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Figure 1: Dynamic FAUST. We present a new 4D dataset containing more than one hundred dynamic performances of 10
subjects. We provide raw 3D scans (meshes) at 60 frames per second and dense ground-truth correspondences between them,

obtained with a novel technique that combines shape and appearance to obtain accurate temporal mesh registration.

Abstract

While the ready availability of 3D scan data has influ-

enced research throughout computer vision, less attention

has focused on 4D data; that is 3D scans of moving non-

rigid objects, captured over time. To be useful for vision

research, such 4D scans need to be registered, or aligned,

to a common topology. Consequently, extending mesh reg-

istration methods to 4D is important. Unfortunately, no

ground-truth datasets are available for quantitative eval-

uation and comparison of 4D registration methods. To ad-

dress this we create a novel dataset of high-resolution 4D

scans of human subjects in motion, captured at 60 fps. We

propose a new mesh registration method that uses both 3D

geometry and texture information to register all scans in

a sequence to a common reference topology. The approach

exploits consistency in texture over both short and long time

intervals and deals with temporal offsets between shape and

∗The work was performed at the MPI for Intelligent Systems.

texture capture. We show how using geometry alone results

in significant errors in alignment when the motions are fast

and non-rigid. We evaluate the accuracy of our registration

and provide a dataset of 40,000 raw and aligned meshes.

Dynamic FAUST extends the popular FAUST dataset to dy-

namic 4D data, and is available for research purposes at

http://dfaust.is.tue.mpg.de.

1. Introduction

We inhabit a 4D world of 3D shapes in motion and the

number of range sensing devices that can capture this world

is growing rapidly. There is already extensive work on reg-

istering, or aligning, 3D scans of static scenes to create rich

3D mesh representations. The story is quite different, how-

ever, for dynamic scenes, containing articulated and non-

rigid objects, where the problem is much harder and there

are many fewer methods. Moreover there exist no ground-

truth datasets for evaluating algorithms for the registration
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of non-rigid 3D shapes over time. We address this here with

a new dataset called Dynamic FAUST (D-FAUST), contain-

ing sequences with thousands of 3D scans of humans in mo-

tion, together with precise ground-truth correspondence.

Many algorithms, like deep learning methods [10, 11],

require 3D meshes to be registered to a common reference

topology. Such learning methods require large amounts of

data, whereas existing 3D datasets tend to be small. One

option is to generate synthetic data to learn the correspon-

dences to a common template [40, 51] but that is not as

rich as real data. The problem of aligning, or registering,

3D meshes, however, is challenging due to variations in

shape, articulation, noise, missing data, and the size of high-

resolution 3D scans. Consequently, there is a need for 1)

methods to align 3D meshes accurately, 2) sequences of 3D

scans containing non-rigid and articulated motion, and 3) a

dataset together with ground-truth correspondence.

The FAUST dataset [8] is an example in which 3D body

shapes, in a variety of poses, are precisely registered using

a combination of 3D shape and surface texture. The dataset

is challenging because it contains scans of real people, in-

cluding high-resolution, missing data, noise, self-contact,

articulation, and shape variation. It is widely used to de-

velop, train, and test algorithms for 3D mesh alignment and

processing. Despite its success, the dataset is still limited,

with only 100 ground-truth alignments. The dataset con-

tains only static scans, whereas many objects, like people,

move and deform over time. We seek a dataset that is orders

of magnitude bigger and contains temporal shape variation.

The Dyna dataset [39] is one possible candidate. This

contains 40,000 3D meshes created by registering a com-

mon template mesh to sequences of 3D scans. The meshes

are of people, with varying body shapes, performing a range

of actions. The scans are captured by a 4D scanner at 60 fps,

and then a template mesh is aligned to them using only geo-

metric information. The aligned meshes exhibit noticeable

soft tissue motion. The lesson of FAUST however is that

geometry-based alignment is inaccurate and cannot be re-

lied upon to establish ground-truth correspondence between

3D meshes. Additionally, the Dyna dataset only contains

the registered meshes at a lower resolution than the origi-

nal scans. This makes it impossible to evaluate new mesh

registration algorithms for dynamic data.

Here we go beyond these previous datasets to develop

a new dataset of the 40,000 Dyna meshes registered us-

ing both geometry and texture information. In doing so we

show that geometry alone, as expected, does not accurately

capture all the soft tissue motions. This is difficult to vi-

sualize in this paper but can be seen quite dramatically in

a companion video [1]. Consequently we develop a novel

method for registering 4D data.

