
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 19, 195–205, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Dynamic Faults in Random-Access-Memories:
Concept, Fault Models and Tests

SAID HAMDIOUI
Intel Corporation, 2200 Mission College Boulevard, Santa Clara, CA 95052, USA;
Section of Computer Engineering, Faculty of Information Technology and Systems,

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
said@ce.et.tudelft.nl

ZAID AL-ARS AND AD J. VAN DE GOOR
Section of Computer Engineering, Faculty of Information Technology and Systems,

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

MIKE RODGERS
Intel Corporation, 2200 Mission College Boulevard, Santa Clara, CA 95052, USA

Received May 23, 2002; Revised October 11, 2002

Editor: A. Ivanov

Abstract. The ever increasing trend to reduce DPM levels of memories requires tests with very high fault coverage
and low cost. This paper describes an important fault class, called dynamic faults, that cannot be ignored anymore.
The dynamic fault behavior can take place in the absence of the static fault behavior, for which the conventional
memory tests have been constructed. The concept of dynamic fault will be established and validated for both
dynamic and static Random-Access-Memories. A systematic way to develop fault models for dynamic faults will
be introduced. Further, it will be shown that conventional memory tests do not necessarily detect its dynamic faulty
behavior, which has been shown to exist in real designs. The paper therefore also presents new memory tests to
target the dynamic fault class.

Keywords: static faults, dynamic faults, fault primitives, fault models, memory tests, fault coverage

1. Introduction

The cost of testing memories increases rapidly with ev-
ery new generation of memory chips [15]. Precise fault
modeling and efficient test design, in order to keep test
cost and time within economically acceptable limits,
is therefore essential. The quality of the used tests, in
terms of their fault coverage and test length, is strongly
dependent on the used fault models.

Many Functional fault models (FFMs) for memo-
ries have been introduced in the past; some well known

FFMs, which date back to before 1980, are address de-
coder faults and stuck-at faults [23]. Of later date are
the following FFMs: data retention fault, stuck open
fault [8], read destructive fault, deceptive read destruc-
tive fault [2], and disturb coupling fault [26]. In 1999,
experimental results by applying a large number of tests
to a large number of chips [21, 25] indicated that many
functional tests do detect faults in memories, which
cannot be explained using the well know set of FFMs.
This means that additional FFMs exist. This has led to
the introduction of new FFMs, based on defect injection

196 Hamdioui et al.

and circuit simulation [3, 4, 9]: write disturb fault, in-
correct read fault, transition coupling fault, read de-
structive coupling fault, etc. Researchers have also in-
troduced tests to target memory faults, with different
degree of success [1, 2, 6–9, 16–19, 22, 23, 27, 29].
However, most of the work published on memory test-
ing focuses on faults sensitized by performing at most
one operation; e.g., a write operation sensitizes a fault.
These FFMs are called static faults.

This paper deals with a new class of memory faults
called dynamic faults. Dynamic faults require the ap-
plication of more than one operation sequentially in
order to be sensitized. For example, a write operation
followed immediately by a read operation causes the
cell to flip; however, if only a write or a read operation
is performed, the cell will not flip. The paper validates
the existence of such a fault class for dynamic as well as
for static Random-Access-Memories (RAMs). In addi-
tion, it introduces a systematic way to develop dynamic
fault models. The paper shows the shortcoming in the
fault coverage of the traditional tests, which were origi-
nally designed for static faults, and therefore introduces
a new simple and efficient test for dynamic faults.

This paper is organized as follows. Section 2 in-
troduces the concept of fault primitives that will be
used to classify memory faults and define the dynamic
fault space in Section 3. Section 4 describes the impor-
tance of dynamic faults and validates their existence
of both static and dynamic RAMs. Section 5 discusses
the testing of dynamic faults; it first shows that the
tests designed for static faults do not necessarily de-
tect dynamic faults; and therefore it introduces a new
test with 100% fault coverage of the targeted dynamic
faults. Section 6 ends with the conclusions.

2. Memory Fault Classification

This section gives first the concept of a fault primitive
that will be used to define the set of the targeted FFMs
in this paper. Second, a classification of memory faults
will be given and the scope of the paper will be shown.

2.1. Fault Primitive Concept

By performing a number of memory operations and
observing the behavior of any component functionally
modeled in the memory, functional faults can be de-
fined as the deviation of the observed behavior from the
specified one under the performed operation(s). There-

fore, the two basic ingredients of any fault model are:
(a) A list of performed memory operations, and (b)
A list of corresponding deviations in the observed be-
havior from the expected one. Any list of performed
operations on the memory is called an operation se-
quence. An operation sequence that results in a differ-
ence between the observed and the expected memory
behavior is called a sensitizing operation sequence (S).
The observed memory behavior that deviates from the
expected one is called the faulty behavior (F).

In order to specify a certain fault, one has to specify
the S, together with the corresponding faulty behavior
F and the read result (R) of S in case S is a read op-
eration. The combination of S, F and R for a given
memory failure is called a Fault Primitive (FP) [24],
and is denoted as 〈S/F/R〉. S describes the sensitizing
operation sequence that sensitizes the fault (e.g., a read
‘0’ operation (i.e., r0)), F describes the value or the
behavior of the faulty cell (e.g., the cell flips from 0 to
1 (i.e., ↑)), while R describes the logic output level of
a read operation (e.g., a wrong value 1) in case S is a
read operation; this can be written as ‘〈r0/ ↑ /1〉’.

The concept of FPs allows for establishing a com-
plete framework of all memory faults, since for all al-
lowed operation sequences in the memory, one can de-
rive all possible types of faulty behavior. In addition,
the concept of an FP makes it possible to give a precise
definition of a functional fault model (FFM) as it has to
be understood for memory devices [24]: a functional
fault model is a non-empty set of fault primitives.

