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Dynamic Financial Index Models:

Modeling Conditional Dependencies via Graphs

Hao Wang∗, Craig Reeson† and Carlos M. Carvalho‡

Abstract. We discuss the development and application of dynamic graphical mod-

els for multivariate financial time series in the context of Financial Index Models.

The use of graphs generalizes the independence residual variation assumption of

index models with a more complex yet still parsimonious alternative. Working

with the dynamic matrix-variate graphical model framework, we develop general

time-varying index models that are analytically tractable. In terms of methodol-

ogy, we carefully explore strategies to deal with graph uncertainty and discuss the

implementation of a novel computational tool to sequentially learn about the con-

ditional independence relationships defining the model. Additionally, motivated

by our applied context, we extend the DGM framework to accommodate random

regressors. Finally, in a case study involving 100 stocks, we show that our pro-

posed methodology is able to generate improvements in covariance forecasting and

portfolio optimization problems.

Keywords: Bayesian forecasting; Covariance matrix forecasting; Dynamic matrix-

variate graphical models; Index models, Factor models; Gaussian graphical models;

Portfolio selection

1 Introduction

Since the seminal work of Sharpe (1964), Financial Index Models are in the core of asset
pricing and portfolio allocation problems. These models assume that all systematic
variation in the returns of financial securities can be explained linearly by one, or a set
of market indices (factors). The central empirical implication of this assumption is a
highly structured covariance matrix for the distribution of returns as, after conditioning
on the chosen set of market indices, the residual covariance matrix is diagonal. The
attractiveness of this approach is immediate as it offers a very simple, economically
justifiable (Lintner 1965) and stable way to estimate potentially very large covariance
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matrices. A vast body of literature is dedicated to testing the validity of Index Models
and the selection of indices – we refer the reader to Cochrane (2001) for a detailed
account of the area.

The covariance matrix of returns is a key input in building optimal portfolios and its
estimation is often challenging as the number of parameters grows quadratically with
the number of assets considered. Due to this high dimensionality of the parameter
space (at times larger than the number of available observations) it is common to work
with structured models that reduce the dimensionality of the problem and deliver more
stable estimates and, in turn, better investment decisions. In this paper, we explore
a generalization of Financial Index Models with more complex patterns of covariation
between returns by allowing conditional dependencies via the introduction of graph-
ical constraints. We work with the matrix-variate dynamic graphical model (DGM)
framework of Carvalho and West (2007a,b) but, unlike their original work, graphs are
used to increase complexity by adding non-zero elements to the off-diagonal part of
the residual covariance matrix. Using graphical models as a tool for added complexity
has the ability to do so in parsimonious ways as conditional independence constraints
allow for covariance models of much lower dimensionality if compared to the otherwise
unrestricted full covariance matrix.

This paper is intended as a case study exercise with contributions to empirical finance
and statistics. From the finance point of view, our work shows that it is possible to
improve upon traditional estimates of Index Models through dynamic matrix-variate
graphical models. Our focus is not on the proposal of a new finance model but rather
on the proper and effective implementation of important ideas of the field. In that sense,
we show that DGMs provide a more flexible, efficient and still parsimonious strategy
for estimating covariances that are fundamental to portfolio allocation problems.

As for the statistics contribution, we extend the DGM framework in two important
ways: (i) we consider the problem of sequential inference about the graphical struc-
ture and, (ii) we define the sequential updating process in the presence of stochastic
regressors.

The proposed forecasting model is tested on stock returns data in a portfolio selection
exercise. Using 100 randomly selected domestic New York stock exchange (NYSE)
monthly stock returns from 1989 through 2008, we find that our strategy yields better
out-of-sample forecasts of realized covariance matrices and lower portfolio variances
than the two traditional implementations of index models, the capital asset pricing
model (CAPM) and the Fama-French (FF) model.
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We start by describing Index Models in Section 2 along with their use in the dynamic
linear model context. Sections 3 and 4 present the necessary background of dynamic
matrix-variate graphical models. In Section 5 we discuss issues dealing with graph
(model) uncertainty through time and a simulation study is presented in Section 6.
Section 7 generalizes the DGM context to allow for random regressors. Finally, in
Section 8 we explore the use of DGMs as a tool to improve the implementation of
Financial Index Models.