Texture-based alignment of 3D meshes of highly dy-

namic sequences over long time frames is challenging due

to variations in illumination caused by self shadowing,

changes in shape due to deformation, and occlusion. Stan-

dard texture-based registration methods fail due to such dif-

ficulties. Hence, we go beyond FAUST to define a tempo-

ral alignment method that exploits both short-range motion

and long-range matches between each frame and a reference

frame. Our solution also deals with the fact that the scan-

ning system captures shape and texture slightly out of phase

with each other. The result is a highly accurate registration

despite all the challenges mentioned earlier.

We define ground-truth points similarly to FAUST, by

considering both 3D shape accuracy and the optical flow

between a reference texture and each frame. Small flow

vectors suggest that the sequence is well registered. We find

that, in D-FAUST, 82% of scan points (out of more than 5

billion) are aligned with an accuracy within 1-2mm.

D-FAUST is available for research purposes [1]. We re-

lease raw scans, aligned templates, and masks of points with

ground-truth accuracy. As with FAUST, this is likely to

stimulate research on 3D mesh registration while enabling

the community to explore new topics in non-rigid and artic-

ulated registration and deep learning for mesh registration.

2. Related Work

The history of 3D mesh registration is extensive; Chen

and Koltun [20] provide a good recent review.

4D registration. There are many 3D acquisition systems

ranging from depth sensors to multi-view stereo setups,

which output scans in the form of unstructured point clouds

or noisy meshes. There is an extensive literature on regis-

tering such data across time. For example, there are many

non-rigid tracking methods, either model-based [3, 7, 22,

25, 27, 34, 44, 49] or model-free [2, 16, 21, 24, 37, 50, 54].

These methods focus on tracking single sequences: they

adopt a sequential frame-to-frame registration approach, as-

suming relatively small non-rigid deformations. Frame-to-

frame approaches can suffer from accumulation of errors,

resulting in drift over time [19].

Other work focuses on non-sequential alignment [30,

48], tackling the problem of registering data from multiple

sequences. This is important, for example, for construct-

ing motion graphs to synthesize new motions from existing

ones [15, 19, 31, 41]. As recognized in [12, 41], it is chal-

lenging to register very different motions. Hence, many

approaches seek only locally consistent connectivity (e.g.

looking for similar subsequences and matching them). In

contrast, our method registers a unique reference mesh to

scan data from thousands of frames and hundreds of differ-

ent sequences.

Texture has been used for aligning isolated body parts

such as faces and hands [6, 5, 17, 23, 43]. Full-body cap-

ture is significantly more difficult, since body deformations

are a combination of articulated and non-rigid motion. For
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the full body, [18] introduces the concept of 4D model flow

to capture surface appearance changes over time. This is a

substantially different problem from ours: the goal of model

flow is to minimize the visual discrepancy between two 4D

models, to synthesize a new (and sharp) textural appear-

ance. Geometry is used as a proxy to extract texture from

images, but texture is not used to improve the geometry.

Gall et al. [26] compute matches between a textured

model and RGB images to stabilize drift in tracking.

Theobalt et al. [46] use 3D motion fields to improve mo-

tion capture. Tsiminaki et al. [47] do something similar,

using optical flow to register (and super-resolve) texture

maps from different frames in a sequence. They consider

only short sequences with very limited non-rigid deforma-

tions. Boukhayma et al. [12] seek a global appearance

model spanning multiple sequences of a subject. No ge-

ometry correction based on color is used and evaluation is

shown only on limited datasets. None of these methods use

a combination of short and long range correspondences in

texture space together with a body model to achieve highly

accurate registration. In addition, the results of these meth-

ods are not accurate enough to be ground truth.

Datasets. In 3D registration, the FAUST dataset [8]

filled a gap since other datasets were either synthetic [13,

14, 32] or without ground truth [4, 28, 42]. From this

dataset, researchers have used both real scans (for bench-

marking registration techniques [20, 51, 55]) and aligned

templates (e.g. for training Convolutional Neural Net-

works [9, 10, 11, 33, 53]).

