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ABSTRACT Smart grid applications, such as predicting energy consumption, grid user behavior analysis
and predicting energy theft, etc., are data-driven applications that require machine learning with a wealth
of data generated from Internet of Things (IoT) based metering devices. However, traditional methods of
uploading this huge data to the remote cloud for data analytics may be low efficient due to the non-negligible
network transmission delay. By deploying a number of computing-enabled devices at the network edge,
edge computing supports the implementation of machine learning close to the power grid environment.
Considering the limited computing resources of edge devices and non-independent and identical (non-IID)
data source, federated learning is a feasible edge computing based machine learning model. In federated
learning, distributed mobile clients and a federated server collaborate to perform machine learning. Gen-
erally, the more clients to join the federated learning, the faster to obtain learning convergence and the
higher resource utility. However, the communications between clients and the server in training rounds of
federated learning may fail due to time-varying link reliability properties in a wireless network of smart
grid, which not only slows down the model convergence rate but also wastes resources, such as energy
consumption for invalid local training. This paper studies a dynamic federated learning problem in a power
grid mobile edge computing (GMEC) environment, considering the high dynamic of link reliability. We
design a delay deadline constrained federated learning framework to avoid extremely long training delay,
and then formulate a dynamic client selection problem for computing utility maximization in such learning
framework. Two online client selection algorithms, including cli-max greedy and uti-positive guarantee, are
proposed to address the problem. The theoretical analysis and simulation results are conducted to illustrate
the efficiency of the proposal.

INDEX TERMS Mobile edge computing, machine learning, federated learning, smart grid, link reliability.

I. INTRODUCTION

With the development of Internet of things (IoT), artificial
intelligence (AI) as well as big data, smart grid has been
a promising paradigm of the power grid systems. In such
smart grid environment, multitude of data is gathered from
massive IoT based electricity meters, distribution transform-
ers, as well as other metering devices [1]. Most of data is
from computation intensive applications, such as forecasting
energy consumption, prediction of power quality, analytics of
energy consumption trends and prediction of energy theft [2],
which require big data analytics with low latency. Take pre-
dicting energy theft as an example, the faster and the higher
accurate in detecting the energy theft, the smaller loss.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

Traditionally, data analytics is performed in a remote cloud
with AI-based algorithms, such as machine learning. The
massive amount of data from smart grid is thus required to
upload to the remote cloud via communication networks.
However, such computing paradigm is low efficient for the
ever-increasing smart grid applications that require quick and
high-accurate analytics for value maximization. The reasons
are as the following. Firstly, the data uploading delay from
the data source to the remote cloud is inevitable and becomes
the bottleneck for low latency [3]. Secondly, the data gathered
from various metering devices is typically based on the usage
of that device, the datasets from different metering devices in
the smart grid system will be non-independent and identical
distribution (non-IID).

Edge computing [4], [5], which extends cloud-like service
at the network edge, is a promising computing paradigm for
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smart grid. In edge computing, computing devices, such as
computing-enabled mobile nodes and servers, are deployed
at the network edge close to metering devices [4]. Therefore,
data analytics can be performed at network edge by run-
ning computing algorithms at edge devices close to metering
devices, such that data uploading delay could be explicitly
reduced. However, the computation and storage resources of
an edge device are quite smaller in comparison with a cloud,
data analytics at only a single edge device may be low effi-
cient [6]. Indeed, distributed learning with the collaboration
of multiple edge computing devices would be more feasible.
Federated learning [7], [8] is an efficient distributed learn-

ing paradigm that supports machine learning at network
edge with non-IID data. In federated learning, a number of
clients (e.g., computing-enabled mobile nodes) and a feder-
ated server (located at the center of network edge) collaborate
to performmultiple training rounds to obtain a learningmodel
of special data-driven applications, e.g., a learning model of
predicting the energy consumption. In each round, the feder-
ated server selects a number of clients to join this round of
training. Then, the global algorithm state (e.g., model param-
eters) is diffused to the selected clients via a communication
network. The clients then execute local training with local
dataset to update the model parameters. Then, the model
parameters are uploaded to the federated server for parameter
aggregation. The training round repeats until the model is
converged or interrupted.
Generally, the more number of clients to join the federated

learning, the smaller number of rounds requiring to obtain
learning convergence [7], [8]. However, since the mobile
clients in smart grid are generally deployed in an outdoor
environment with high dynamic of link reliability [9]–[11],
not all selected clients could finally upload their trained
model parameters to the federated server for parameter aggre-
gation. For example, some selected client may not receive the
global algorithm state due to a sudden loss of the link between
the mobile client and the server. The failure of selected clients
in uploading the trainedmodel parameters to the server would
not only slow down the learning convergence rate but also
waste consumed energy for local training as well as pro-
long the delay of a training round. Therefore, how to select
mobile clients to join training rounds of federated learning
for resource utility maximization in a power grid mobile edge
computing (GMEC) environment considering time-varying
link reliability deserves further study.
This paper studies a dynamic distributed learning (e.g.,

federated learning) problem for GMEC with time-varying
wireless link. In such GMEC, cloud-like computing service
within a power grid wireless access network is provided by
deploying a server at the center of the wireless access network
and computing-enabled mobile clients (e.g., intelligent grid
terminals) randomly distributed within the network. Every
mobile client has a non-IID dataset, in which data is generated
from nearby or equippedmetering devices. The links between
the mobile clients and the server are highly dynamic, that is,
it may be unreliable at some time slots.

We design a delay deadline constrained federated learning
scheme, where the clients of each training round are dynami-
cally chosen considering the link state. In special, we analyze
the delay as well as cost of the proposed federated learning
framework. Then, a dynamic client selection problem for
such framework in GMEC with time-varying link reliability
is formulated. Two online client selection algorithms, e.g.,
cli-max greedy and uti-positive guarantee, are proposed to
address the problem. The theoretical analysis and simulation
studies have been conducted to illustrate the efficiency of the
proposal.