2 Financial Index Models

A k-dimensional Index Model assumes that stock returns are generated by

Yit = αi +
k∑

j=1

θij,tfjt + νit

where fjt is the jth common factor at time t, and residuals νit are uncorrelated to index
fjt and to νjl for every j and every l. Under this class of models the covariance matrix
of returns can be written as:

Vt = Θ′
tΨtΘt + Σt

where Θt is the matrix of factor loadings of stocks, Ψt is the covariance matrix of the
factors, and Σt is a diagonal matrix containing the residual return variances.

Some interesting Index Models include the single index model and three index model.
The single index uses the excess return of the market as the single index. This model cor-
responds to the standard Capital Asset Pricing Model of Sharpe (1964). More recently,
and perhaps the most commonly used approach is the three index model proposed by
Fama and French (1993) where two new factors (besides the market) are added: value-
weighted market index with size and book-to-market factors.

These models are usually estimated by running a set of independent regressions
where the excess return of each stock is regressed against the indices for a certain win-
dow of time (Jagannathan and Wang 1996). Call θ̂i the estimates of the regression
coefficients for stock i and the σ̂ii the residual variance estimate. This yields the fol-
lowing estimator for the covariance matrix of stock returns:

V̂t = Θ̂′
tΨ̂tΘ̂t + Σ̂t,

where Ψ̂ is the sample covariance matrix of indices, Θ̂ = [θ̂1, . . . , θ̂p] is the matrix of
regression coefficients for all p assets and Σ̂ is the diagonal matrix of residual variances.
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This strategy usually defines the one-step forecast of the covariance matrix to be the
current estimate of the covariance matrix V̂.

In our work, we recast the above strategy in a model based on a state-space or
dynamic linear model (DLM) (West and Harrison 1997) representation. This follows
the work of Zellner and Chetty (1965); Quintana and West (1987); Carvalho and West
(2007a), to cite a few. We use a dynamic regression framework where, in its full gener-
ality, a p× 1 vector time series of returns Yt follows the dynamic linear model

Y′
t = F′tΘt + ν′t, νt ∼ N(0,Σt), (1)

Θt = Θt−1 + Ωt Ωt ∼ N(0,Wt,Σt), (2)

for t = 1, 2, . . . , with (a) Yt = (Yti), the p × 1 observation vector; (b) Θt = (θti), the
n × p matrix of states; (c) Ωt = (ωti), the n × p matrix of evolution innovations; (d)

νt = (νti), the p× 1 vector of observational innovations;(e) for all t, the n× 1 regressor
vector Ft, is known. Also, Ωt follows a matrix-variate normal with mean 0, left and
right covariance matrices Wt and Σt, respectively. In terms of scalar elements, we have
p univariate models with individual n-vector state parameters, namely

Observation: Yti = F′tθti + νti, νti ∼ N(0, σ2
ii,t), (3)

Evolution: θti = θt−1,i + ωti, ωti ∼ N(0,Wtσ
2
ii,t), (4)

for each i, t. Each of the scalar series shares the same Ft elements, and the reference
to the model as one of exchangeable time series reflects these symmetries. This is a
standard specification in which the correlation structures induced by Σt affect both
the observation and evolution errors; for example, if σij,t is large and positive, vector
series i and j will show concordant behavior in movement of their state vectors and in
observational variation about their levels. Specification of the entire sequence of Wt in
terms of discount factors (Harrison and Stevens 1976; Smith 1979; West and Harrison
1997) is also standard practice, typically using discount factors related to the state
vector and their expected degrees of random change in time.

The above representation provides Kalman filter like (Kalman 1960) sequential,
closed-form analytical updates of the one-step ahead forecast distributions of future
returns and posterior distributions for states and parameters defining the model. This
allows for proper accounting of the uncertainty associated with all necessary inputs in
sequential investment decisions.