There exist previous datasets for 4D registration [21, 39,

45]. Collet et al. [21] release data captured with a multi-

view stereo system using RGB and IR cameras. Starck

and Hilton [45] propose 3D surfaces reconstructed from a

multi-view RGB setup. In both cases, the amount of data

released is limited to a few sequences, containing quite low-

resolution meshes. The Dyna dataset [39] includes 40,000

registered meshes with consistent topology, but it provides

only geometry-based aligned meshes and not the original

scans. We show that the geometry-based alignment of Dyna

can be significantly improved using texture information.

3. Data Acquisition

The 4D data was captured with a custom-built multi-

camera active stereo system (3dMD LLC, Atlanta, GA).

The scanner captures temporal sequences of full-body 3D

scans at 60 frames per second (fps) using 22 pairs of stereo

cameras, 22 color cameras, 34 speckle projectors and ar-

rays of white-light LED panels. The speckle projectors

and LEDs flash at 120 fps to alternate between stereo cap-

ture and color capture. The delay between stereo and color

capture is approximately 4 milliseconds (ms). The stereo

pairs are arranged to give full-body capture for a wide range

of motions. The system outputs 3D meshes with approxi-

Figure 2: Texture map. A texture map At, computed at

frame t, and the corresponding mesh Vt. A function φVt

maps any 3D point x on the surface of Vt to a pixel y in At.

mately 150, 000 vertices on average.

The dataset includes dynamic performances of 10 sub-

jects (5 men and 5 women) of various shapes and ages.

We consider 129 sequences. This gives more than 40, 000
frames, with corresponding scans. All subjects were pro-

fessional models working under a modeling contract, and

they gave their informed written consent for the analysis

and publication of their 4D scan data. During the scan ses-

sions they all wore identical, minimal clothing: tight fitting

swimwear bottoms for men and women and a sports bra top

for women. As in [8], the skin of each subject was painted

in order to provide high-frequency information across most

of the body surface.

4. Methods

For each frame t, the acquisition system outputs a 3D

scan St and 22 color images It,k, 1 ≤ k ≤ 22. Calibration

parameters are known for both color and stereo cameras.

The goal of our approach is to bring all temporal 3D scans

into correspondence by registering a 3D body template to

all of them. The template, T , is a watertight triangulated

mesh with 6, 890 vertices and 13, 776 triangles. The tem-

plate comes with a UV map created by an artist. The UV

map is an un-warping of the template surface onto an im-

age, At, which is a texture map at frame t (Fig. 2). The

texture map is simply an image with “foreground” regions

that correspond to the surface and undefined regions that

can be ignored (black regions in Fig. 2). Given a 3D mesh

with vertices Vt, we denote by φVt
the function mapping

a 3D point on the surface of Vt to a pixel in At, and by

φ−1
Vt

its inverse. Note that the mapping between UV pixels

and mesh surface coordinates is constant and independent

of changes in 3D surface geometry. We call a registration,

Vt, the template T deformed to fit a scan St. Registrations

can be projected into the camera images at each time instant.

Because registered meshes share the same topology, they

provide correspondence between image pixels across time.

The same surface point on two registered meshes projects to
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Figure 3: Overview. Input to our approach is a set of geometry-based registrations, Vt (in pink, 2 example sequences). Our

approach proceeds in 2 stages. In stage 1, after obtaining a texture map At from each registration Vt, we compute dense

matches between each At and a reference map A (red lines), and between maps at subsequent frames (blue lines). These

matches are mapped to 3D and interpolated to obtain a set of rectified registrations (in blue). In stage 2 we refine such

registrations by fitting a 3D model to un-synchronized streams of geometry (scans, in gray) and image data. This gives a set

of highly accurate registrations (in purple).

pixels in two different images, establishing the correspon-

dence between those pixels. These registrations also allow

us to extract the texture map At at each frame [8].

Our approach is model-based. It builds on the methods

in [8, 39] introducing several novelties. We extend [39] to

deal with both geometry and color. We extend FAUST [8]

to deal with temporal sequences. The FAUST method reg-

istered a template to 30 scans of a subject in a variety of

poses. Here we register ≈ 4, 000 scans of each subject (2
orders of magnitude more data per subject). This poses a se-

ries of technical challenges, as described in Sec. 4.2 and 4.3.

Details about the body model used are provided in Sec. 4.1.

