  

simplicity. 
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Finally, if it is no longer possible to solve (20, 21), we decide that D~.n becomes 

0; this arrest criterion will become clear in the next section. 

Thus boundary conditions are imposed very simply without recomputing the 

complete solution at the current time. This is the main advantage of the explicit 

formulation with respect to the implicit boundary element method developed by 

KOLLER et al. (1992). 

5.2. Instability o f  Crack Slip for  Rate-dependent Friction 

The role of  frictional instability in the crack model can be easily understood 

analyzing the discretized integral equation (19). Introducing a simplified notation, 

we rewrite it in the form 

It 
Zabs i ' n  - -  2fl D,,n q-- Si, n (23) 

with Si,, = TO, -- # /28  E~,--~O Ej Dj,mKi_j . . . .  . 

Equation (23) is a nonlinear algebraic equation for the slip rate D~,, on the fault, 

whose solution is in fact controlled by the value of S;,~. The solution of the equation 

at different instants of the slip cycle may be better discussed by referring to Figure 

3 which shows the friction-slip velocity phase space. We can notice that, in this phase 

space, equation (23) represents a family of  straight lines with slope - i t /2 f l .  From 

a geometrical point of view, the solution of the integral equation (23) at a given point 

i with the rate-dependent friction (21) can be understood as being determined by the 

intersection of one of these straight lines with the friction curve. Slip on the fault 

starts when D = 0 and Tab~ reaches the friction threshold. This is indicated by the 

diamond in Figure 3 and corresponds to S = threshold. At this time, element i is in 

an unstable equilibrium and the traction suddenly drops to a value determined by 

the intersection of the straight line labelled S = threshold with the friction law. This 

is indicated by the dot in the  same figure. For later times, element i receives 

information from the other elements of the fault such that the value of S is modified, 

resulting in a translation of the straight line parallel to itself and consequently to a 

variation of D along the friction curve (cf. circle in Figure 3). There are actually two 

intersections between the straight line and the friction curve but the one of interest 

to us is the one with lower stress. Eventually slip velocity decreases until S reaches 

a critical value Sent such that the straight line labelled Sent is tangent to the friction 

law. At this time, the crack element i is at a bifurcation point and, as a result, D~,~ 

drops instantaneously to 0 and that fault element locks. At the same time, the 

absolute traction T~,,, increases to S c r i t i ,  n . 

In the course of slip, a point on the fault schematically follows the trajectory 

indicated by the arrows in the phase space of friction and slip rate. Let us note that 

more complex nonlocal frictional laws may require some substantial change in the 

method of solution. 
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Thus cracks under rate-dependent friction are unstable, traction on the fault 

jumps abruptly at both the beginning and the end of  slip. This sudden stress drop 

and stress locking is quite similar to the partial stress drop proposed by BRUNE 

(1970). Recently HEAXON (1990) proposed that the source time history of  several 

earthquakes determined from the inversion of near-field accelerograms indicated 

that the rise time of these events was very short. He proposed that rate-dependent 

friction was the cause of this observation. We will return to this in the discussion. 

5.3. Numerical Implementation in the Connection Mach&e 

We must solve the discretized integral equation (19): 

_ # # ~ - 1  

Tabs, n 2flOin + T o i - ~ m ~ = O 2  D,,K~_,, ,_ m. (24) , , j " , 

The computation starts from an initial state of absolute traction Toi along the x axis 

at time <0.  Thus it is necessary for at least one element to be at the threshold so 

as to initiate the movement. From this state of  traction, we immediately deduce the 

velocity D and traction Tabs for n = 0. Then we have to compute simultaneously 

Tabs~,, and D;,, step by step for times n > 1. It consists mainly of computing the 

double sum over space and time E~,-~0 Z i D~,,nKi_j . . . .  . This is a discrete convolu- 

tion over space and time of  the slip velocity field D by the kernel K which is 

computed with Fast Fourier Transforms using the massively parallel super com- 

puter of  Institut de Physique du Globe de Paris: the connection machine CM-5. 

Each of  the three simulations presented in this paper took about 3 minutes cpu time 

on the CM-5 with 128 processors. 