2.2. Classification

Fig. 1 shows a number of different ways to classify the
FPs. They can be classified based on:

1. The number of simultaneous operations required in
the S, into single-port and multi-port faults.

Simple Linked

Multi−port

Static

Fault Primitives

Single−port

Scope of the paper

Dynamic

Fig. 1. Fault primitive classification.

Dynamic Faults in Random-Access-Memories 197

2. The way the FPs manifest themselves, into simple
and linked faults.

3. The number of sequential operations required in the
S, into static and dynamic faults.

It is important to note that the three ways of classify-
ing FPs are independent since their definition is based
on independent factors of the S; see Fig. 1. As a result,
a dynamic FP can be single-port or multi-port, simple
or linked. The same is true for linked faults; they can be
static or dynamic, and each of them can be single-port
or multi-port.

2.2.1. Single-Port Versus Multi-Port Faults. Let #P
be defined as the number of ports required simultane-
ously to apply a S. For example, if a single read op-
eration applied to cell c1 causes that cell to flip, then
#P = 1; if two simultaneous read operations applied to
cell c1 via two different ports cause that cell to flip,
then #P = 2. Depending on #P , FPs can be divided
into single-port faults, and multi-port faults.

• Single-Port Faults: These are FPs that require at the
most one port in order to sensitize a fault; that is
#P ≤ 1. Note that single-port faults can be sensitized
in single-port as well as in multi-port memories. This
paper deals with single-port faults.

• Multi-Port Faults: These are FPs that can only sen-
sitize a fault by performing two or more simultane-
ous operations via the different ports. Depending on
#P , the multi-port faults can be further divided into:
(a) Two-port faults which can only be sensitized by
performing two simultaneous operations via two dif-
ferent ports; (b) Three-port faults which can only be
sensitized by performing three simultaneous opera-
tions via three different ports; etc. Testing multi-port
faults is more complicated than testing single-port
faults; they require specific test patterns [10, 11].

2.2.2. Simple Versus Linked Faults. Depending on
the way FPs manifest themselves, they can be divided
into simple faults and linked faults.

• Simple Faults: These are faults which cannot be in-
fluenced by another fault. That means that the be-
havior of a simple fault cannot change the behavior
of another one; therefore masking cannot occur. This
paper deals with simple faults.

• Linked Faults: These are faults that do influence the
behavior of each other. That means that the behavior
of a certain fault can change the behavior of another

one such that masking can occur [20, 23]. Note that
linked faults consist of two or more simple faults.
In order to get more insight into linked faults, the
following example will be given. Assume that the
application of a sensitizing operation to a cell c1 will
cause a fault in a cell cv (e.g., the cell flips); and that
the application of an operation to a cell c2 will cause
a fault in the same cell cv , but with a fault effect
opposite to that caused by cell c1. If an operation is
first applied to cell c1, and thereafter to cell c2, then
the net result is that the fault effect of cell c1 is masked
by the fault effect of cell c2; i.e., no fault effect is
then visible in cell cv . Although limited work has
already been published about the subject of linked
faults [26, 28], the fault space for linked faults as
well as the required tests remain still to be worked
out.

2.2.3. Static Versus Dynamic Faults. Let #O be de-
fined as the number of different operations performed
sequentially in a S. For example, if a single read op-
eration applied to a certain cell causes that cell to flip,
then #O = 1. Depending on #O , FPs can be divided
into static and dynamic faults:

• Static Faults: These are FPs which sensitize a fault by
performing at the most one operation; that is #O ≤ 1.
For example, the state of the cell is always stuck at
one (#O = 0), a read operation to a certain cell causes
that cell to flip (#O = 1), etc.

• Dynamic Faults: These are FPs that perform more
than one operation sequentially in order to sensitize
a fault; that is #O > 1. Depending on #O , a further
classification can be made between 2-operation dy-
namic FPs whereby #O = 2, 3-operation dynamic
FPs whereby #O = 3, etc. Experimental analysis, as
will be described in Section 4, shows that dynamic
faulty behavior can take place in the absence of static
faults. For example, two successive read operations
cause the cell to flip; however, if only one read oper-
ation is performed, the cell will not flip. The current
industrial march tests have been designed for static
faults, and therefore may not be able to detect dy-
namic faults. All that indicates the importance of
dynamic faults. Adequate fault models and tests for
dynamic faults remain still to be established; that is
the subject of this paper.

In the remainder of this paper, we will focus on
single-port, simple, dynamic faults; see Fig. 1. From

198 Hamdioui et al.

here on, the term ‘fault’ or ’dynamic fault’ refers to a
single-port, simple, dynamic fault’.

3. Dynamic Fault Space

Dynamic faults can be divided into FPs describing
single-cell dynamic faults (involving a single-cell), and
FPs describing multi-cell dynamic faults (involving
more than one cell). For multi-cell FPs, we restrict our
analysis to two-cell FPs, because they are considered
to be an important class for memory faults [2–4, 9, 16].
Below single-cell dynamic faults and two-cell dynamic
faults will be described.

3.1. Single-Cell Dynamic Faults

Single-cell dynamic faults consist of FPs sensitized by
applying more than one operation to a single cell se-
quentially. We will restrict our analysis to 2-operation
dynamic faults, since on the one hand they have been
shown to exist [4, 13], and on the other hand the prob-
ability of dynamic faults decreases as the number of
operations increases [5]. As mentioned in Section 2, a
particular FP is denoted as 〈S/F/R〉.

S describes the sensitizing operation sequence,
which sensitizes a fault F in the cell. Since two op-
erations are considered, there are 18 possible Ss. They
are given below; x, y, z ∈ {0, 1} and ‘r ’ denotes a read
operation and ‘w’ denotes a write operation.

• ‘xwywz’; e.g., ‘0w1r1’ denotes a write 1 operation
applied to a cell whose initial state is 0; the write is
followed immediately with a read 1 operation.

• ‘xr xr x’; e.g., ‘0r0r0’ denotes two successive read
0 operations applied to a cell whose initial state is 0.