According to traditional Index Models, Σt is a diagonal matrix as all common vari-
ation between returns should be captured by the elements in Θt. We will depart from
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this standard assumption and allow for a more flexible representation of the residual
covariance matrix leading to potentially more complex forms of Vt. This is done via
the introduction of conditional independencies determined by graphical constraints in
Σt. The use of these models in sequential portfolio problems was originally proposed
by Carvalho and West (2007a) and further analyzed by Quintana et al. (2009). In both
references however, graphs were used to reduce the dimensionality of an otherwise fully
unstructured covariance matrix of returns. Here, we come from a different direction
and show that graphs can be successfully used to increase the complexity of an oth-
erwise highly structured covariance matrix. Working with conditional independence
constraints, we strike a parsimonious compromise between the diagonal matrix and the
high-dimensional fully unconstrained covariance model. Before continuing, we need to
define the necessary notation for the introduction of graphical models in DLMs.

3 Gaussian graphical model

Graphical model structuring characterizes conditional independencies via graphs (Lau-
ritzen 1996; Jones et al. 2005), and provides methodologically useful decompositions of
the sample space into subsets of variables (graph vertices) so that complex problems
can be handled through the combination of simpler elements. In high-dimensional prob-
lems, graphical model structuring is a key approach to parameter dimension reduction
and, hence, to scientific parsimony and statistical efficiency when appropriate graphical
structures are identified.

In the context of a multivariate normal distribution, conditional independence re-
strictions are simply expressed through zeros in the off-diagonal elements of the precision
(or concentration) matrix. Define a p−vector x with elements xi and zero-mean multi-
variate normal distribution with p× p variance matrix Σ and precision Ω = Σ−1 with
elements ωij . Write G = (V,E) as the undirected graph whose vertex set V corresponds
to the set of p random variables in x, and edge set E contains elements (i, j) for only
those pairs of vertices i, j ∈ V for which ωij 6= 0. The canonical parameter Ω belongs
to M(G), the set of all positive-definite symmetric matrices with elements equal to zero
for all (i, j) /∈ E.

The density of x factorizes as

p(x|Σ, G) =
∏

P∈P p(xP |ΣP )∏
S∈S p(xS |ΣS)

, (5)

a ratio of products of densities where xP and xS indicate subsets of variables in the



644 Dynamic Financial Index Models

prime components (P ) and separators (S) of G, respectively. Given G, this distribution
is defined completely by the component-marginal covariance matrices ΣP , subject to
the consistency condition that sub-matrices in the separating components are identical
(Dawid and Lauritzen 1993). That is, if S = P1 ∩ P2 the elements of ΣS are common
in ΣP1 and ΣP2 .

A graph is said to be decomposable when all of its prime components are complete
subgraphs of G, implying no conditional independence constraints within a prime com-
ponent; we also refer to all prime components (as well as their separators) as cliques
of the graph. Due to its mathematical and computational convenience, we will only
consider decomposable graphs. In this context, the sequential updating and model as-
sessment procedures remain tractable, especially in the high-dimensional settings. It
is also our experience and belief that this restriction is not severe as the space of de-
composable graphs is very large allowing for the necessary flexibility to our modeling
goals. We now briefly review the theory of hyper-inverse Wishart distributions and its
extensions to DLMs.

The fully conjugate Bayesian analysis of decomposable Gaussian graphical models
is based on the family of hyper-inverse Wishart (HIW) distributions for structured
variance matrices (Dawid and Lauritzen 1993). If Ω = Σ−1 ∈ M(G), the hyper-inverse
Wishart

Σ ∼ HIWG(b,D) (6)

has a degree-of-freedom parameter b and location matrix D ∈ M(G). This distribution
is the unique hyper-Markov distribution for Σ with consistent clique-marginals that are
inverse Wishart. Specifically, for each clique P ∈ P, ΣP ∼ IW (b,DP ) with density

p(ΣP |b,DP ) ∝ |ΣP |−(b+2|P |)/2 exp
(
−1

2
tr(Σ−1

P DP )
)

(7)

where DP is the positive-definite symmetric diagonal block of D corresponding to ΣP .