The remainder of this paper is organized as follows.
Section II overviews the related work. Section III describes
the proposed federated learning framework in GMEC and
then formulates the problem. Section IV proposes two online
algorithms to address the problem. Simulation studies are
conducted to demonstrate the efficiency of the proposal in
Section V. We conclude this paper in Section VI.

II. RELATED WORK

Edge computing based machine learning has been widely
explored in existing works for modeling, design and predic-
tion in power grid systems.

An intelligent edge analytics approach for load identifica-
tion in smart meters has been studied in [12]. Sirojan et al.
have designed an embedded edge computing paradigm for
real-time smart meter data analytics in [13]. However, since
the computation resource of an embedded edge computing
device is quite limit, it only analyzes the high frequency com-
ponent, while high performance computing for historical data
analytics is needed to perform in the remote cloud. An edge
computing framework for real-time monitoring in smart grid
has been proposed in [14], which used a heuristic algorithm to
schedule computation tasks among edge devices to maximize
the benefits. A cost-efficient tasks scheduling for smart grid
communication network with edge computing system has
been studied in [15]. In the proposal, a green greedy algo-
rithm is proposed to reduce the cost of the edge computing
system while satisfying the task completion needs. In order
to save energy consumption and reduce the task computa-
tional latency, a deep reinforcement learning based mobile
offloading scheme was proposed in [16]. To balance the
computation loads of edge computing nodes, an edge-based
load-balancing algorithm based on popularity and centrality
was proposed in [17]. In the above proposals, the computation
tasks, such as real-time power data analytics, are executed
in one of the edge computing devices. Thus, these proposals
are low efficient in running complex algorithms with mas-
sive amount of data. Besides, offloading data from one edge
device to another may lead to a long transmission delay when
the bandwidth of the link between edge devices is small or the
link is unreliable.

Recently, a number of proposals have focused on edge
computing based distributed learning. A fog computing
model for anomaly detection in smart grids has been pro-
posed in reference [18]. In the proposed model, distributed
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computing devices at the edge of smart grid network col-
laborate to detect the anomalous patterns in the electric-
ity consumption data. Kumar et al. have used vehicular
delay-tolerant networks (VDTNs) for data dissemination to
various devices in the smart grid environment using mobile
edge computing [19]. In the proposal, the store-and-carry
forward mechanism for message dissemination has been
designed to reduce transmission delays. A big data man-
agement system, including smart grid and smart local grid,
based on fog infrastructures has been designed in [20] to
support real time computing services. Due to limited com-
puting resource in fog devices, a cloud-fog-based smart grid
model for efficient resource utilization was explored in [21].
Zhao et al. presented a smart and practical privacy-preserving
data aggregation (PDA) scheme with smart pricing and pack-
ing method in fog based smart grids. An IoT-based energy
management system with edge computing was proposed to
improve the energy efficiency in smart cities [22].
Among various distributed learning models [23], feder-

ated learning [7], [8] is a new paradigm particularly feasible
for edge computing. Forecasting electrical load using edge
computing and federated learning has been explored in [24].
Saputra et al. also used federated learning to predict energy
demand for electric vehicle networks [25]. Nishio et al.

studied the client selection problem with resource con-
straints, e.g., limited computation resources, poor wireless
channel conditions (longer upload time) [26]. In the pro-
posal, the authors designed a new federated learning proto-
col, referred to FedCS, to selection clients to join federated
learning, aiming at complete the training process in a shorter
time. Although the proposals in [24], [25] have illustrated
the efficiency of edge computing based federated learning
for smart grid, the deployment of federated learning com-
bined with edge computing, such as which clients should be
selected to join federated learning, is presently in its initial
stage [26].

III. A FEDERATED LEARNING FRAMEWORK FOR GMEC

We consider a GMEC environment with computing-enabled
mobile clients (e.g., intelligent grid terminals) and an edge
server, which is endowed with cloud-like computing service.
The mobile clients are randomly distributed in a time-varying
wireless network, while the edge server is located at the center
of that network. Eachmobile client has a dataset comprising a
number of samples from the nearest IoT sensors (e.g., amme-
ter, water meter, camera). Generally, the dataset of a mobile
client is small and contains a partial information of theGMEC
system. For example, the dataset of a mobile client only
includes several grid users’ ammeter information. However,
smart grid applications, such as forecasting energy consump-
tion, grid user behavior analysis and predicting energy theft,
require machine learning based big data analytics with more
datasets.
Assuming that computation intensive power grid appli-

cations, e.g., forecasting energy consumption, are deployed
in both mobile clients and the server. We design a delay

deadline constrained federated learning framework as shown
in Framework 1 to support machine learning based power
grid applications at the network edge with the collaboration
of mobile clients and the edge server.
As shown in Framework 1, when the edge server, which

acts as a federated server, has a computation task, for exam-
ple, a task of forecasting energy consumption, it initially tells
the mobile clients what computation to run and a special
data structure that will be used in the training process as
well as other information required for the task of forecasting
energy consumption, via broadcasting the above informa-
tion in GMEC. Then, a number of learning rounds, where
a round includes the stages from client selection to algo-

rithm state aggregation, are iterated until the objective is
achieved.

Framework 1Delay Deadline Constrained Federated Learn-
ing
1: Initialization: The edge server tells the mobile clients

in GMEC that there is a learning to start.
2: Client selection:A timer is set for receiving the request

from clients. Once the timer reaches the delay deadline,
the edge server selects a number of clients from the
requesting clients to join this round of training.

3: Training: At the beginning of this step, a timer is set in
the edge server.
a) Algorithm state diffusion: The edge server sends

the most updated global model parameters to the
selected clients.

b) Local training: The selected clients perform local
computing based on the global model parameters
and its local dataset.

c) Algorithm state uploading: The clients send the
trained model parameters to the edge server.