• ‘xr xwy’; e.g., ‘0r0w1’ denotes a read 0 followed
immediately with write 1 applied to a cell whose
initial state is 0.

• ‘xwyr y’; e.g., ‘1w1r1 denotes a write 1 followed
immediately with read 1 applied to a cell whose ini-
tial state is 1.

F describes the value of the faulty (i.e., victim) cell
(v-cell); F ∈ {0, 1, ↑, ↓}, where ↑ (↓) denotes an up
(down) transition due to a certain sensitizing operation
and 0 (1) denotes that the cell remains in its state 0 (1).

R describes the logical value which appears at the
output of the memory if the sensitizing operation ap-
plied to the v-cell is a read operation: R ∈ {0, 1, −}.

Table 1. List of single-cell dynamic FFMs.

FFM Fault primitives

dRDF 〈0w0r0/ ↑ /1〉, 〈0w1r1/ ↓ /0〉,
〈1w0r0/ ↑ /1〉, 〈1w1r1/ ↓ /0〉

dDRDF 〈0w0r0/ ↑ /0〉, 〈0w1r1/ ↓ /1〉,
〈1w0r0/ ↑ /0〉, 〈1w1r1/ ↓ /1〉

dIRF 〈0w0r0/0/1〉, 〈0w1r1/1/0〉,
〈1w0r0/0/1〉, 〈1w1r1/1/0〉

A ‘−’ in R means that the output data is not applica-
ble; e.g., if S = 0w0w1, then no data will appear at
the memory output, and for that reason R is replaced
by a ‘−’.

In the following, only ‘S = xwyry’ will be con-
sidered since, for instance, it has been shown to cause
dynamic faults (see Section 4). Given that S = xwyry,
F ∈ {0, 1, ↑, ↓}, and R ∈ {0, 1, −}, it can be verified
that there are 12 possible FPs 〈S/F/R〉. These FPs are
compiled into a set of three FFMs; they are listed in
Table 1 together with their FPs:

1. Dynamic Read Destructive Fault (dRDF): A write
followed immediately by a read operation per-
formed on a cell changes the data in the cell, and
returns an incorrect value on the output. The dRDF
consists of four FPs; e.g., 〈0w1r1/ ↓ /0〉: applying
a ‘r1’ operation immediately after ‘w1’ operation
to a cell whose initial content was 0, will cause the
cell to flip to 0 and the read operation will return a
wrong 0 value instead of the expected 1. The write
operation involved in dRDF can be a transition write
as well as a non-transition write operation.

2. Dynamic Deceptive Read Destructive Fault
(dDRDF): A write followed immediately by a read
operation performed on a cell changes the data in
the cell, and returns a correct value on the output.
The dDRDF consists of four FPs. Here, the write
can be a transition write as well as a non-transition
write operation.

3. Dynamic Incorrect Read Fault (dIRF): A read oper-
ation performed immediately after a write operation
on a cell returns an incorrect value on the output,
while the cell remains in its correct state. The dIRF
consists of four FPs.

3.2. Two-Cell Dynamic Faults

Two-cell dynamic faults consist of FPs sensitized by
applying more than one operation sequentially to two

Dynamic Faults in Random-Access-Memories 199

cells: the aggressor (a-cell) and the v-cell. The a-cell
is the cell to which the sensitizing operation (or state)
should be applied in order to sensitize the fault, while
the v-cell is the cell where the fault appears. In a similar
way as it has been done for single cell faults, we will
restrict ourself to two-operation dynamic faults. Then
depending on how many operations are applied to the
a-cell and to the v-cell, and on the order in which they
are applied, four types of S can be distinguished:

1. Saa : The two sequential operations are applied to
the a-cell.

2. Svv: The two sequential operations are applied to
the v-cell.

3. Sav: The first operation is applied to the a-cell, fol-
lowed immediately with a second one to the v-cell.

4. Sva : The first operation is applied to the v-cell, fol-
lowed immediately with a second one to the a-cell.

Since two operations are considered, there are 18 ×
4 = 72 total possible Ss; each S can take on one
of 18 possible operation sequences: xwywz, xr xr x ,
xr xwy, or xwyry, where x, y, z ∈ {0, 1}. It is clear that
despite the restriction to 2-operation dynamic faults, the
number of FPs is still high. This calls for setting further
restrictions on the sequences considered. For the sim-
plicity, only Saa and Svv will be considered from now
on.1 Note that Saa and Svv both require the access of a
single cell at a time (the v-cell, respectively the a-cell).
Further, and as we did in the case of single-cell faults,
the S = xwyry will be considered; this sequence, for
instance, has been verified to cause dynamic faults (see
Section 4).

3.2.1. Faults Caused by Saa. The FPs for two-cell
dynamic faults, where the two operations are applied
to the a-cell, are represented as:

〈Saa/F/R〉 = 〈Sa ; Sv/F/R〉a,v

Sa describes xwyry, while Sv describes the state
of v-cell. Note that Sv does not specify an operation
applied to the v-cell, but the state of the v-cell, since
Saa is considered. Now it can be verified easily that
there are 8 possible FPs:

• 4 FPs denoted as 〈xwyry; 0/ ↑ /−〉, and
• 4 FPs denoted as 〈xwyry; 1/ ↓ /−〉.

The 8 possible FPs are compiled into one dynamic
FFM, referred to as Dynamic Disturb Coupling Fault

Table 2. List of two-cell dynamic FFMs.