The full HIW is conjugate to the likelihood from a Gaussian sample with variance Σ

on G, and the full HIW joint density factorizes over cliques and separators in the same
way as (2); that is,

p(Σ|b,D) =
∏

P∈P p(ΣP |b,DP )∏
S∈S p(ΣS |b,DS)

,

where each component in the products of both numerator and denominator is IW as in
equation (7). Finally, both the expected value of Σ and Ω can be obtained in closed form
following the results in Rajaratnam et al. (2008) and Jones et al. (2005) respectively.
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4 Dynamic matrix-variate graphical model

The matrix-variate graphical model framework combines HIW distributions together
with matrix and multivariate normal distributions, in a direct and simple extension
of the usual Gaussian-inverse Wishart distribution theory to the general framework
of graphical models. The n × p random matrix X and p × p random variance ma-
trix Σ have a joint matrix-normal, hyper-inverse Wishart (NHIW) distribution if Σ ∼
HIWG(b,D) on G and (X|Σ) ∼ N(m, W,Σ) for some b,D,m,W . We denote this
by (X,Σ) ∼ NHIWG(m, W, b,D) with X marginally following a matrix hyper-T (as
defined in Dawid and Lauritzen 1993) denoted by HTG(m, W,D, b).

Back to the DGM context and given Σt constrained by any decomposable graph
G, Carvalho and West (2007a,b) define the details of the full sequential and conjugate
updating, filtering and forecasting for the dynamic regressions and time-varying Σt.
This approach incorporates graphical structuring into the traditional matrix-variate
DLM context and provides a parsimonious yet tractable model for Σt. Consider the
matrix normal DLM described in equations (1) and (2). With the usual notation that
Dt = {Dt−1,Yt} is the data and information set upon any time t, assume the NHIW
initial prior of the form

(Θ0,Σ0 | D0) ∼ NHIWG(m0,C0, b0,S0). (8)

In components, (Θ0 | Σ0, D0) ∼ N(m0,C0,Σ0) and (Σ0 | D0) ∼ HIWG(b0,S0), which
incorporates the conditional independence relationships from G into the prior. For now
assume full knowledge of G defining the conditional independence relationships in Y.
Full sequential updating can be summarized in the following Theorem 1.

Theorem 1. (Carvalho and West 2007a,b) Under the initial prior of equation (8) and
with data observed sequentially to update information sets Dt the sequential updating
for the matrix normal DGM on G is given as follows:

(i) Posterior at t− 1: (Θt−1,Σt−1 | Dt−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1)

(ii) Prior at t: (Θt,Σt | Dt−1) ∼ NHIWG(at,Rt, δbt−1, δSt−1) where at = mt−1 and
Rt = Ct−1 + Wt

(iii) One-step forecast: (Yt | Dt−1) ∼ HTG(ft, qtδSt−1, δbt−1) where f ′t = F′tat and
qt = F′tRtFt + 1

(iv) Posterior at t: (Θt,Σt | Dt) ∼ NHIWG(mt,Ct, bt,St) with mt = at + Ate′t,
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Ct = Rt−AtA′qt, bt = δbt−1 +1, St = δSt−1 + ete′t/qt where At = RtFt/qt and
et = Yt − ft.

The above derivation uses a “locally smooth” discount factor-based model to al-
low Σt to vary stochastically. This is a common approach in dynamic linear models
(Quintana et al. 2003) where information is discounted through time by a pre-specified
discount factor δ. This provides sequential estimates of Σt that keep adapting to new
data while further discounting past observations. This is easily seen in the represen-
tation of the posterior harmonic mean that has the form of an exponentially weighted
moving average estimate defined as

Σ̂t ≈ (1− δ)
t−1∑

l=0

δlet−le′t−l.

In practical terms the choice of δ represents a similar problem as the choice of the data
window in the usual estimation of index models. Extensive discussion of choice of δ in
dynamic variance models appears in Chapter 16 of West and Harrison (1997).

So far, G was assumed known and held fixed for all t. This is clearly a limitation of
the framework of Carvalho and West (2007a) as it is not necessarily the case that the
same set of conditional independence constraints remain fixed across time. Moreover,
it is rarely the case that knowledge about G is available and data driven approaches to
determine G are required which represents a non-trivial question in empirical applica-
tions. Carvalho and West (2007a) present one example where graphs were selected via
the computationally intensive stochastic search ideas of Jones et al. (2005). Quintana
et al. (2009) consider similar strategies and briefly explore the issue of time variation in
G when modeling currencies. Before continuing in our exploration of the use of graphs
in index models, we add to this discussion and consider alternatives to learn about the
conditional independence relationships defining the models.