4: Algorithm state aggregation: After receiving all the
algorithm state uploading messages, or, when the
timer of the training step reaches its delay deadline,
the server averages the trained model parameters from
the selected clients to global model parameters, and
stores them as a checkpoint in the server.

Due to the time-varying link reliability properties, the
communications between some clients and the server may
be fail at some time slots. In order to avoid that the edge
server may waste a long time to wait for the response from
the unreachable clients, as shown in Framework 1, we have
added two timers at client selection and training stages of
a round of training, respectively. When a timer reaches its
delay deadline, the learning process will go to next step
immediately.

In the following, we will mathematically analyze the
delay as well as cost models of the proposed delay deadline
constrained federated learning framework. Then, a dynamic
client selection problem for cost minimization under the
time-varying wireless link is formulated.
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FIGURE 1. Per-round evolution of the delay deadline constrained federated learning.

A. SYSTEM MODEL

Let M = {1, 2, . . . ,M} be the mobile client set in the
GMEC system. Let I(i) = (I1(i), I2(i), . . . , IM (i)) be a binary
client selection decision vector at ith round of training for
mobile clients in the GMEC system. Im(i) = 1 for m ∈ M

indicates that mobile client m is selected to join the ith round
of federated learning; otherwise, Im(i) = 0, which indicates
the client is not selected. The summary of notations used in
this paper are listed in Table 1.

B. TIME-VARYING LINK RELIABILITY

According to Framework 1, we depict the detail of a round
of training as in Fig. 1. As shown in Fig. 1, at each round
of training, there are three types of communications between
mobile clients and the federated server.

1) TIME-VARYING UPLINK FOR REQUESTING FEDERATED

LEARNING

The first is in the client selection stage, where the mobile
client sends a request to the edge server for joining the feder-
ated learning, which requires the uplink communication from
a mobile client to the server. Assume that at the beginning of
each round, every mobile client is willing to join the training.
It tries to send the request to the server via a time-varying
uplink. Let 9J

m(i) (which is assumed to be i.i.d. over rounds)

be a binary uplink reliability variable of client m at the client
selection stage of the ith round, where 9J

m(i) = 1 indicates
that the link is reliable and thus that the request can be suc-
cessfully transmitted to the server via the link; and9J

m(i) = 0,
we say that the link is fail and thus the request is unable to
reach the server.

2) TIME-VARYING DOWNLINK FOR DIFFUSING

ALGORITHM STATE

As shown in Fig. 1, once a client is selected to join federated
learning, the federated server will send the most updated
global algorithm state (e.g., model parameters) to the client,
which requires the downlink communication. Let 9D

m (i) be a
binary downlink reliability variable of client m at algorithm
state diffusion stage of the ith round. Then, 9D

m (i) = 1
indicates that the link is reliable; and9D

m (i) = 0 indicates that
the link is fail and the global algorithm state cannot reach the
client.

3) TIME-VARYING UPLINK FOR ALGORITHM STATE

UPLOADING

After local training, the client will send the up-to-date algo-
rithm state (e.g., trained model parameters) to the edge server
for federated aggregation, which requires the uplink commu-
nication, as shown in Fig. 1. Let 9U

m (i) be a binary uplink
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TABLE 1. Summary of notations.

reliability variable of client m in the ith round at the stage of
algorithm state uploading, where 9U

m (i) = 1 indicates that
the link is reliable; and 9U

m (i) = 0 means the link fails, thus
the algorithm state cannot upload to the server.

C. DELAY MODEL

Let M(i) ⊆ M be a set of mobile clients selected for the ith
round of federated learning at the client selection stage. Then,
for any m ∈ M(i), we have Im(i) = 1.

1) CLIENT SELECTION DELAY

As shown in Fig. 1, the client selection delay refers to the
time interval from the beginning of a round to the time that

decision is made on which clients will be selected to join
federated learning of this round, representing byDS(i), where
i means at the ith round. Since the time interval for making
client selection is far shorter than that of sending the request
from clients to the server, the client selection delay can be
expressed by

DS(i) = min[max
m∈M

9J
m(i) D

J
m(i),D

S
max] , (1)

where DSmax is a timer of federated server for waiting the
request from clients, as illustrated in Framework 1. (1) indi-
cates that, once the timer reaches its deadline, it will make
client selection decision immediately based on the clients that
the server has successfully received their requests.

2) TRAINING DELAY

As shown in Fig. 1, the training delay consists of the follow-
ing three types of delays.
(a) Algorithm state diffusion delay. After the client selec-

tion stage, the federated server initiates algorithm state

diffusion stage to send the most updated global model
parameters to each of the selected clients. The time
interval from the federated server sends out the mes-
sages to a client receives the information is called
this client’s algorithm state diffusion delay, e.g., DD

m(i)
represents the algorithm state diffusion delay of mobile
clientm at the ith round of training. The algorithm state
diffusion delay is affected by the downlink state and the
packet size of the diffusing information.

(b) Local training delay.When a client receives the global
model parameter, it starts local training based on the
global model parameters and its local dataset. The local
training delay is affected by the size of its local dataset,
size of a batch, number of local update iterations and
local computing capability. LetDL

m(i) be the local train-
ing delay of client m at the ith round, which can be
expressed by

DL
m(i) =

NL
m(i)Sm(i)

Bm(i)
DCPU,B
m , (2)

where DCPU,B
m = Bm(i)/fm is the delay of processing a

local training with a batch.
(c) Algorithm state uploading delay. When local training

finishes, the client will upload the local algorithm state
(e.g., local trained model parameters) to the federated
server via the uplink. The time interval from a client
uploads the algorithm state to the federated server
receives it is called algorithm state uploading delay of
this client, e.g., DU

m(i) is the algorithm state uploading
delay of client m at the ith round of training. The algo-
rithm state uploading delay is affected by the uplink
state and the packet size of the uploading information.