FFM Fault primitives

dCFds 〈0w0r0; 0/ ↑ /−〉, 〈0w1r1; 0/ ↑ /−〉,
〈1w0r0; 0/ ↑ /−〉, 〈1w1r1; 0/ ↑ /−〉,
〈0w0r0; 1/ ↓ /−〉, 〈0w1r1; 1/ ↓ /−〉,
〈1w0r0; 1/ ↓ /−〉, 〈1w1r1; 1/ ↓ /−〉

dCFrd 〈x ; 0w0r0/ ↑ /1〉, 〈x ; 0w1r1/ ↓ /0〉,
〈x ; 1w0r0/ ↑ /1〉, 〈x ; 1w1r1/ ↓ /0〉

dCFdrd 〈x ; 0w0r0/ ↑ /0〉, 〈x ; 0w1r1/ ↓ /1〉,
〈x ; 1w0r0/ ↑ /0〉, 〈x ; 1w1r1/ ↓ /1〉

dCFir 〈x ; 0w0r0/0/1〉, 〈x ; 0w1r1/1/0〉,
〈x ; 1w0r0/0/1〉, 〈x ; 1w1r1/1/0〉

(dCFds): a write operation followed immediately by a
read operation performed on the a-cell causes the v-cell
to flip. The FPs of dCFds are given in the first block of
Table 2.

3.2.2. Faults Caused by Svv . The FPs for two-cell
dynamic faults, where the two operations are applied
to the v-cell, are represented as:

〈Svv/F/R〉 = 〈Sa ; Sv/F/R〉a,v

Sa describes the state of the a-cell, while Sv describes
xwyry. Note that Sa does not specify an operation ap-
plied to the a-cell, but the state of the a-cell, since only
Svv is considered. Now it can be verified easily that
there are 24 possible FPs:

• 12 FPs denoted as 〈0; Sv/F/R〉a,v , and
• 12 FPs as 〈1; Sv/F/R〉a,v

Note that in both representations, 〈Sv/F/R〉 repre-
sents the 12 possible single-cell dynamic FPs discussed
in Section 3.1. The 24 possible FPs are compiled into
three dynamic FFMs; they are given together with their
FPs in Table 2; in the table ‘x’ denotes 0 or 1.

1. Dynamic Read Destructive Coupling Fault (dCFrd):
A write followed immediately by a read operation
performed on the v-cell changes the data in the v-
cell and returns an incorrect value on the output, if
the a-cell is in a certain specific state. The dCFrd
consists of eight FPs.

2. Dynamic Deceptive Read Destructive Coupling
Fault (dCFdrd): A write followed immediately by
a read operation performed on the v-cell changes

200 Hamdioui et al.

the data in the v-cell and returns a correct value
on the output, if the a-cell is in a certain specific
state. The dCFdrd consists of eight FPs.

3. Dynamic Incorrect Read Coupling Fault (dCFir): A
read operation performed immediately after a write
operation on the v-cell returns an incorrect value
on the output, while the v-cell remains in its correct
state, if the a-cell is in a certain specific state. The
dCFir consists of eight FPs.

4. Importance of Dynamic Faults

This section will show the presence of dynamic faults in
dynamic RAMs (DRAMs) as well as in static RAMs
(SRAMs). First the validation of dynamic faults for
DRAMs will be presented based on defect injection
and circuit simulation; and thereafter for SRAMs based
on the functional analysis of some failed test patterns
during DPM screening measurements.

4.1. Validation of Dynamic Faults for DRAMs

In order to show the importance of dynamic faults, fault
analysis based on defect injection and SPICE simula-
tion has been performed. The defects are injected in
the reduced electrical model of a DRAM, causing for
example a (partial) open connections. This section de-
scribes the performed analysis and the acquired results
[4].

Opens represent unwanted resistances on a signal
line that is supposed to conduct perfectly. In this sec-
tion, the simulation results of the open within a DRAM
cell OC shown in Fig. 2 will be discussed; for other ex-
amples see [4]. The behavior of the DRAM is stud-
ied after injecting and simulating OC. The analysis
considers open resistances within the range (10� ≤
Rop ≤ 10 M�) on a logarithmic scale using 5 points
per decade, in addition to Rop = ∞ �. Each injected

OC

s

OB
BL

WL

T
he

 r
es

t o
f t

he

pe
rip

he
ry

 c
irc

ui
ts

T
he

 r
es

t o
f t

he

pe
rip

he
ry

 c
irc

ui
ts

C

Fig. 2. The opens OC and OB.

open in the memory model creates floating nodes, the
voltage of which is varied between VDD and GND on
a linear scale using 10 points.

For each value of the open resistance (Rop) and of
the initial floating node voltage (Uinit), the following
operation sequences are performed and inspected for
proper functionality: 0w0, 0w1, 1w0, 1w1, 0r0, 1r1,
0w0r0, 0w1r1, 1w0r0 and 1w1r1 (e.g., 0w1 denotes
a write 1 applied to a cell whose content is 0). As a
result, the faulty behavior resulting from the analysis
of opens is represented as regions in the (Uinit , Rop)
plane. Each region contains a number of sensitized
FPs that describe the FFM of the memory in this
region.

As an example, the results of the fault analysis per-
formed on OC are given in Fig. 3, which shows the
observed faulty behavior in the (Uinit, Rop) plane. The
figure shows a number of different fault regions for dif-
ferent combinations of Uinit and Rop. In the figure, the
static and dynamic sensitized faults are listed:

• Static Faults [9, 24]:
TFd = 〈1w0/1/−〉: a down transition fault.
TFu = 〈0w1/0/−〉: an up transition fault.
IRF0 = 〈0r0/0/1〉: incorrect read 0 fault.
RDF0 = 〈0r0/ ↑ /1〉: read 0 destructive fault.
WDF0 = 〈0w0/ ↑ /−〉: write 0 disturb fault.

• Dynamic Faults (see Table 1):
dRDF00 = 〈0w0r0/ ↑ /1〉.
dRDF10 = 〈1w0r0/ ↑ /1〉.
dDRDF00 = 〈0w0r0/ ↑ /0〉.
dIRF00 = 〈0w0r0/0/1〉.