Our numerical computations are made using the following nondimensional 

quantities: 

D x 2Tabs D '  ~ ,  t '  = t /3  (25) 
T'at's ]2 AX' AX' 

where Ax is the length of a boundary element xi + 1 - xi. Finally we have to fix the 

value of  t3 At/Ax,  At being the time step t ,+ ~ - t,. This value is fixed to 1/2, as in 

KOLLER et al. (1992) for the computations presented in this paper. 

We refer the reader to our previous papers (MADARIAGA and COCHARD, 1992 

and KOLLER et al., 1992) for an extensive check of  the validity of  the numerical 

method. We present in Appendix 2 one comparison with the analytical result 

obtained by BURRIDGE (1969). 

6. Numerical Results: Single and Twin Asperity Models 

Following the work of OKUBO (1989), we shall illustrate numerically the effect 

of  rate-dependent friction when the initial states of  stress along the fault plane (x 
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(a) Prestress 
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Single Asperity Model 

(b) 

0 

t 

Prestress 
Fault plane 

At rupture threshold 

X 

At rupture t] 

0 

reshold At rupture threshold - e 

X 
Twin Asperity Model 

Figure 4 
Initial states of stress for the numerical simulations presented in this paper. (a) One asperity. (b) Two 

asperities. The stress outside the asperities is 0. 

axis) are those shown in Figure 4. Figure 4a represents a single asperity: a given 

length of  the fault axis is at the rupture threshold at time 0 and the stress outside 

this patch is 0. In Figure 4b, we have two asperities: the first one is at rupture 

threshold and the second one is almost at rupture threshold so it is ready to break. 

For  the simulations presented in this paper, the single asperity of Figure 4a is 

100 elements large, the two asperities of Figure 4b are 100 and 50 elements large, 

separated by 100 elements; for clarity of  the figures, only one line in ten is presented 

in the space-time plots to follow. In all the computations, the nondimensional 

threshold 2Zthres/~ was fixed to 5. 

Figures 5 and 6 represent the evolution of  slip velocity along the fault for the 

single asperity model when friction is not rate-dependent i.e., when Vo = 0, v0 = Vo/fl 
being the nondimensional parameter that determines the amount  of slip-velocity 

weakening in the friction law (21). The rupture threshold is assumed to be uniform 

along the section of  the fault plane that is allowed to break. Outside this section, 

the threshold is assumed to be infinity, yielding an effectively unbreakable barrier. 

After the initial crack appears, stress concentrations develop near the edges of  the 

crack until traction across the fault reaches the friction threshold. At that point 

rupture begins to grow with a velocity that becomes rapidly comparable to that of  
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d~r 

Figure 5 

The slip-velocity field for the single asperity model with constant friction (% = 0). Rupture fronts are 

stopped only when encountering the barriers. 

shear waves in the material surrounding the fault. Rupture continues until the 

rupture fronts reach the barriers. Stopping phases then are emitted and propagate 

backward to the center of  the fault. The slip velocity of an element i inside the fault 

decreases slowly u~ttil the arrival of a stopping phase. It then decreases rapidly to 

0. Therefore in the case of classical (rate-independent) friction, the global arrest of 

rupture is due to the stopping phases emanating from the edges of the fault. 

We see in Figure 6 that the stress after the rupture is very smooth inside the 

fault. It is slightly less than 0 due to the classical overshoot. 

We :now present numerical solutions for the same asperity of Figure 4a but with 

a small amount of rate-dependence vo = 7 x 10 -2. The situation is quite different 

for the slip velocity evolution shown in Figure 7 (note the change in time scale). 

Because of the healing mechanism due to the instability of the friction law described 
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OJ 

o 

Figure 6 

The stress field for the single asperity model with constant friction (vo = 0). Stress inside the fault is very 

smooth at the end of the rupture. 

in Figure 3, an element inside the fault locks well before the arrival of the rupture 

front at the barriers. This behavior is quite like the self-healing pulses that HEATON 

(1990) reported to have been observed for several recent earthquakes modelled 

from near-field data. 

The situation is also quite different for the stress evolution shown in Figure 8. 

When an element inside the fault locks, its traction jumps as shown in Figure 3. 