Since different clients may experience different training
delay due to downlink and uplink states,1 local computing

1We will extend the special diffusion/uploading delay model related to
special access technology in the future work.
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capabilities and size of local datasets, in synchronous update
scheme, the training delay of a round is themaximum training
delay of the selected clients at this round. That is, the training
delay of the ith round can be derived by

DT(i) = max
m∈M(i)

DT
m(i), (3)

where DT
m(i) is the training delay of client m at the ith round,

which is derived by

DT
m(i) = 9D

m (i) 9U
m (i)

(

DD
m(i) + DL

m(i) + DU
m(i)

)

. (4)

Notice that, once the uplink is fail (e.g., 9D
m (i) = 0)

at algorithm state diffusion stage, the subsequent substages
for client m, including local training and algorithm state

uploading, would not come. Similarly, if the uplink is fail
at the beginning of the algorithm state uploading substage,
the algorithm state uploading substage would not come.
Therefore, we setDT

m(i) = ∞when9D
m (i) = 0 or9U

m (i) = 0.

3) ALGORITHM STATE AGGREGATION DELAY

When the federated server receives all the algorithm state
uploading messages from the selected clients, or, when the
training timer reaches the delay deadline, it starts to average
the received local trained model parameters to global model
parameter, and storing them as a checkpoint. We use DA(i)
to represent the algorithm state aggregation delay at the ith
round of training.

4) DELAY OF A ROUND

As shown in Fig. 1, when the federated server selects a
number of clients to join a round of training, it goes into the
state of waiting the selected clients to feedback the algorithm
state. However, the events of downlink failure at the algorithm
state diffusion substage, or uplink failure in the algorithm
state uploading substage would make the feedback from
that client fails. Accordingly, we have set a training timer,
defined as DT

max,
2 in the training stage to avoid the federated

server waits infinitely for unreachable clients, as illustrated
in Framework 1.
Therefore, the delay of the ith round could be expressed by

D(i) = DS(i) + min[DT(i),DT
max] + DA(i). (5)

D. COST MODEL

This paper mainly considers the energy consumption of
mobile clients that have been selected to join the federated
learning but fail in the training stage, including failure in algo-
rithm state diffusion and algorithm state uploading substages
due to downlink/uplink unreliability.
As shown in Fig. 1, if the downlink at the algorithm state

diffusion substage fails, there will be no further action at the
unreachable client, such that there is no energy consump-
tion in that client. Differently, if the uplink at the algorithm

2Note that, for simplification, assume that the value of a timer at every
round is identical.

state uploading substage fails, the unreachable client has
consumed energy for local training, which will be a waste
since this round of local training has no contribution to the
global algorithm state update. Accordingly, thewasted energy
of round i can be expressed by

E(i) =
∑

m∈M(i)

(1 − 9U
m (i))Em(i), (6)

where Em(i) = γm (Sm(i))3/(DL
m(i))

2.
Therefore, we define the cost of a round i as the following

C(i) = α E(i) + β D(i). (7)

E. PROBLEM FORMULATION

Reference [7], [8] have pointed out that, the more number
of clients joining the federated learning, the smaller number
of rounds requiring to obtain learning convergence. How-
ever, due to the time-varying link reliability property, not all
presenting available clients could finally finish a round of
training. The client that fails in uploading its algorithm state
may waste its energy for the invalid local training. Therefore,
we define the computing utility of the GMEC system at the
ith round as the following

G(i) = Msucc(i) − ω C(i), (8)

where Msucc(i) is the number of selected clients that have
successfully uploaded the algorithm state update.
The long-term computing utility is then defined as

G = E[G(i)] = lim
N→∞

1

N

N
∑

i=1

G(i) . (9)

Then, the dynamic client selection for federated learning
problem (CSFL) in a time-varying wireless network environ-
ment can be formulated as

Maximize: G (10)

Subject to: 9J
m(i), 9

D
m (i), 9

U
m (i) ∈ {0, 1}, ∀m ∈ M (11)

I = (I(1), I(2), . . . , I(i), . . . , I(N )) (12)

I(i) = (I1(i), I2(i), . . . , Im(i), . . . , IM (i)) (13)

Msucc(i) ⊆ M(i) (14)

9J
m(i) = 9D

m (i) = 9U
m (i) = 1, ∀m ∈ Msucc(i)

(15)

Im(i) = 1, ∀m ∈ M(i) (16)

α, β, ω > 0. (17)

IV. THE ONLINE ALGORITHMS FOR CSFL

A. THE CLI-MAX GREEDY ALGORITHM

Because of the high dynamic of thewireless network, it would
be difficult and very costly to accurately estimate the link reli-
ability over time slots. Therefore, offline methods (e.g., the
linear/nonlinear programming solver) are unsuitable for solv-
ing the dynamic client selection problem for federated learn-
ing at a time-varying link reliability environment described
in (10)-(17). Accordingly, in this subsection, we first design
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an online client maximum greedy (Cli-max greedy) algorithm
for solving the problem. Then, we theoretically analyze the
performance in terms of computing utility of the proposed
cli-max greedy algorithm.

1) THE ALGORITHM

As illustrated in Algorithm 2, at each round of training, when
the federated server receives the computation requests from
all the mobile clients, or, the timer of the client selection stage
reaches the deadline, the cli-max greedy algorithm is initiated
to greedily select all the clients that have successfully sent
their requests to the server, equivalently, the clients whose
links are reliable during the client selection stage would be
chosen to join that round of training.

Algorithm 2 Cli-Max Greedy Algorithm
At each round i for i = 1, 2, . . . ,N of federated learning, do
1) At the beginning of each round i, while 9J

m(i) = 1,
∀m ∈ M, or, the timer of the client selection stage
reaches the deadline (e.g., client selection delay has
reached DS

max), do
a) Initialization: M(i) = {}.
b) Greedy decision: for all m ∈ M, do

If 9J
m(i) = 1 then, set

{

Im(i) = 1,

M(i) = M(i) ∪ {i}.
(18)

else set Im(i) = 0.
2) Performing the remaining stages as shown in Fig. 1

with determined M(i) and I(i).