Proper

TFu

Proper

Ω

900

600

1500

2500

300

RDF0

R [k]

GND V Vmp
init

op

DDU [V]

(C2)

(B2)(B1) (B3) (B4) (C1)

(B5)

(A2)

IRF0 TFu

IRF0 TFu

(A1)

IRF0 TFu

TFd
RDF0

RDF0 WDF0dRDF00

dRDF10

dRDF00

dRDF00

dIRF00

dRDF10

dIRF00
dDRDF01

Fig. 3. Analysis results for OC.

Dynamic Faults in Random-Access-Memories 201

The fault regions of Fig. 3 may be classified accord-
ing to the initial floating node voltage under which they
can be observed as follows.

A. Faults observed with Uinit = VDD: They consist of
fault regions A1 and A2.

B. Faults observed with Uinit = GND: They consist of
fault regions B1, B2, B3, B4 and B5.

C. Faults only observed with GND < Uinit < VDD:
They consist of fault regions C1 and C2.

Inspecting the faulty behavior shown in the figure
reveals that, as a result of the open OC alone, almost
all simulated dynamic sequences fail. This takes place
in separate fault regions with their own initial volt-
age and defect resistance values. The fault region A2
only contains dRDF10, which means that 1w0r0 is the
only failing S in this region. This, in turn, means that
performing the traditional static analysis on this fault
region reveals no improper memory behavior. Only by
applying a dynamic sensitizing operation sequence is
it possible to detect this improper behavior. This shows
the significance of performing the dynamic analysis on
memory devices.

A similar analysis has been done for the open OB
(see Fig. 2). The results show that in some fault regions
a dynamic fault behavior takes place in the absence of
a static fault behavior. Table 3 shows which dynamic
sequences fail for OC and OB [4]. The table shows that
for OC most, but not all, dynamic sequences fail. How-
ever, for OB all simulated dynamic sequences cause a
fault.

4.2. Validation of Dynamic Faults for SRAMs

In an experiment at Intel, SRAM chips failing to pass
the used test set have been analyzed in more detail.
One of the surprising observations is that PMOVI [7]
detects faults that can not be detected with any other
test; e.g., March C- [17, 23]. Fig. 4 shows partially
how PMOVI detects some faults that march C- does
not detect; the operations printed in bold in the figure

Table 3. Dynamic faults caused by OC and OB.

Open Dynamic faulty behavior

OC All FPs of dRDF (see Table 1)

Two dDRDF FPs: 〈0w1r1/ ↓ /1〉, 〈1w0r0/ ↑ /0〉
Two dIRF FPs: 〈0w0r0/0/1〉, 〈1w1r1/1/0〉

OB All FPs of Table 1

Fig. 4. Observation of dynamic faults in SRAMs.

are the operations detecting the unique faults. PMOVI
detects some unique faults by the first ‘r1’ (printed in
bold) that immediately follows a write operation. These
faults are not detected by March C-, even though March
C- consists of the same operations, but they belong to
separate march elements and therefore the read is not
applied immediately after the write.

It is clear from the above, that the detected fault
require the application of a read immediately after a
write, otherwise the fault will be not sensitized. This is
a dynamic read destructive fault dRDF.

PMOVI detects also some unique faults by the sec-
ond ‘r1’ (printed in bold) that were not detected by
March C-. Such faults were sensitized by read-after-
write (i.e., 0w1r1), but not observed by that read since
the read returned the expected value although the cell
was flipped. These faults are the dynamic deceptive
read destructive faults.

5. Testing Dynamic Faults

In Section 4 the existence of dynamic faults has been
validated based on SPICE simulation. In Section 3, a
systematic way to develop fault models for dynamic
faults has been introduced. In this section, the conven-
tional memory tests will be analyzed for their capability
of detecting dynamic faults. However, first the march
notation will be introduced.

5.1. March Notation

A complete march test is delimited by the ‘{...}’ bracket
pair, while a march element is delimited by the ‘(...)’
bracket pair. March elements are separated by semi-
colons, and the operations within a march element are
separated by commas. Note that all operations of a
march element are performed at a certain address, be-
fore proceeding to the next address. The latter can be
done in either an increasing (⇑) or a decreasing (⇓)
address order. When the address order is not relevant,
the symbol � is be used.

5.2. Effectiveness of Conventional Tests

Table 4 gives the fault coverage of several well-known
memory tests regarding the proposed dynamic FFMs.

202 Hamdioui et al.

Table 4. Dynamic fault coverage for different memory tests.

No. Tests T.L. dRDF dDRDF dIRF dCFds dCFrd dCFdrd dCFir Total FC FC (%)

1 SCAN 4n 0/4 0/4 0/4 0/16 0/16 0/16 0/16 0/76 0

2 MATS+ 5n 0/4 0/4 0/4 0/16 0/16 0/16 0/16 0/76 0

3 MATS++ 6n 1/4 0/4 1/4 1/16 2/16 0/16 2/16 7/76 9.21

4 March C- 10n 0/4 0/4 0/4 0/16 0/16 0/16 0/16 0/76 0

5 PMOVI 13n 2/4 2/4 2/4 7/16 8/16 6/16 8/16 35/76 46.05

6 March U 13n 2/4 0/4 2/4 4/16 4/16 0/16 4/16 16/76 21.05

7 March SR 14n 2/4 0/4 2/4 4/16 4/16 0/16 4/16 16/76 21.05

8 March LR 14n 2/4 0/4 2/4 4/16 4/16 0/16 4/16 16/76 21.05

9 March B 17n 2/4 0/4 2/4 4/16 4/16 0/16 4/16 16/76 21.05

10 March LA 22n 2/4 2/4 2/4 8/16 8/16 8/16 8/16 38/76 50.00

The test length (T.L.) of each test is also included. The
included march tests in the table are:

1. SCAN [1]: {⇑ (w0); ⇑ (r0); ⇑ (w1); ⇑ (r0)}
2. MATS+ [19]: {� (w0); ⇑ (r0, w1); ⇓ (r1, w0)}
3. MATS++ [6]: {� (w0); ⇑ (r0, w1); ⇓ (r1, w0,

r0)}
4. March C- [17, 23]: {� (w0); ⇑ (r0, w1); ⇑ (r1,

w0); ⇓ (r0, w1); ⇓ (r1, w0); � (r0)}
5. PMOVI [7]: {⇓ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0,

r0); ⇓ (r0, w1, r1); ⇓ (r1, w0, r0)}
6. March U [27]: {� (w0); ⇑ (r0, w1, r1, w0); ⇑

(r0, w1); ⇓ (r1, w0, r0, w1); ⇓ (r1, w0)}
7. March SR [9]: {⇓ (w0); ⇑ (r0, w1, r1, w0); ⇑

(r0, r0); ⇑ (w1); ⇓ (r1, w0, r0, w1); ⇓ (r1, r1)}
8. March LR [26]: {� (w0); ⇓ (r0, w1); ⇑ (r1, w0,

r0, w1); ⇑ (r1, w0); ⇑ (r0, w1, r1, w0); ⇑ (r0)}
9. March B [22]: {� (w0); ⇑ (r0, w1, r1, w0, r0,

w1); ⇑ (r1, w0, w1); ⇓ (r1, w0, w1, w0); ⇓ (r0,

w1, w0)}
10. March LA [28]: {� (w0); ⇑ (r0, w1, w0, w1, r1);

⇑ (r1, w0, w1, w0, r0); ⇓ (r0, w1, w0, w1, r1);
⇓ (r1, w0, w1, w0, r0); ⇓ (r0)}

In the table, e.g., “a/b” denotes that the test detects
‘a’ of the ‘b’ FPs of the correspondent FFM. E.g.,
MATS++ detects one of the four FPs of dRDF, while
March B detects two of them. For two-cell FFMs, each
FP is divided into two sub-FPs: the a-cell has a higher
address than the v-cell, and (b) the a-cell has a lower
address than the v-cell. For example dCFds consists of
8 FPs (see Table 2); considering the position of the a-
cell against the v-cell leads to 16 sub-FPs. E.g., March
B detects 4 of 16 dCFds sub-FPs.

The table shows clearly that conventional memory
tests constructed to detect the static faulty behavior

of a specific defect, do not necessarily detect its dy-
namic faulty behavior. None of the tests of the table
can cover the considered dynamic faults; even all of
them together cannot achieve 100% fault coverage of
the targeted faults. In addition, a relative comparison
of the fault coverage of the tests shows that March LA
and PMOVI are the tests with the best coverage. The
fact the the conventional tests do not cover dynamic
faults calls for the introduction of new test.

6. Tests for Dynamic Faults

Dynamic faults are divided into faults involving a single
cell and faults involving two cells. March tests for each
of these two subclasses will be introduced separately.

6.1. Test for Single-Cell Dynamic FFMs

March RAW1 (‘read-after-write’) given in Fig. 5 detects
all single-cell dynamic FFMs of Table 1, which are
based on ‘read-after-write’.

March RAW1 has a test length of 13n including the
initialization. Table 5 shows by which march elements
(i.e., M0 through M8) of March RAW1, each FP be-
longing to each single-cell dynamic FFM, is sensitized
and detected. In the table, ‘S’ stands for ‘sensitizing’,
while ‘D’ stands for detecting. Note that the test per-
forms at most 2 operations per march element, which is

Fig. 5. March RAW1.

Dynamic Faults in Random-Access-Memories 203

Table 5. March RAW1 fault coverage.

FFM FP S D

dRDF 〈0w0r0/ ↑ /1〉 M1 M1, M2

〈0w1r1/ ↓ /0〉 M3 M3, M4

〈1w0r0/ ↑ /1〉 M7 M7, M8

〈1w1r1/ ↓ /0〉 M5 M5, M6

dDRDF 〈0w0r0/ ↑ /0〉 M1 M2

〈0w1r1/ ↓ /1〉 M3 M4

〈1w0r0/ ↑ /0〉 M7 M8

〈1w1r1/ ↓ /1〉 M5 M6

dIRF 〈0w0r0/0/1〉 M1 M1, M2

〈0w1r1/1/0〉 M3 M3, M4

〈1w0r0/0/1〉 M7 M7, M8

〈1w1r1/1/0〉 M5 M5, M6

important to restrict the sensitized faults to 2-operation
dynamic.

6.2. Test for Two-Cell Dynamic FFMs

A test to detect all two-cell dynamic FFMs of Table 2
is given in Fig. 6, and called March RAW. March RAW
has a test length of 26n including the initialization. Note
that the fault coverage is not limited to two-operation
dynamic faults; the test also detects some dynamic
faults where #O > 2. Table 6 shows the march ele-
ments of March RAW responsible for sensitizing and
detecting each of the faults listed in Table 2. In the ta-
ble, a distinction is made between two cases: (a) the
v-cell has a higher address than the a-cell (i.e., v > a),
and (b) the v-cell has a lower address than the a-cell
(v < a). In addition, in each entry the notation Sensi-
tization/Detection is used. E.g., the 〈1w1r1; 0/ ↑ /−〉
is sensitized by M4 and detected by M5 when v > a;
and it is sensitized by M2 and detected by M3 when
v < a. Note that dCFrd and dCFir are not included in
the table; the reader can easily verify that these faults

Fig. 6. March RAW.

Table 6. March RAW fault coverage.