5 Graphical model uncertainty and search

5.1 Marginal likelihood over Graphs

In the standard static context, from a Bayesian perspective, model selection involves
the posterior distribution of graphs, given by:

p(G|x) ∝ p(x|G)p(G)
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where p(x|G) is the marginal likelihood of G. The marginal likelihood function for any
graph G is computed by integrating out the covariance matrix with respect to the prior

p(x|G) =
∫

Σ−1∈M(G)

p(x|Σ, G)p(Σ|G)dΣ

where M(G), as before,indicates the set of all positive-definite symmetric matrices con-
strained by G.

Under a hyper-inverse Wishart prior for Σ and observed data x of sample size n,
the above integration for a decomposable graph becomes a simple function of the prior
and posterior normalizing constants, H(b,D, G) and H(b + n,D + Sx, G):

p(x|G) = (2π)−np/2 H(b,D, G)
H(b + n,D + Sx, G)

where the normalizing constant H(b,D, G) is given by

H(b,D, G) =
∏

P∈P |DP

2 |( b+|P |−1
2 )Γ|P |(

b+|P |−1
2 )−1

∏
S∈S |DS

2 |(
b+|S|−1

2 )Γ|S|(
b+|S|−1

2 )−1
, (9)

with Γk(a) the multivariate gamma function.

In the dynamic set up, a fully Bayesian analysis will consider the graph predictive
probability of π(G | Dt−1) over G, the set of all decomposable graphs, and specify the
unconditional predictive distribution p(Yt | Dt−1) as EG{p(Yt | Dt−1, G)} with the
expectation taken with respect to p(G | Dt−1), namely,

(Yt | Dt−1) ∼
∑

G∈G
π(G | Dt−1)p(Yt | Dt−1, G). (10)

Equation (10) indicates that the predictive probability π(G | Dt−1) is central to evalu-
ating the predictive distribution p(Yt | Dt−1). The two possibilities for consideration
of predicting G are as follows: (i) fixed graph for all t, that is for some G ∈ G, DLM(G)
holds for all t; (ii) time varying graphs where for some possible sequence of graphs
Gt ∈ G,(t = 1, 2, · · · ), DLM(Gt) holds at time t.

For (i), the predictive probability of graphs for time t is defined as

π(G | Dt−1) = p(G | Dt−1) ∝ p(G)p(Y1:t−1 | G) (11)

where the marginal likelihood of a DLM on any graph G is

p(Y1:t−1|G) = p(Yt−1|Dt−2, G)p(Yt−2|Dt−3, G) . . . p(Y1|D0, G),
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with each element in the product, (Yt|Dt−1, G) ∼ HTG(ft,St−1, bt−1) as defined in
Theorem 1.

For (ii), the time dependence is made explicit with time subscripts, so that a graph
Gj at time t is Gt,j . Denote π(Gt,j | Dt−1) as the predictive probability at time t−1 for
graph Gj . It is natural to dynamic modeling that, as time progresses, what occurred
in the past becomes less and less relevant to inference made for the future. Applying
this notion to graphs, past data loses relevance to current graphs as t increases. Once
again, one practical possibility is to use a discount factor to reduce the impact of past
information to current inferences, similarly to the discounting ideas used in modeling
Σt. The predicted probability of Gt,j for time t at time t− 1 could be written as

π(Gt,j | Dt−1) ∝ H(b0,S0, Gt,j)
H(δbt−1, qtδSt−1, Gt,j)

π0(Gt,j). (12)

To provide insights into the nature of the predicted probability (12), suppose the
graph has the prior (12) at time t − 1. After observing Yt, this prior updates to the
posterior via the usual updating equations:

π(Gt,j | Dt) ∝ p(Yt | Dt−1, Gt,j)π(Gt,j | Dt−1)

∝ H(δbt−1, qtδSt−1, Gt,j)
H(bt, qt+1St, Gt,j)

H(b0,S0, Gt,j)
H(δbt−1, qtδSt−1, Gt,j)

π0(Gt,j)

=
H(b0,S0, Gt,j)

H(bt, qt+1St, Gt,j)
π0(Gt,j). (13)

This has the same representation as equation (12), i.e. a ratio of two normalizing
constants of hyper-inverse Wishart distributions, but updated location parameter and
degrees of freedom, St = δSt−1 + YtY′

t and bt = δbt−1 + 1. Substituting t + 1 for t in
(12) we obtain the prior probability for π(Gt+1,j | Dt) at t as follows:

π(Gt+1,j | Dt) ∝ H(b0,S0, Gt+1,j)
H(δbt, qt+1δSt, Gt+1,j)

π0(Gt+1,j). (14)

In comparison with equation (13), the above has a discount factor δ to model a decay of
information between time t and t+1 in a way analogous to the standard use of discount
factors in DLMs. The maintenance of the normalizing constant ratio prior and posterior
probability at each time enables continued, easy sequential updating, with the minor
modification that the degrees of freedom bt are discounted successively.