2) PERFORMANCE ANALYSIS

Assuming that the reliability of every time-vaying link fol-
lows i.i.d over time slots. Let P(9J

m(i) = 1) = P(9D
m (i) =

1) = P(9U
m (i) = 1) = ρm, ∀m ∈ M and i = 1, 2, . . . ,N ,

where P(�) is a probability function.
We have the following theorem.
Theorem 1: Consider a federated learning system as illus-

trated in Framework 1 with time-varying links whose link

reliability follows i.i.d over time slots, then, under the cli-max

greedy algorithm, the long-term computing utility satisfies

G ≥
∑

m∈M

ρ3
m − A

∑

m∈M

ρm (1 − ρm) E
max
m − B, (19)

where A = ω α and B = ω β
(

DSmax + DTmax + DA
)

are

constants.

Proof: According to (5), we have

D(i) ≤ DS(i) + DTmax + DA(i) . (20)

Similarly, according to (1), DS(i) ≤ DSmax holds. Substitut-
ing into (20), we obtain that

D(i) ≤ DSMax + DTMax + DA ,

where DA = max[DA(i) : i = 1, 2, . . . ,N ]. Subsituting into
(7), we have

C(i) ≤ α E(i) + β

(

DSMax + DTmax + DA
)

,

further substituting into (8), we obtain

G(i) ≥ Msucc(i) − ω α E(i) − ω β

(

DSmax + DTmax + DA
)

.

(21)

Substituting into (9) and with some calculus, we have

G ≥ E[Msucc(i)] − ωαE[E(i)] − ωβ

(

DSMax + DTMax + DA
)

.

(22)

On the other hand, for any client m ∈ M that would suc-
cessfully join the ith round of local training, its link reliability
must satisfies 9J

m(i) = 9D
m (i) = 9U

m (i) = 1. Under the
cli-max greedy client selection policy, any client m ∈ M that
satisfies 9J

m(i) = 1 would be selected to join the ith round of
training, as illustrated in Algorithm 2. That is, Im(i) = 1 holds
when 9J

m(i) = 1. Therefore,

E[Msucc(i)]

=
∑

m∈M

E[1
(

9J
m(i) = 9D

m (i) = 9U
m (i) = 1

)

Im(i)]

i.i.d
=

∑

m∈M

E[1(9J
m(i) = 1) Im(i)]E[1(9

D
m (i) = 1)]

×E[1(9U
m (i) = 1)]

Alg.2
=

∑

m∈M

1 · P(9J
m(i) = 1) P(9D

m (i) = 1) P(9U
m (i) = 1)

=
∑

m∈M

ρ3
m,

where 1 (X ) = {0, 1}, if X is true then 1(X ) = 1; and
1(X ) = 0, otherwise.
Note that, under some other client selection policies, such

as the policy that the client m satisfying 9J
m(i) = 9D

m (i) =

9U
m (i) = 1 may not be chosen (e.g, Im(i) = 0), E[Msucc(i)] ≤

∑

m∈M ρ3
m holds.

Again, for any client m ∈ M that would be selected to
join the ith round of training, its link reliability must satisfy
9J
m(i) = 1. Under the cli-max greedy algorithm, Im(i) = 1

holds when 9J
m(i) = 1. Accordingly,

E[E(i)] =
∑

m∈M

E[1
(

9J
m(i) = 1

)

Im(i) (1 − 9U
m (i))Em(i)]

=
∑

m∈M

1 · P(9J
m(i) = 1)

(

1−P(9U
m (i)=1)

)

E[Em(i)]

=
∑

m∈M

ρm(1 − ρm)E[Em(i)]

≤
∑

m∈M

ρm(1 − ρm)E
max
m ,

where Emax
m = max[Em(i) : i = 1, 2, . . . ,N ].
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Define A = ω α and B = ω β
(

DSmax + DTmax + DA
)

, and
substituting the above results into (22), we obtain

G ≥
∑

m∈M

ρ3
m − A

∑

m∈M

ρm (1 − ρm) E
max
m − B.

Then the statement follows.

B. PERFORMANCE IMPROVEMENT

Although the cli-max greedy algorithm is low-complexity,
the cost (e.g., energy consumption for invalid local training)
may be high due to the high dynamic of wireless link state.
It is a sub-optimal solver for the CSFL problem described
in (10)-(17). To further reduce the cost, in this subsection,
we analyze the computing utility of per selected client in the
long-term. Then, the client selection policy is improved based
on the analytical results.

1) PER-CLIENT COMPUTING UTILITY

Assuming that the server has received the request from a
client i ∈ M at the ith round of training. We define the
computing utility of the client at that round as the following

Gm(i)|9J
m(i)=1 = Im(i) (1suss(i) − ωCm(i)) , (23)

where 1suss(i) is a binary variable indicating the success of
the local training in that client. If the local training succeeds,
then 1suss(i) = 1; 1suss(i) = 0, otherwise. Cm(i) is the cost of
client m, which is defined as

Cm(i) = α

(

1 − 9U
m (i)

)

Em(i) + βDT
m(i)/M . (24)

For every client m with 9J
m = 1, we have the following

theorem.
Theorem 2: Consider a federated learning system as illus-

trated in Framework 1 with time-varying links whose link

reliability follows i.i.d over time slots, then, under any client

selection algorithm, the expected computing utility of any

client m with 9J
m(i) = 1 for i = 1, 2, . . . ,N follows

Gm|9J
m=1 = E[Im(i)]

(

ρ2
m−A(1 − ρm)Em − C

)

, (25)

where Em = E[Em(i)], D
T

m = E[DTm(i)], A = ω α and

C = ω βD
T

m/M.