FFM FP v > a v < a

dCFds 〈0w0r0; 0/ ↑ /−〉 M1/M1 M3/M3

〈0w1r1; 0/ ↑ /−〉 M1/M1 M3/M3

〈1w1r1; 0/ ↑ /−〉 M4/M5 M2/M3

〈1w0r0; 0/ ↑ /−〉 M4/M5 M2/M3

〈0w0r0; 1/ ↓ /−〉 M3/M4 M1/M2

〈0w1r1; 1/ ↓ /−〉 M3/M4 M1/M2

〈1w1r1; 1/ ↓ /−〉 M2/M2 M4/M4

〈1w0r0; 1/ ↓ /−〉 M2/M2 M4/M4

dCFdrd 〈0; 0w0r0/ ↑ /0〉 M3/M3 M1/M1

〈0; 0w1r1/ ↓ /1〉 M3/M4 M1/M2

〈0; 1w1r1/ ↓ /1〉 M2/M2 M4/M4

〈0; 1w0r0/ ↑ /0〉 M2/M3 M4/M5

〈1; 0w0r0/ ↑ /0〉 M1/M1 M3/M3

〈1; 0w1r1/ ↓ /1〉 M1/M2 M3/M4

〈1; 1w1r1/ ↓ /1〉 M4/M4 M2/M2

〈1; 1w0r0/ ↑ /0〉 M4/M5 M2/M3

are also covered by March RAW, and that any test de-
tecting dCFdrd will also detect dCFrd and dCFir. Note
additionally that March RAW also detects all FFM1s
of Table 1; therefore only March RAW can be used to
detect all dynamic faults introduced in this paper. If the
purpose is to diagnose the FFM1s, then March RAW1
has to be used.

Going back to Fig. 1 which shows the scope of the
paper, the question that may be posed is whether March
RAW detects simple static faults. It can be shown that
March RAW also covers simple static faults. A detail
analysis of such faults together with an optimal test
is presented in [12]. The test referred as March SS
(i.e., Simple Static) with a test length of 22n can be
considered as a short version of March RAW.

7. Conclusion

In this paper the difference between static and dynamic
faults in memories has been discussed; dynamic faults
can take place in the absence of static faults as has been
shown experimentally. An analytical approach for es-
tablishing fault models for dynamic faults has been
presented. In addition, a set of fault models (under cer-
tain restrictions) has been introduced. The evaluation
of the existing conventional memory tests shows that
these tests cannot cover these fault models. Therefore,

204 Hamdioui et al.

two new memory tests have been derived to target such
specific faults.

The fault models introduced for dynamic faults have
been restricted to faults sensitized by ‘a write followed
immediately with a read’. These faults have been ob-
served in DRAMs as well as in SRAMs. The question
that arises now is whether other sequential operations
can also sensitize dynamic faults; e.g., ‘a write followed
immediately by a write’, ‘a read followed immediately
by a read’, etc. The widely used ‘hammer tests’ (i.e.,
repeat a write or a read operation sequentially) may
indicate the existence of such dynamic faults. Further-
more, the ‘Holey Shmoo problem’ [14] in which the
L1 cache of IBM System/390 G6 microprocessor fails
to pass consecutive write patterns also indicate that dy-
namic faults can be caused by ‘a write followed im-
mediately by another write’. It is clear from the above,
that the set of fault models for dynamic faults has to
be explored, and the appropriate test algorithms have
to be established.

Note

1. The analysis of Sva and Sav will be the subject of an upcoming
paper.

References

1. M.S. Abadir and J.K. Reghbati, “Functional Testing of Semi-
conductor Random Access Memories,” ACM Computer Surveys,
vol. 15, no. 3, pp. 175–198, 1983.

2. R.D. Adams and E.S. Cooley, “Analysis of a Deceptive Read
Destructive Memory Fault Model and Recommended Testing,”
in Proc. IEEE North Atlantic Test Workshop, 1996.

3. Z. Al-Ars and Ad J. van de Goor, “Impact of Memory Cell Array
Bridges on the Faulty Behavior in Embedded DRAMs,” in Proc.
of Asian Test Symposium, 2000, pp. 282–289.

4. Z. Al-Ars and Ad J. van de Goor, “Static and Dynamic Behavior
of Memory Cell Array Opens and Shorts in Embedded DRAMs,”
in Proc. of Design Automation and Test in Europe, 2001, pp. 496–
503.

5. Z. Al-Ars and A.J. van de Goor, “Approximating Infinite Dy-
namic Behavior for DRAM Cell Defects,” in Proc. IEEE VLSI
Test Symp., 2002, pp. 401–406.

6. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable De-
sign of Digital Systems, Woodland Hills, CA: Computer Science
Press, 1976.

7. J.H. De Jonge and A.J. Smeulders, “Moving Inversions Test
Pattern is Thorough, Yet Speedy,” in Comp. Design, 1976, pp.
169–173.

8. R. Dekker et al., “A Realistic Fault Model and Test Algorithms
for Static Random Access Memories,” IEEE Trans. on Comput-
ers, vol. C9, no. 6, pp. 567–572, 1990.

9. S. Hamdioui and A.J. van de Goor, “Experimental Analysis of
Spot Defects in SRAMs: Realistic Fault Models and Tests,” in
Proc. of Asian Test Symposium, Taipei, Taiwan, 2000, pp. 131–
138.

10. S. Hamdioui and A.J. van de Goor, “Thorough Testing of any
Multi-Port Memory with Linear Tests,” In IEEE Trans. on CAD,
vol. 21, no. 2, pp. 217–231, Feb. 2002.

11. S. Hamdioui and A.J. van de Goor, “Efficient Tests for Realistic
Faults in Dual-Port SRAMs,” in IEEE Trans. on Computers, vol.
51, no. 5, pp. 460–473, May 2002.

12. S. Hamdioui, A.J. van de Goor, and M. Rodgers, “March SS:
A Test for All Static Simple RAM Faults,” in Proc. of IEEE In-
ternational Workshop on Memory Technology, Design and Test,
2002, pp. 95–100.

13. S. Hamdioui, Z. Al-ars, and A.J. van de Goor, “Testing Static
and Dynamic Faults in Random Access Memories,” in Proc. of
IEEE VLSI Test Symposium, 2002, pp. 395–400.