This model implies that the most recent exponentially weighted residual covariance
matrix St−1 could predict both the one-step ahead residual graphical structure and the
residual covariance matrix.
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Let MG be the graph predicting model that takes its value in the set {MF ,MC}
where MF represents the fixed graph predicting model as described by equation (11) and
MC represents the time-varying graph predicting model as described by equation (12).
Let α be the pair of predicting model MG and discount factor δ, that is, α = (MG, δ). We
can choose α, the predicting model and discount factors, using the marginal likelihood
across our candidate models:

p(Yt | Dt−1, α) =
∑

Gt,j∈G
p(Yt | Dt−1, α, Gt,j)π(Gt,j | Dt−1, α). (15)

One note regarding the identification of the underlying graphical structure: the DGM
as defined by Carvalho and West (2007a) is identifiable as it is simply a multivariate
dynamic regression model with a fixed set of restrictions in the innovation covariance.
Our approach has the exact same structure and uses graphs as a regularization tool
that allows for the mixing over a different set of constraints at each point in time. The
discount framework effectively creates a “rolling window” of data which is then used
to evaluate the marginal likelihood of each candidate graph. Note however that this
approach cannot deliver precise inferences about G as, at each point in time, we only
evaluate a small subset of elements in graph space.

5.2 Sequential stochastic search

Regardless of the choice of how to model G in time the model selection problem gets fur-
ther complicated by the explosive combinatorial nature of the space of possible graphs.
Without the restriction of decomposability there are 2(p

2) elements in graph space, where
p represents the number of vertices. Decomposability accounts for approximately 10%
of this number (Jones et al. 2005) which is still impossible to enumerate for moderate
size p. Any attempt to deal with these models requires the development of efficient
computational tools to explore the model space. Here, we propose an extension to the
shotgun stochastic search (SSS) of Jones et al. (2005) to sequentially learn (Gt,j | Dt−1).
In a nutshell, our analysis generates multiple graphs at each time t from the predictive
probability π(Gt,j | Dt−1), using SSS.

Suppose that, at time t− 1, we have saved a sample of the top N graphs Gt−1,j , j =
1, · · · , N with highest predictive probabilities π(Gt,j | Dt−1). Proceeding to time t, we
adopt the following search algorithm.
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1. Evaluate the new predictive probability π(Gt+1,j | Dt) of these N graphs from
time t− 1;

2. From among the N graphs, propose the ith graph as a new starting graph with
probability proportional to π(Gt+1,j | Dt)c, where c is an annealing parameter;

3. Start with Gt+1,j and apply SSS. After each stage of SSS, compute the Bayesian
model average (BMA) estimator of a predicted quantity of interest, e.g. predictive
covariance matrix, using the current top N graphs;

4. Stop the search when certain distance between the last two BMA estimates is
below a small number, set t = t + 1 and return to (1).

The evaluation and resample steps of (1) and (2) are important because top graphs
from the previous step still represent the majority of our knowledge and should be
good starting points for a new SSS once a new data sample becomes available. We use
the saved top N graphs to estimate the posterior graph probability and the covariance
matrix. We do not consider the dilution effect caused by large model spaces, as we
expect these saved high probability graphs to be sufficient to generate good covariance
matrix estimates compared with those produced by empty graphs. In our two examples,
we report the results based on N = 1000. We observed similar results when repeating
the analysis with N = 2000 and 5000.

6 A simple example

To focus the idea of sequential learning in dynamic graphical models, we first consider
a simple local trend DLM, namely

Yt = θt + νt, νt ∼ N(0,Σt),

θt = θt−1 + ωt, ωt ∼ N(0,WtΣt).