Proof: According to the assumptions in Section III,
if the link between a selected client m and the server at both
the algorithm state diffusion and algorithm state uploading

substages are reliable (e.g., 9D
m (i) = 9U

m (i) = 1), then the
local training succeeds; otherwise, the local training fails.
Therefore, the successful indication function of local train-
ing can be expressed as 1suss(i) = 1

(

9D
m (i) = 9U

m (i) = 1
)

.
Substituting it and (24) into (23), we have

Gm(i)|9J
m(i)=1 = Im(i)

(

1(9D
m (i) = 9U

m (i) = 1)
)

− ωIm(i)
(

α(1−9U
m (i))Em(i) + βDT

m(i)/M
)

.

(26)

Take expectation over rounds in both sides, we obtain

Gm|9J
m=1

= E

[

Im(i)
(

1(9D
m (i) = 9U

m (i) = 1)
)]

−E

[

ωIm(i)
(

α(1 − 9U
m (i))Em(i) + βDT

m(i)/M
)]

= E[Im(i)]P(9
D
m (i) = 1)P(9U

m (i) = 1)

− ωαE[Im(i)](1 − P(9U
m (i) = 1))E[Em(i)]

− ωβE[Im(i)]E[D
T
m(i)/M ]

= ρ2
mE[Im(i)] − ωα(1 − ρm)E[Im(i)]E[Em(i)]

− ωβE[Im(i)]E[D
T
m(i)/M ]. (27)

Let E[Em(i)] = Em and E[DT
m(i)] = D

T
m, substituting into

(27), we have

Gm|9J
m=1 = E[Im(i)]

(

ρ2
m − ωα(1 − ρm)Em − ωβD

T
m/M

)

.

Define A = ωα and C = ω βD
T
m/M , accordingly, we have

Gm|9J
m=1 = E[Im(i)]

(

ρ2
m−A(1 − ρm)Em − C

)

,

which ends the proof.

2) THE UTILITY-POSITIVE GUARANTEE ALGORITHM

The result of Theorem 2 shows that, as to a client who has
successfully sent its request to the server (e.g.,9J

m = 1), if the
server determines to reject the client for joining this round of
training (e.g., Im = 0), then it gets Gm = 0 from this client.
However, if it selects the client to join the training, then, Gm =

ρ2
m−A(1 − ρm)Em − C , which could be positive or negative

due to the dynamic link reliability property. Generally, if at
a decision epoch, the server can assure that the behavior of
selecting the client (e.g., set Im = 1) would achieve a positive
computing utility, then, the better decision is to select the
client; otherwise, it is better not to select it.

Based on the above analysis and the result of of Theo-
rem 2, we design the utility-positive guarantee (cli-positive
guarantee) algorithm for improving the performance in terms
of computing utility of the CSFL problem. Specifically,
as shown in Algorithm 3, at each round of training, when
the server receives the requests from all the mobile clients,
or, the timer of the client selection stage reaches the dead-
line, the uti-positive guarantee algorithm is initiated to select
the clients to join that round of training. In the algorithm,
we use prediction methods, such as recurrent neural network
(RNN) [27], [28], to predict the link reliability (e.g, ρm for
m ∈ Mreq(i)) at both algorithm state diffusion and algorithm
state aggregation substages. Then, the per-client computing
utility at that round can be estimated. Finally, the clients who
have the positive per-client computing utility are selected to
join that round of training.

V. PERFORMANCE EVALUATION

This section investigates the computing utility performance
of the proposed cli-max greedy and uti-positive guarantee

algorithms.
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Algorithm 3 Uti-Positive Guarantee Algorithm
At each round i for i = 1, 2, . . . ,N of federated learning, do
1) At the beginning of each round i, while 9J

m(i) = 1,
∀m ∈ M, or, the timer of the client selection stage
reaches the deadline (e.g., client selection delay has
reached DS

max), do
a) Initialization: M(i) = {}.
b) Estimating the link reliability: obtain ρm for

m ∈ M with predicting methods, such as RNN.
c) Uti-positive guarantee decision: for m ∈

Mreq(i), where Mreq(i) = {m : m ∈

M and 9J
m(i) = 1}, do

i) Calculate G′
m(i) with (28).

G
′
m(i) = ρ2

m−A(1 − ρm)Em − C, (28)

where A and C and constants that from
Theorem 2.

ii) If G′
m(i) > 0 then, set

{

Im(i) = 1,

M(i) = M(i) ∪ {i}.
(29)

else set Im(i) = 0.
2) Performing the remaining stages as shown in Fig. 1

with determined M(i) and I(i).

TABLE 2. The basic parameter settings.

In each of the simulation run, the GMEC system has a
computation task of object classification, which will be run in
the federated learningmodel with independent image datasets
in distributed mobile clients. Each dataset is a subset of
MNIST [29], which comprise 60,000 training images and
10,000 testing images with 10 object classes (i.e., 10 dig-
its). An image is equivalent to a sample. At each round of
training, the federated server selects a number of clients with
the investigated client selection algorithms. For model accu-
racy, the number of rounds at each simulation run satisfies
N ≥ 1, 000 rounds. The basic parameter settings are listed
in Table 2.
We compare the proposed two algorithms, e.g., cli-max

greedy and uti-positive guarantee with the theoretical
lower-bound of the cli-max greedy algorithm and a bench-
marked algorithm, client selection for federated learning

FIGURE 2. Computing utility with respect to link reliability probability.

(FedCS) [26]. Based on the result of Theorem 1, assuming the
expected link reliability (e.g., ρm for m ∈ M) is given, then
the theoretical lower-bound of the cli-max greedy algorithm
is obtained by GLB =

∑

m∈M ρ3
m − A

∑

m∈M ρm (1 −

ρm)Emax
m −B. In FedCS [26], the mobile clients that consume

the least local model learning delay are iteratively added to
the federated learning set, until the maximum local training
delay exceeds the delay deadline DT,max

m . We evaluate the
performance of FedCS with the deadline of DT,max

m = 10s.