Then it receives information from other elements of the fault that are still moving: 

its traction increases and the earlier an element locks, the higher its traction is at the 

end of the global movement. As a consequence, the stress is higher at the center of 

the fault. On the contrary, we see that where the pulses stop, the traction decreases: 

this is classical overshoot, equivalent to what was observed in Figure 6 with 

rate-independent friction. In his paper, OKUBO (1989) found a similar result for the 

evolution of slip velocity for a model with a single asperity. On the other hand, he 

found that the final stress inside the broken patch is very close to 0. This 
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O 

Figure 7 
The slip-velocity field for the single asperity model with rate-dependent friction (v o = 7 x 10-2). Rupture 

stops spontaneously before reaching the barriers. 

discrepancy is probably due to the difference between the friction laws used in the 

two cases: he used DIETERICH'S (1972) rate-dependent friction law with high velocity 

cutoffs so that it is actually rate-independent at high slip velocities. 

The evolution of  slip velocity and traction for the twin asperity model (Figure 

4b) in the presence of rate-dependent friction (v0 = 4.5 x 10 -2) is shown in Figures 

9 and 10, respectively. 

The first asperity, at rupture threshold, breaks at time 0 and the second one, 

almost at rupture threshold, is triggered by the arrival of  the rupture front originating 

from the first one. As in the case of the single asperity model with rate-dependent 

friction, the global arrest of  movement is spontaneous and due to the friction law. 

But due to the interference between the two asperities, the system can spontaneously 

develop a very important stress heterogeneity. Indeed, the corresponding plot with 

v0 = 0 (not shown here) exhibits a very smooth final stress as in Figure 6. 
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Figure 8 

The stress field for the single asperity model with rate-dependent friction (v o = 7 x 10-2). Stress inside 

the fault is higher at the center and lower at the extremities o f  the pulses. 

In order to verify the numerical precision of our solution, we would have 

preferred to compare the solution of Figures 9 and 10 with those obtained for 

different grid sizes. Unfortunately, this is not possible with the simple rupture 

criterion used here because, as is well-known, the amplitude of the traction just in 

front of the crack tip depends on the grid size (see for example DAS and AKI, 

1977a), therefore the rupture history determined numerically will be very different. 

This problem was discussed in detail by KOLLER et al. (1992). Instead of this test, 

we can compare the solutions obtained with different grid sizes in the case of 

propagation with kinematically imposed rupture velocity. This is done in Appendix 

2 and illustrates that the numerical solutions converge when we increase the number 

of grid points. We also discovered that numerical noise, due to the sudden locking 

of slip in the fault, decreases with the use of the finer grid. Convergence between the 

solutions obtained with different grid sizes for spontaneous propagation is dimin- 

ished compared to the one observed in Figures 13 and 14 (see Appendix) because 

our model is of course "inherently discrete" in the sense given by RICE (1993). This 

is due to the lack of intrinsic length scale in the friction law (9). However, the main 

difficulties with the lack of length scale are that rupture velocity depends on the 
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r  

Figure 9 
The slip-velocity field for the twin asperity model with rate-dependent friction (v o = 4.5 x 10-2). 

grid, not that the stress field inside the fault would become smoother as proposed 

by RICE. Although we are convinced that a proper treatment of the rupture front 

would not qualitatively change the results presented in this paper, we will delay 

further discussion to a forthcoming paper in which we discuss analytical solutions 

for some simple fracture problems. 

7. Discussion and Conciusions 

We have developed a new Boundary Integral Equation Method to study 

antiplane dynamic faulting under rate-dependent friction. 

From the solution of a model of faulting with a single initial stress asperity, we 

conclude that faulting under rate-dependent friction presents a number of  funda- 

mental differences with respect to KOSTROV'S (1964, 1966) classical model of  the 
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Figure I0 

The stress field for the twin asperity model with rate-dependent friction (v 0 = 4.5 x 10-2). Stress inside 

the fault is very heterogeneous at the end of the rupture. 

propagation of a simple crack under constant friction. The main new result is that 

rate-dependent friction makes fault healing unstable, thus slip velocity drops 

abruptly to zero inside the crack before the arrival of any stopping phase issued from 

the edges of the fault. Fault healing spreads from the center of the fault forming a 

"healing phase," the hyperbolic like curve where the slip velocity jumps to zero in 

Fig. 7. This phase propagates bilaterally at supersonic speed and finally draws even 

with the rupture front. Thus the whole rupture process may stop spontaneously 

before the rupture has had the time to reach the edges of the fault. 