14. W. Huott et al., “The Attack of the ‘Holey Shmoos’: A Case of
the Advanced DFD and Picosecond Imaging Circuit Analysis
(PICA),” in Proc. of IEEE International Test Conference, 1999,
pp. 883–891.

15. M. Inoue et al., “A New Test Evaluation Chip for Lower Cost
Memory Tests,” IEEE Design and Test of Computers, vol. 10,
no. 1, pp. 15–19, March 1993.

16. V.K. Kim and T. Chen, “On Comparing Functional Fault Cov-
erage and Defect Coverage for Memory Testing,” IEEE Trans.
on CAD, vol. 18, no. 11, pp. 1676–1683, 1999.

17. M. Marinescu, “Simple and Efficient Algorithms for Functional
RAM Testing,” in Proc. of IEEE International Test Conference,
1982, pp. 236–239.

18. S. Naik et al., “Failure Analysis of High Density CMOS
SRAMs,” IEEE Design and Test of Computers, vol. 10, no. 1,
pp. 13–23, June 1993.

19. R. Nair, “An Optimal Algorithm for Testing Stuck-at Faults Ran-
dom Access Memories,” IEEE Trans. on Computers, vol. C-28,
no. 3, pp. 258–261, 1979.

20. C.A. Papachristou and N.B. Saghal, “An Improved Method
for Detecting Functional Faults in Random Access Memories,”
IEEE Trans. on Computers, vol. C-34, no. 3, pp. 110–116, 1985.

21. I. Schanstra and A.J. van de Goor, “Industrial Evaluation of
Stress Combinations for March Tests Applied to SRAMs,” in
Proc. IEEE Int. Test Conference, 1999, pp. 983–992.

22. D.S. Suk and S.M. Reddy, “A March Test for Functional Faults
in Semiconductor Random-Access Memories,” IEEE Trans. on
Computers, vol. C30, no. 12, pp. 982–985, 1981.

23. A.J. van de Goor, Testing Semiconductor Memories, Theory and
Practice, ComTex Publishing, Gouda: The Netherlands, 1998.
Web: http://cardit.et.tudelft.nl/ṽdgoor

24. A.J. van de Goor and Z. Al-Ars, “Functional Fault Models: A
Formal Notation and Taxonomy,” in Proc. of IEEE VLSI Test
Symposium, 2000, pp. 281–289.

25. A.J. van de Goor and J. de Neef, “Industrial Evaluation of
DRAMs Tests,” in Proc. of Design Automation and Test in
Europe, March 1999, pp. 623–630.

26. A.J. van de Goor and G. Gaydadjiev, “March LR: A Memory
Test for Realistic Linked Faults,” in Proc. IEEE VLSI Test Sym-
posium, 1996, pp. 272–280.

27. A.J. van de Goor and G.N. Gayadadjiev, “March U: A Test for
All Unlinked Memory Faults,” IEE Proc. of Circuits Devices
and Systems, vol. 144, no. 3, pp. 155–160, 1997.

Dynamic Faults in Random-Access-Memories 205

28. A.J. van de Goor et al., “March LA: A Test for Linked Mem-
ory Faults,” in Proc. of European Design and Test Conf., 1999,
p. 627.

29. P.K. Veenstra et al., “Testing of Random Access Memories: The-
ory and Practice,” IEE Proc. of Circuits, Devices, and Systems,
vol. 135, no. 1, pp. 24-28, 1988.

Said Hamdioui received his MSEE degree with honors form Delft
University of Technology, in Delft, The Netherlands. Additionally,
he received his Ph.D. degree with honors from the same university.
Since then, he has been working at the same University. He interned
with Intel Corporation, USA, and was responsible for developing
new low cost and efficient test algorithms for advanced Intel singe-
port and multi-port cache designs. Currently, he is a visiting faculty
a Intel Santa Clara. His research interests concern fault modeling,
failure analysis, fault simulation, memory testing, test design, DFT,
etc. He has published numerous papers in the area of testing, and he
is an associate member of the IEEE.

Zaid Al-Ars received his MS degree in electrical engineering with
honors from the Delft University of Technology, the Netherlands in
the year 2000. He is working toward his Ph.D. degree in electrical
engineering with the same university in cooperation with Infineon
Technologies, Munich, Germany, where he is currently based. His
research project involves systematic fault analysis, and test genera-
tion and optimization for commodity as well as embedded DRAM
products. He published over 10 papers in the field of electrical defect
simulation, fault modeling and test generation in memory devices.

Ad van de Goor received his MSEE degree from Delft University
of Technology, in Delft, The Netherlands. Additionally, he received
the MSEE and Ph.D. degrees from Carnegie-Mellon University,
Pennsylvania. He worked for the Digital Equipment Corporation
in Maynard, Massachusetts, as the chief architect of the PDP-11/45
computer, and for IBM in The Netherlands and in USA, being re-
sponsible for architecture of the embedded systems. Currently, he is
a professor of computer engineering at Delft University of Technol-
ogy. His main research interest is testing logic and memories. He has
written two books and more than 120 papers in the area of computer
architecture and testing. He is a member of the editorial board of the
Journal of Electronic Testing: Theory and Applications, and a IEEE
fellow.

Mike Rodgers has been with Intel for 16 years since BSEE from
U. of Illinois and additional studies at U. of Chicago. He has held
various positions in Microprocessor Q&R and Test Technology, in-
cluding running Q&R and FA groups in Santa Clara CA, Japan, and
the Chandler, AZ Test Factory. He has worked with DF* teams on all
IA CPUs going since the 286, was primary driver for Intel’s cache
DFT and test methods and now focuses on DFT and methods for
manufacturing test. He currently runs Test Planning and Integration
in Design Technology in Santa Clara, CA and is in charge of Tech-
nology Planning for Test between technology, product, and factory
teams. He co-chairs the Test TWG of the ITRS Roadmap. He is a
member of the IEEE and the TTTC and the author of numerous pa-
pers on test. He is an avid large format photographer and printer in
his spare time.