A. VARIOUS LINK RELIABILITY

This scenario observes the performance by varying the link
reliability in the GMEC system. In special, we define ρmin
and ρmax as theminimum andmaximum link reliability. Thus,
the range of link reliability is expressed by [ρmin, ρmax]. The
link reliabilities of clients are uniformly picked from the
range. We set ρmax = 1.0, and observe the performance by
varying ρmin from 0.1 to 1.0.
As illustrated in Fig. 2, under all the investigated algo-

rithms, including the theoretical analysis, the computing
utility increases with the increasing link reliability. This is
because, the link reliabilities at the algorithm state diffu-

sion and algorithm state uploading substages increase with
increasing ρmin. Thus, the probabilities of distributed selected
clients successfully receiving the global algorithm state as
well as uploading the local training results (e.g., local trained
algorithm state) to the server for aggregation also increase,
leading to the increasing computing utility.
The computing utility given by the cli-max greedy algo-

rithm is always higher than that of theoretical lower bound
under various link reliability, as shown in Fig. 2, which
demonstrates the accuracy of Theorem 1.
When ρmin is small (e.g., ρmin ≤ 0.4), FedCS and the

cli-max greedy algorithm provide similar performance in
terms of the computing utility. However, with the increasing
ρmin, the cli-max greedy algorithm outperforms FedCS by
given higher computing utility. This is because, under FedCS,
the clients that with the local training delays exceed the delay
deadline of 10s would be rejected to join the training. Thus,
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FIGURE 3. Local training success ratio with respect to link reliability
probability.

although some clients have high probability to finish the
training stage with high ρmin (e.g., ρmin > 0.4), they might
be rejected by FedCS due to their long local training delays.
Comparing to both the cli-max greedy and FedCS algo-

rithms, the performance improvement by the uti-positive
guarantee algorithm is obvious by providing the highest com-
puting utility under various ρmin, as illustrated in Fig. 2.
In particular, when ρmin = 1.0, the computing utility of
uti-positive guarantee is 1.72 times of that of FedCS, which
improves 0.72. This is because, under the uti-positive guar-
antee algorithm, only the clients that would provide at least
a positive computing utility would be selected to join the
federated learning. Thus, the success ratio, which is defined
as the ratio of the number of clients have successfully fin-
ished the training stage to the number of clients selected to
join that round of training, given by the uti-positive guar-
antee algorithm is the highest comparing to the cli-max
greedy and FedCS algorithms, as shown in Fig. 3. Note
that, the uti-positive guarantee and cli-max greedy algorithms
provide similar performance when ρmin is high (e.g., ρmin >

0.8). This is because, with the high link reliability, the proba-
bility of providing a positive per-client computing utility is
high. Thus, the selected clients are similar under both the
cli-max greedy and FedCS algorithms, which is illustrated
in Fig. 3 that, the success ratio given by both are similar.

B. VARIOUS NUMBER OF MOBILE CLIENTS

In this scenario, we observe the performance by varying the
number of mobile clients from 1 to 300. Generally, the the-
oretical number of clients that have selected but finally fail
in the training stage increases with the increasing number
of clients in the GMEC system. Since the failure client
would introduce high cost (e.g., wasting consumed energy for
invalid local training), it is unsurprising that the theoretical
lower bound of the computing utility decreases quickly with
the increasing number of clients, as shown in Fig. 4.

The simulated computing utility given by the cli-max
greedy algorithm is greater than that of the theoretical lower

FIGURE 4. Utility with respect to client numbers.

bound, as shown in Fig. 4, which again illustrates the accuracy
of Theorem 1. Note that, although the number of clients that
have selected but finally fail in the training stage increases
with the increasing number of clients, leading to a negative
increasing in the computing utility, the number of clients
that have selected and will finally finish the training stage
also increases with the increasing number of clients, thus,
the probability that the positive increment dominates the
computing utility increases with the increasing number of
clients. Thus, as shown in Fig. 4, under the simulated cli-max
greedy algorithm, the computing utility increases slowly with
the increasing number of clients.

The performance improvement of the uti-positive guaran-
tee algorithm is again illustrated by providing the highest
computing utility compared to the other investigated algo-
rithms, as shown in Fig. 4. Particularly, when the number
of clients reaches 300, the computing utility of uti-positive
guarantee is 4 times of that of FedCS. Note that, due to the
fact that the link reliability distribution is set to a constant
(e.g., [0.1, 1.0]), the success ratios given by all the inves-
tigated schemes, including the FedCS, cli-max greedy and
uti-positive guarantee, are stable under various number of
clients, as illustrated in Fig.5.

C. VARIOUS DATASET SIZES

We further evaluate the performance of the proposed algo-
rithms under various dataset sizes. We set the number of
mobile clients to M = 100. Other parameters are listed
in Table 2. The sizes of datasets of various clients follow
the uniform distribution among Smin and Smax, where Smax =

5, 000 samples. We observe the delay performance at various
Smin. All samples of all datasets are from MNIST [29].
As shown in Fig. 6, the computing utility given by all the

investigated algorithms, including the FedCS, cli-max greedy
and uti-positive guarantee algorithms, are greater than that of
the theoretical lower bound. Interesting that, the computing
utility given by FedCS becomes zero when Smin is greater
than 3,000 samples. This is because, when the size of local
dataset becomes large, the local training delay would exceed
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FIGURE 5. Local training success ratio with respect to client numbers.

FIGURE 6. Computing utility with respect to dataset size.