From the solution of the slightly more' complex case of two interacting stress 

asperities, we find that stress heterogeneity may be spontaneously maintained on the 

fault plane. This is due to the instability of healing previously mentioned. This result 

is different from that of OKUBO (1989) who discovered in his simulations that, both 

for single and twin asperities, the state of stress inside the crack was invariably 

smoother and quite different from that of Figures 10 and 14. We believe that this 

is due to the use of the DIETERICH (1972) friction law, which is rate-dependent at 

very high slip velocities. This point will be further discussed in future work. 
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We must emphasize that our fault model contains no material heterogeneities. 

The rupture threshold is homogeneous along the fault axis (except at the ends of 

the fault which in fact play no part in the rupture history when the friction is 

rate-dependent) and so are the characteristics of the friction law. What we call an 

asperity is not a fault patch with a higher rupture threshold as is sometimes 

assumed, it is just an area where the initial stress is high compared with the 

surroundings. Presumably, this stress heterogeneity remains from a previous rup- 

ture event. It is clear that, had we included heterogeneities of the rupture 

threshold, we could have also observed short rise times and heterogeneous distri- 

butions of traction after the rupture as DAS and KOSa'ROV (1988) did. 

It is beyond the scope of the two-dimensional model we used here to quantita- 

tively compare the consequences of our model (short rise times) to real data. This 

will only be possible once we are able to solve for three-dimensional models. 

However, our numerical simulations are in qualitative agreement with Heaton's 

observation of short slip velocity pulses. He attributed this to the nonlinear 

rate dependence of friction: as slip velocity decreases, stress increases, driving the 

slip velocity deeper. While this is exactly what happens in our models, we still 

need a mechanism which makes the slip velocity decrease fast enough to produce 

short velocity pulses. In our models, this mechanism is actually provided by the 

asperities. As discussed above, in the single asperity model of Figure 4, slip 

velocity naturally decreases even with the classical friction law and the rate of this 

decrease depends on the value of the prestress outside the asperity: the more 

this prestress is removed far from the rupture threshold (closer to zero), the 

more rapidly slip velocity decreases. Consequently, with a rate-dependent friction 

law, the rise time depends on both the amount of rate dependence of friction, and 

on the difference between the prestress inside and outside the asperity. For 

example, one can have a relatively high rate dependence in the friction law, and 

yet be unable to induce the early arrest of slip if the prestress outside the asperity 

is not low enough. We will quantify these effects in a subsequent paper with the 

aid of analytical solutions. Simply stated: if the value of the prestress outside the 

asperity is low enough, and if the rate dependence of the friction law is high 

enough, then a short rise-time "healing phase" will appear and the rupture front 

will be stopped by the arrival of this "healing phase" (spontaneous arrest of the 

whole rupture). 

The next step to be performed would be the computation of several cycles of 

events. The final state of stress of a given cycle would serve as the initial state of 

the following one (uniformly increased such that one element reaches the 

threshold, simulating some loading mechanism). The question is: will the stress 

distribution become spontaneously heterogeneous as in the box spring models of 

Carlson and Langer? In order to accomplish this, we must introduce a realistic 

rupture criterion instead of the numerical rupture criterion that we used in this 

paper. 
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Appendix 1: Derivation of the Integral Equation 

Let us define the double Laplace transform of  a function f(x,  t) of  position x 

along the fault plane and time t by 

f;f'  ~(p, s) = f(x,  t) e-s(t-px) dx dt (26) 

where f(x,  t) = 0 for t < O, and its inverse 

f (x,  t) = ~ ~ f (p,  s) e s(t -PX)s dp ds. (27) 
,)Cp 

The transform over t ime-- indicated by an overbar - - i s  a one-sided Laplace trans- 

form; the inversion contour for this transform C~ is the customary Bromwich 

contour in the complex-s plane such that all singularities are to the left of 

the contour (see Fig. 11). Thus for negative t we can close the contour around 

positive real s so that f ( t ) =  0 for t < 0. The space transform, indicated by a 

tilde, is a two-sided Laplace transform. The inversion contour has to be placed 

in the complex-p plane such that the function f (x)  has the correct limit behavior 

at _+oo. 