Figure 3 provides an overview of our approach. We start

with the set of Dyna registrations obtained from [39] (Vt

meshes shown in pink for 2 example sequences). The objec-

tive function used in [39] penalizes distance in 3D between

scan and template surfaces. Because it does not use image

texture, the method does not prevent the template from slid-

ing over the scan. As a result, Dyna registrations closely fit

the scan surface but are actually inaccurate (see Sec. 5). The

texture-based registration method of FAUST [8] should fix

this sliding, but simply initializing a FAUST-style registra-

tion with Dyna registrations fails. Since our dataset contains

large, highly non-rigid motions, the FAUST method quickly

becomes trapped in local optima.

Our approach improves Dyna registrations by exploiting

both geometry and color data, in 2 stages. In stage 1 we

compute a texture map At from each registration Vt. Ide-

ally, we would like to establish correspondences (i.e. com-

pute matches) between all the texture maps obtained for a

subject and a single reference map (red lines in Fig. 3, ex-

emplified for 2 sequences). We compute dense matches [52]

in 2D between each map At and a reference map A (red

lines). Texture maps computed from different sequences,

however, may differ due to changes in pose and illumi-

nation, and occlusions. We therefore combine such long-

range matches with short-range ones (blue lines), com-

puted between subsequent frames in a sequence. Short-

range matches can better track small variations, while long-

range ones prevent drifting. These matches are mapped to

3D and interpolated to obtain a set of rectified registrations

(blue meshes).

Such registrations exhibit much less sliding than Dyna

ones and provide a better initialization. However, they ex-

hibit small geometric artifacts (due to inaccurate matches)

and do not capture the delay between geometry (scans,

in gray) and color capture (Sec. 3). Hence, in stage

2 we use these rectified registrations to learn a subject-

specific shape and appearance model, and refine them us-

ing a novel model-based registration approach that can deal

with temporally-offset streams of geometry and texture data

(Sec. 4.3). The final result is a set of highly accurate regis-

trations (shown in purple in Fig. 3).

4.1. Body Model

Whereas the authors of [8, 39] use BlendSCAPE [29],

here we use the SMPL body model [36], which has several

advantages in terms of simplicity, accuracy, and portability.

SMPL defines a skinning function, M(θ, T p; Φ), parame-

terized by pose θ, a 3D mesh T p, and learned model param-
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eters Φ. Output of the function is a triangulated, watertight

mesh with N = 6, 890 vertices, with the same topology as

the template used for registration. The mesh is segmented

into parts; pose parameters θ are the axis-angle representa-

tion of the relative rotation between parts. T p captures the

personalized shape of person p, and is the mesh in a neutral

pose θ∗, before applying pose-dependent deformations (see

[36] for details).

4.2. Stage 1: Matchbased Rectification

The goal of Stage 1 is to mitigate the sliding prob-

lems exhibited by geometry-only registrations, in order to

get a better initialization for our model-based approach

(Sec. 4.3). We use Dyna registrations to compute a texture

map At for each frame t (Fig. 3). We compute At from a

set of images It,k with the same technique described in [8].

Consider the set of Kp frame-wise texture maps of sub-

ject p, Ap = {Ai}
Kp

i=1. The texture of a particular loca-

tion on the body should not change much over time. There-

fore, if registrations were perfect, all the maps in Ap should

look almost identical. The residual differences should be

due to illumination changes, shadows, slight skin color dif-

ference due to blood flow variation, and subtle facial ex-

pressions. However, we observe that the Dyna registrations

exhibit significant sliding; i.e., the per-subject frame-wise

texture maps vary significantly. Since the Dyna mesh-to-

scan distances are small, motion in the texture maps implies

that vertices are sliding along the surface. Our goal then is

to solve for the registrations such that the resulting texture

maps are as similar as possible.

Long-range matching. To that end, we compute dense

matches between texture maps using DeepMatching [52].

This works very well, in part because the Dyna subjects

have a texture pattern painted on their bodies. To estab-

lish correspondences across frames and sequences, we com-

pute matches between a unique per-subject reference tex-

ture map, A ∈ Ap, (corresponding to registration V ) and

all the texture maps in Ap. The choice of A is arbitrary; we

pick the first frame of one of the sequences for each subject.

Note that these texture maps are computed from different

sequences (thousands of frames), all relative to subject p.