FIGURE 7. Local training success ratio with respect to dataset size.

the delay deadline of 10s, leading to all clients are rejected
to join the training by FedCS, which is illustrated in Fig. 7
that, the success ratio given by FedCS becomes zero when
Smin ≥ 3, 000.
The computing utility given by the cli-max greedy algo-

rithm decreases to a negative value when the dataset size
increases. This is because, due to the high dynamic of the

link reliability (range of [0.1, 1.0]), there is a high probability
of a selected client to fail in the training stage, including both
the algorithm state diffusion and algorithm state uploading
substages. The failure of both stages would lead to a negative
increment in the computing utility. Particularly, when a client
fails in the algorithm state uploading substage, it has wasted
a lot of energy consumed for invalid local training, which
would heavy the negative of the computing utility. Therefore,
under a high dynamic environment, the larger size of local
datasets, the higher cost to select a client to join federated
learning.

Since the client that may provide negative computing
utility would not be selected to join the training by the
uti-positive guarantee algorithm, it is unsurprising that,
the computing utility given by the uti-positive guarantee algo-
rithm can be guaranteed to a positive value, as illustrated
in Fig. 6. Note that, as shown in Fig. 7, the success ratio
given by the uti-positive guarantee algorithm increases with
the increasing Smin. This is because, under the uti-positive
guarantee algorithm, the client that has the large size of
dataset but has low reliability would be rejected, thus the
selected clients would have high probability to finish that
round of training.

The simulation results in Figs. 2-7 demonstrate that,
the computing utility given by the simulated cli-max greedy
algorithm is greater that that of the theoretical lower bound
under various link reliability, various number of clients and
various sizes of local datasets, which illustrates the accuracy
of Theorem 1. The computing utility given by the uti-positive
guarantee algorithm outperforms that by the cli-max greedy
algorithm under various link reliability, various number of
clients and various sizes of local datasets, which demonstrates
the performance improvement of the uti-positive guarantee
algorithm over the cli-max greedy algorithm. The efficiency
of the proposed algorithms, including the cli-max greedy and
the uti-positive guarantee algorithms have been illustrated by
comparing with the existing FedCS algorithm.

D. ENERGY CONSUMPTION AND LEARNING DELAY

Finally, we investigate the efficiency of the proposed cli-max
greedy and uti-positive guarantee algorithms for energy sav-
ing and learning delay reduction by investigating the per-
formance metrics in terms of wasted energy as well as the
learning delay in comparison with the FedCS algorithm [26]
under the scenario of various link reliability in Section V-A.
The wasted energy of a learning process is defined by

E = E(i)Nopt,

where E(i) follows (6), Nopt is the number of rounds required
to repeat until achieving the model accuracy, which could be
approximated by Nopt = α/E[Msucc(i)] according to [30],
where α is a factor parameter related to training accuracy.
Similarly, the learning delay of a learning process is

defined by

D = D(i)Nopt.

10410 VOLUME 9, 2021



S. Zhai et al.: Dynamic Federated Learning for GMEC With Time-Varying Wireless Link

TABLE 3. Comparison of wasted energy and learning delay.

The simulation results are summarized in Table 3.
As shown in Table 3, the cli-max greedy algorithm wastes
the largest energy in comparison with FedCS and uti-positive
guarantee under various link reliability (excepted ρmin = 1).
This is because, under cli-max greedy, all the clients whose
links are reliable during the client selection stage would be
chosen to join the training, thus the failure ratio during the
subsequent training and algorithm state aggregation stages
would be the highest in comparison with both of FedCS
and uti-positive guarantee. Therefore, it is unsurprising that,
under cli-max greedy, the wasted energy of the local training
that has no contribution to the global algorithm state update
would be the highest.
The uti-positive guarantee algorithm outperforms the other

two algorithms by providing the lowest wasted energy under
various link reliabilities, as shown in Table 3. Particularly,
when the link reliability is low, e.g., ρmin < 0.7, the wasted
energy of uti-positive guarantee is one-third of that of cli-max
greedy and a quarter of that of FedCS.
The learning delay reduction of the proposals are illus-

trated in Table 3, where the learning delays given by both
cli-max greedy and uti-positive guarantee are lower than that
of FedCS under various link reliabilities. In particular, when
the link reliability is high, e.g., ρmin ≥ 0.8, the learning
delays of both cli-max greedy and uti-positive guarantee are
one sixth of that of FedCS. The cli-max greedy provides
the lowest learning delay. In particular, the learning delay
of cli-max greedy is less than one sixth of that of FedCS
when ρmin ≤ 0.9. This is because, under cli-max greedy,
the number of clients successfully finish a round of training
is the highest. Then, according to [26], [30], the more number
of clients joining a training, the fast to converge. Therefore,
the number of rounds given by cli-max greedy is the lowest.
Accordingly, the corresponding learning delay is the lowest
in comparison with FedCS and uti-positive guarantee.

VI. CONCLUSION

This paper has proposed a dynamic federated learning
scheme in a high dynamic power grid mobile edge com-
puting environment. In special, a delay deadline constrained
federated learning framework has been proposed to sup-
port machine learning based power grid applications. Then,

a dynamic client selection problem for computing utility
maximization in the proposed federated learning frame-
work, considering the link reliability in various commu-
nication stages of training rounds, has been formulated.
An online greedy algorithm, e.g., cli-max greedy, was pro-
posed to address the problem. Theoretical lower bound of the
algorithm was also given. After theoretically analyzing the
per-client computing utility, we improved the performance by
the uti-positive guarantee algorithm. The simulation results
have shown that, the uti-positive guarantee algorithm outper-
forms FedCS and cli-max greedy by providing high comput-
ing utility under various link reliability, various number of
clients and various sizes of local datasets. The cli-max greedy
algorithm can significantly reduce the learning delay to one
sixth of that of FedCS in tradeoff wasting more energy for
invalid local training. The uti-positive guarantee algorithm
outperforms FedCS by providing shorter learning delay and
lower wasted energy.
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