Re q >0 

Imp 

Cp 

/ Imq<O 

~ Imq>O ,,,,,,~ 
Re p 

Figure 11 

The complex-p plane for the inversion of Laplace transforms by Cagniard-de Hoop. 
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Let us write a few properties of the Laplace transform pairs (26) and (27) that 

we need in the following: 

�9 time derivative 

�9 space derivative 

�9 time-space convolution 

a,f( t ,  x) -~ sf(p,  s) 
5~  

8 x f  (t, x)  ~ -- spff(p, s) 

~, r -- r, x -- ~) dr de ~ . 
oo 

Let us start again from expression (5) 

;fo T(x ,  t) = - /~ Au(r z) ~ z  2 ItG(x, O, ~, t -- r) dr d~. (28) 

This a convolution between the double derivative of the Green function with respect 

to z and the slip function Au. Its double Laplace transform can be evaluated using 

the transform of a convolution listed above and knowing the time-space Laplace 

transform G of the Green function G given in equation (4): 

1 1 
G(p, z, s) - - - - - e - s q ~  (29) 

- 2 #  sq  

This result can be found with other notations on page 227, equation (6.44) of  AKI 

and RICHARDS (1980). tt is valid for z > 0. The sign of the square root should be 

taken so that Re q > 0 in the upper Riemann sheet of q. Consequently the double 

Laplace transform of equation (28) is given by: 

~(p ,  s) = ~t = 
- 2  zXu(p, s)sq. 

Then we rewrite (30) in the form: 

~(p, s) = - sA~(p,  s) - ~ [ - s 2 p  A~(p, s)l - -  
1 / ~  - q 

sp 

(30)  

(31)  

This rather complex way of rewriting (30) is adopted so that the time and space deri- 

vative of - s 2 p  At~ appears in the integral equation instead of the slip function itself. 

The last term has been separated from the first one in order to cancel the pole 

at the origin of the complex-p plane that would otherwise be produced by the factor 

p in the denominator of the first term in (31). Defining the operator 

~(p, s) 1/fl - q, (32) 
sp 

the new expression for the boundary integral equation (31) in the physical domain 

becomes: 

T(x ,  t) = --, ,~ Ati(x, t) -- (9(x -- 4, t -- r) At~(~, z) & d~ (33) 
; p  
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where we used some of the standard Laplace transforms listed above. The instanta- 

neous response relating stress and slip velocity is clearly separated in this integral 

equation. The only problem remaining is to compute the inverse transform of (~, 

but this is very easy using the Cagniard-de Hoop method; we have: 

1 ~co 1 /[3-qe_sPXdp"  (34) ~(x, s) = ~ p 

The contour Cp on the complex-p plane is shown in Figure 11 where we also show 

the location of the branch cuts of q taken from the branch points at p = + [3 - ~ to 

infinity along the real p axis. The integral over p can be evaluated by deforming the 

contour of integration and folding it over the branch cuts. For x > 0 the contour 

is closed at Re p ~ ~ ,  and on the other side for x < 0. For positive x, we deform 

the integration contour along the branch cut located along the ositive Re p axis (see 

Figure 11). Taking into account that Im q < 0 above the cut and Im q > 0 below 

the cut, we derive 

1/[3 - q = 1/[3 + i[q[ above the branch cut 
(35) 

1/[3 - q = 1/[3 - ilq[ below the branch cut. 

Summing the contour integrals above and below the branch cut, the term propor- 

tional to 1/[3 is continuous and does not contribute to the integral so that we are left 

with the simple expression 

(9(x, s) = lrt f~/p [qlp e - sp~ dp (36) 

where Iq[ = xfP z -  1/[32. Finally using the variable transformation t = p x ,  we get 

1 ~ Nit 2 - XZ/fl 2 e-St dt. 
~(x ,  S) (37) 

7~ ,]1 /.B t x 

From this and a corresponding expression for negative x, we obtain 

1 x / t  2 - x2/[32 
(~(x, t) - H( t  --txl/B). 

7Z t x  
(38) 

Inserting this into the integral equation (33) we finally get the BIE (8) that we 

wanted to obtain. 