Such matches establish correspondences in 2D. We map

them into a set of 3D displacements, that we can apply to

registration vertices; Fig. 4 illustrates the process. Con-

sider a match computed between A and At ∈ Ap, obtained

from registration Vt. It establishes a correspondence be-

tween pixels x in A and y in At. This means that, to

make the two maps coherent, pixel x in At should store

the color now at y. Hence, the 3D point φ−1
Vt

(x) should

move to the point φ−1
Vt

(y), according to the (3D) displace-

ment dx = φ−1
Vt

(y) − φ−1
Vt

(x). In practice, we compute

displacements only at vertex locations Vt: given v ∈ Vt

Ā

dx Dt Ft

At

Figure 4: Match-based rectification. Given a reference

texture map A and a texture map At at time t, we compute

dense 2D matches between them (orange arrows, middle

left). These 2D matches are translated into 3D correspon-

dences (left-most mesh). We average them per vertex (mid-

dle mesh), and optimize a final set of displacements, applied

to the mesh on the right.

we collect all matches originating at triangles sharing v as a

vertex, compute the corresponding displacements in 3D and

take their average. This gives us a set of per-vertex displace-

ments, Dt ∈ R
N×3, for registration Vt. Based on them, we

optimize a match-based, per-vertex set of 3D displacements

Ft ∈ R
N×3 and impose a smoothness term enforcing simi-

lar displacements on adjacent vertices:

EF (Ft) = Elong(Ft) + λsmEsm(Ft). (1)

Elong simply penalizes discrepancy between Dt and Ft

with the squared Frobenius norm Elong(Ft) = ‖Dt−Ft‖
2,

λsm is the weight for the smoothness term and

Esm(Ft) =
∑

(v,v′)∈E

‖Ft,v − Ft,v′‖2. (2)

where E is the set of edges of our template.

Short-range matching. With highly accurate matches,

this would be enough to align all the meshes Vt to a com-

mon reference mesh V . However, when considering frames

far apart in time, changes in pose and illumination can make

matches inaccurate, and therefore produce significant errors

in the displacements (Fig. 5). To account for this, we in-

troduce a second error term based on matches computed

between subsequent frames. Computing matches between

subsequent, and therefore similar, frames is less error-prone

and helps make our algorithm more robust. More precisely,

after optimizing EF (F0), we compute matches between A1

and the rectified map A
f
0 obtained after applying F0 to V0.

This gives a set of displacements D̃t, computed as above.

We then optimize EF (Ft) =

Elong(Ft) + λshortEshort(Ft) + λsmEsm(Ft) (3)

6237



Figure 5: Importance of Eshort and Elong . Left: Rectified

mesh V
f
t optimized as in Eq. (3). Middle: Vertex-to-vertex

distance between V
f
t and the mesh obtained from Eq. (3)

after dropping Eshort: long-range matches are unreliable

in the presence of shadows and occlusions (armpits, chin)

and clothing movement (chest). Right: Vertex-to-vertex

distance between V
f
t and the mesh obtained from Eq. (3)

after dropping Elong: relying only on short-range matches

produces drifting. Red denotes a distance ≥ 1cm.

where Eshort(Ft) = ‖D̃t − Ft‖
2. We initialize Ft to D̃t,

and discard as unreliable the vertex displacements Dt,v if

||Dt,v − D̃t,v|| > 1 centimeter. We optimize Eq. (3) se-

quentially, starting from the initial frame of each sequence.

Elong prevents drifting over time, while Eshort corrects for

correspondence errors from far apart frames by tracking

small changes over time (Fig. 5). The result of this stage

is a set of rectified registrations, V
f
t , one per frame, where

the superscript f indicates that the vertices come from the

match-rectification phase, which optimizes Ft.

Note that, since we start by optimizing Eq. (3) for frame

0, using A, all frames in all sequences are eventually aligned

to a unique per-subject registration V . Recall that the choice

of V is arbitrary (to get A, we picked the first frame of one

of the sequences).

Matches near the boundaries of the texture map and oc-

clusion boundaries (between the defined and undefined ar-

eas of the texture map) are unreliable. We filter out matches

originating or mapping to these unreliable regions.

4.3. Stage 2: Appearancebased Registration

Match-based rectification in Stage 1 helps dramatically

reduce sliding. Registrations, however, may still suffer from

artifacts and slight inaccuracies and, more importantly, do

not model the temporal offset between geometry and color

capture. We address this in the second stage.