Appendix 2: Accuracy o f  the Numerical Method  

Instantaneous Fault: Comparison with Analytical Results 

BURRIDGE (1969) found an analytical solution for the slip velocity of an 

instantaneous antiplane fault without friction. The fault appears instantaneously 
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Figure 12 

Analytical (full line) and numerical solution (dotted line) for the 256-th element of  an instantaneous fault 

discretized into 1023 elements. Units  are those used by Burridge: stress drop = 1, 1 unit of  time = time 

for an S wave to cross one half  of  the fault. Friction is constant  and equal to 0 on the fault plane. The 

arrows indicate the arrival times of  the stopping phases coming from either edge of  the fault. 

along its entire length and does not propagate. As an example of the numerical 

accuracy of our BIE method, in Figure 12 we compare the slip velocity as a 

function of  time for the 256-th element of  a fault of 1023 elements for the analytical 

solution (full line) and for the numerical one (dotted line). 

0.4 

0.3 

.E 
I-- 0.2 

0.1 

-0'.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Position along the Fault 

Figure 13 

Boundary in the space-time domain  between the region where Aft ~ 0 and the one where Au = 0 in the case 

of  the twin asperity model with rate-dependent friction and propagation at kinematic rupture velocity for 

the same grid size as in Fig. 9 (dotted line) and for a half  as refined grid (diamonds).  The rate dependence is 

v o =4.5 • 10 z and the rupture fronts propagate kinematically at velocity 0.7/L Space is normalized by the 

total length of  the grid, time is normalized with the time that  a shear wave takes to cross this total length. 
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We see that the numerical solution is very close to the analytical one except near 

the arrival of the stopping phases coming form the edges of the fault (indicated by 

arrows). 

Study of Convergence of the Numerical Solution for Nonlinear Friction 

Figure 13 shows the boundary in the space-time domain of the region where the 

slip velocity Aft 4= 0 and the one where Aft = 0 in the case of the twin asperity model 

with rate-dependent friction. Rupture propagation is kinematic with forced rupture 

velocity equal to 0.7ft. Results obtained using the same grid spacing as in Figure 9 

are shown with a dotted line. Results obtained using a double-grid spacing are shown 

with diamonds. The rate dependence is v0 -- 4.5 • l 0  - 2 .  We observe that the healing 
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Figure 14 

Final traction for the case of  the twin asperity model with rate-dependent friction and propagation with 

fixed rupture velocity. (a) The same grid size as in Figure 9. (b) A grid with half as many points. The 

rate dependence is v 0 = 4.5 • 10 -2  and the rupture fronts propagate kinematieally at velocity 0.7/L Space 

and time are normalized as in Figure 13. 
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Figure t5 

Spectrum o f  the final traction in the case of  the twin asperity model with rate-dependent friction and 

propagation with fixed rupture velocity. (a) Same grid size as in Fig. 9. (b) A grid with half as many 

points. The rate dependence is v o = 4.5 x 10 . 2  and the rupture fronts propagate kinematically at velocity 

0.717. Wavenumbers are normalized as in Figure 14 so that 1 corresponds to a wavelength equal to the 

total size of  the grid. 

phase describes essentially the same curve in the space time. The abrupt variations 

near the center of the fault are due to the discrete nature of the calculation. These 

jumps in healing create the short wavelength noise observed in Figure 14. 

Figures 14a and 14b represent the corresponding final tractions for the two 

different discretizations (the original grid in 14a, the less refined one in 14b). 

The maximum traction is higher for the most refined grid because the inverse 

square root singularity in the region just beyond the crack tip is better resolved. We 

observe that the low frequencies are preserved in the two cases: in particular the 

central asperity has the same general shape. The high frequency "noise" can be 

better analyzed by plotting the spectra of final stress distributions of Figures 14a 

and 14b on Figures 15a and 15b, respectively. 

These figures confirm what could already be seen on Figure 14: low frequencies 

are well modeled and stable when we change the grid size. The higher wavenum- 

bers, on the other hand, start to diverge beyond nondimensional wavenumbers of 
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about 50. This corresponds to wavelengths of the order of 0.02 units in Figure 14, 

which are clearly related to the low amplitude beatings observed inside the fault. 

These noisy oscillations are due to the interference of the supersonic healing phase 

with the discrete numerical grid. 
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