First, we use registrations {V f
t } from Stage 1 to learn

a per-subject model of shape T p and appearance Ap. We

choose uniformly at random approximately 100 registra-

tions per subject. To learn T p, we put each registration in

Figure 6: Appearance-based registration. We deal with

the temporal offset between geometry and color streams by

optimizing two registrations (V
g
t and V c

t ) per frame t. Our

objective penalizes the Euclidean distance between scan St

and V
g
t , and discrepancy between real images It,k and syn-

thetic ones rendered from V c
t . Evel enforces a constant ve-

locity model between V
g
t and V c

t .

the neutral pose θ∗ (by “undoing” its pose-dependent de-

formations [36]), and then average the vertices across tem-

plates. For the appearance model Ap, we compute the cor-

responding texture maps and again simply average them.

Then, we refine the rectified registrations, minimizing an

objective that takes into account both geometry and color

information, matching the model to scans and RGB images.

We explicitly model the delay between geometry and color

capture (Sec. 3) as a soft constraint. In fact, we optimize

two registrations per frame – one relative to the geometry

(g) frame, V
g
t , and one relative to the color (c) frame, V c

t

(Fig. 6).

For each frame t, we minimize an objective E given by

the sum of 4 error terms:

E(V g
t , V

c
t ,θt) =Eg(V

g
t ) + λcplEcpl(V

c
t ,θt)+

λvelEvel(V
g
t , V

c
t ) + λAEA(V

c
t ) (4)

where λcpl, λvel and λA are the weights for the different

terms. As in [39], Eg penalizes distance in 3D between

scan and registration surface; Ecpl penalizes discrepancy

between V c
t and the SMPL model with shape T p and pose

θt (cf. [39]). As in [8], the appearance-based error term

EA penalizes discrepancy between real images It,k and syn-

thetic images Ĩ(V c
t , A

p) rendered from the model:

EA(V
c
t ) =

∑

camera k

||Γ(It,k)− Γ(Ĩ(V c
t , A

p))||2. (5)

where Γ denotes a Ratio-of-Gaussians contrast-

normalization term [8]. While in [8] Eq. (5) was computed

only over foreground image pixels, here we sum over both

foreground and background.

Finally, Evel enforces a constant velocity model between

6238



Figure 7: Comparison between real and rendered im-

ages. Four example frames: the right half shows the real

image and the left half is the synthetic image rendered from

the model. They look very similar.

registrations V
g
t and V c

t :

Evel(V
g
t , V

c
t ) = ||V c

t − V
g
t −∆||2. (6)

Here ∆ = ( 60·4
1000 ) · (V

f
t+1−V

f
t ), where V

f
t+1 and V

f
t are the

rectified registrations relative to frames t + 1 and t; recall

the delay between geometry and color is (roughly) equal to

4 ms, and sequences are captured at 60 fps.

4.4. Optimization

The objective functions in Eq. (3) and (4) are minimized

using a gradient-based dogleg minimization [38]. Gradi-

ents are computed with automatic differentiation using the

Chumpy framework and the differentiable renderer [35].

Minimizing Eq. (3) takes less than one minute per frame;

minimizing Eq. (4) takes approximately 10 minutes.

5. Evaluation

The registration of our template to each scan brings all

the scans into correspondence. Evaluating registration ac-

curacy is difficult due to the lack of ground truth. As in [8],

we quantitatively evaluate registration accuracy so that it

can be considered ground truth. We label as ground truth

the vertices that satisfy the following three criteria:

Geometric error: In the spirit of [8], we discard all

scan vertices that are further away than 1mm from the cor-

responding registration surface. We find that 93% of scan

points are closer than 1mm (by contrast, in FAUST they re-

port 90% of points are within 2mm).

Image error: We can take the registered meshes V c
t and

the per-subject average appearance model computed from

them, project them into any camera view, and compare them

with actual observed images. If the geometric distance be-

tween the scan and the registration is small, then the optical

Figure 8: Vertex-to-vertex distance between Dyna and D-

FAUST. Heat maps show the vertex-to-vertex distance be-

tween three Dyna registrations and the corresponding regis-

trations in D-FAUST. Red denotes a distance ≥ 1.5cm.

flow between the synthetic and real image provides a mea-

sure of misalignment tangential to the surface (sliding).

We compute optical flow [52] between real and synthetic

images (cf. [8]). A 3D point is discarded if the optical

flow magnitude in the corresponding pixel x is bigger than

one pixel in at least one camera where x is visible. One

pixel corresponds roughly to an error of 2mm in the 3D sur-

face. In this evaluation, we do not consider pixels where the

dot product between camera axis and the surface normal is

smaller than 0.5, since optical flow is highly unreliable due

to the large grazing angle and the corresponding point is

likely to be better covered from a different view.

Since we seek to label accuracy of the scan vertices, not

the template vertices, for every scan point in St we find the

closest registration point in the geometry registration V
g
t

(expressed in barycentric coordinates). Using these coordi-

nates we can find the corresponding 3D point in the color

registration V c
t and evaluate the flow and viewing angle.

We find 94% of the scan points satisfy this criterion for D-

FAUST registrations; the synthetic images from D-FAUST

registrations match quite well the real images, see Fig. 7.

Motion consistency: Scan points whose corresponding

registration points deviate too much from constant veloc-

ity are discarded. We compute the velocity from adjacent

geometry registrations ∆ = V
g
t+1 − V

g
t and evaluate con-

sistency in the color frame V c
t using Eq. (6). Points that

deviate more than 1mm are discarded. Note that at the short

time interval of 4ms this simple motion model suffices. We

find that 92% of scan points satisfy this criterion, indicating

that the geometry and color registrations are coherent.

Combined: 82% of scan points satisfy all three criteria.

Comparison with Dyna: Overall, we observe that D-

FAUST registrations are significantly more accurate than
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Figure 9: Comparison between computed and synthetic

flow. From top to bottom: real images at time t for three

example frames; optical flow [52] computed between them

and real images at time t + 1 (not shown); synthetic flow

generated from the corresponding D-FAUST registrations;

synthetic flow generated from Dyna registrations. Dyna-

synthesized flow looks over-smooth and is too piece-wise

constant. Results from D-FAUST are more realistic and bet-

ter approximate the computed optical flow.

the original Dyna registrations. Figure 8 shows vertex-to-

vertex Euclidean distance between D-FAUST and Dyna reg-

istrations, for three example frames. Significant differences

are visible in areas like the belly, arms and thighs. The aver-

age vertex-to-vertex distance between Dyna and D-FAUST

registrations, computed over the entire dataset, is 6mm.

In particular, D-FAUST captures non-rigid soft tissue de-

formations with higher accuracy. This can be seen in Fig. 9,

where we compare the optical flow computed between con-

secutive real images, versus the flow synthesized using the

D-FAUST and Dyna registrations. Optical flow can be triv-

ially synthesized from registrations as they are in correspon-

dence. One can observe how the D-FAUST synthetic flow

is much more realistic than Dyna flow, which lacks detail.

In the companion video [1] we show video sequences com-

paring D-FAUST with Dyna registrations; it is clear that D-

FAUST registrations capture much more non-rigid soft tis-

sue motion and do not suffer from tangential sliding along

the surface. We also show the resulting frame-wise texture

maps of D-FAUST registrations and we compare them with

texture maps computed from Dyna registrations. One can

observe in the video how the texture maps of D-FAUST are

Figure 10: Importance of appearance-based registra-

tion. From left to right: Dyna registration (pink), rectified

registration (blue), final D-FAUST result (purple), real im-

age, for two frames. Match-based rectification can intro-

duce artifacts in the meshes (red circles), that are corrected

during appearance-based registration. Also, details like fa-

cial expressions are captured in the last stage.

much more stable, showing almost not changes except those

due to illumination and shadows. This is also a strong indi-

cator of good registration quality.

Importance of appearance-based registration: Our

technique works well even in areas like the face, where

the painted texture pattern was not applied. Figure 10 (top

row) compares a registration from Dyna (pink), after match-

based rectification (blue) and the final D-FAUST result (pur-

ple). Facial expressions are captured in the last stage, thanks

to the robust matching between model and image data. Fig-

ure 10 also shows the role played by each stage of the tech-

nique. Match-based correction helps remove gross mis-

alignment, but can produce artifacts in the mesh (red cir-

cles in the image). Highly accurate alignment is achieved

through a combination of all the stages.

6. Conclusion

We presented D-FAUST, the first 4D dataset providing

both real scans and dense ground-truth correspondences be-

tween them. D-FAUST collects over 40, 000 real meshes,

capturing 129 dynamic performances from 10 subjects. We

registered all the scans to a common template by introduc-

ing a novel approach that combines computation of 2D cor-

respondences in texture space with a model-based registra-

tion approach dealing with temporally-offset streams of ge-

ometry and texture data. All the scans and registrations will

be made publicly available for research purposes [1].
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