This is a special case of the general DLMs presented in previous sections. We extend the
example in Carvalho and West (2007a) where data from p = 11 international currency
exchange rates relative to the US dollar is analyzed. In all models, we use fairly diffuse
priors, m0 = 0,C0 = 100, b0 = 3 and S0 = 0.0003I11, and annealing parameter c = 1.
In addition, we use the 100 data points as a “training set” to define the prior at time
zero.
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We ran a set of parallel analyses differing through the value δ, with δ values of
0.93, 0.95, 0.97 and 0.99, and graph predicting models, with MG = MF as described by
equation (11), and MG = MC as described by equation (12). At each of the eight pairs
of (MG, δ), and time t, the marginal likelihood of equation (15) is approximated by
summing over the top 1000 graphs at each time t, resulting in a full marginal likelihood
function of (MG, δ). Figure 1 displays the plots of log Bayes factors against the model
(MF , 0.95) over time. When comparing Bayes factors within each δ, Figure 1 shows
that all four time-varying graphs generate smaller Bayes factors than their fixed graph
peers. Figure 2 highlights the change of the relative cumulative log Bayes factors of
the top two models. Overall, the chosen maximum marginal likelihood estimation from
such analysis is (MF , 0.97) over the period up to the end of 08/1992 and (MF , 0.95)
over the period from then until the end of data at 06/1996. The change from δ = 0.97
to δ = 0.95 at the end of 08/1992 reflects a more adaptive model being favored since
then. The occurrence of one or two rather marked changes of relative predictive density
may be due to major economic changes and events. A key such event was Britain’s
withdrawal from the EU exchange rate agreement (ERM) in September 1992 and this
led to the deviation from the steady behavior anticipated under a model with relatively
high discount factor 0.97 to the more adaptive 0.95. A second period of change of
structures occurred in early 1995 with major changes in Japanese interest rate policies as
a response to a weakening Yen and a move toward financial restructuring in Japan. The
more adaptive model (MF , 0.93) has lower likelihood than (MF , 0.95) and (MF , 0.97),
because the corresponding one-step forecast distributions are too diffuse. Given the
significant changes in likelihood for a small change of δ, it would be useful to draw fully
Bayesian inference on δ. However, this additional sampling step is not trivial since the
likelihood function of δ is not a standard form, and is beyond the scope of the current
paper.

Each value in Figure 3 represents the number of times a given edge has inclusion
probability greater than 0.5 out of four different time points. As can be seen, over time,
graphs have several persistent signals - edges that are significant at all four time points.

This example serves to illustrate some features of inference with dynamic graphical
models. In each of the DGMs (MG, δ), and for any specified sequence of graphs {Gt},
the prior, posterior, and forecast distributions are all standard distributions of well-
understood forms, whether they be hyper-inverse Wishart or hyper T. Forecasts that
take into account graph uncertainties are easily calculated from the finite mixture of
hyper T distributions of equation (15). If one is concerned about which are the best
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Figure 1: Relative cumulative log predictive density over time under the

baseline model (MF , 0.95). The figure illustrates that the predictive density

of time-varying graphs (dashed lines) are generally smaller than those of

fixed graphs (solid lines).

graph predicting models or which discount factors to use, their corresponding cumulative
marginal densities may be used to choose these specifications.

The two proposed graph predicting models together with the covariance matrix
discount factors allow us to separately infer the dynamics of graphs and the dynamics
of covariance matrices. In this particular example the marginal likelihoods favor static
models MF for all values of δ. This suggests that time-varying graphs inferred by a
moving window may not produce consistently better predictions than fixed graphs with
signals detected sequentially using all historical data. Although the fixed graphs are
generally preferred over time-varying graphs for the same δ, the covariance matrix itself
seems to be time-varying even when the graphs are fixed. This is because models with
(MF , 0.95) and (MF , 0.97) are supported by data as is evident in Figure 1, indicating
that Σt is time-varying. The dynamic of these time-varying Σt is specified as the matrix
Beta-Bartlett HIW evolution by Carvalho and West (2007a).
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Figure 2: Relative cumulative log predictive density of model (MF , 0.97)

under the baseline model (MF , 0.95).

7 Random regression vector DLM

Our applied and modeling interests are motivated by models where we attempt to
predict Yt with a regression vector Ft that is random and unknown before time t.
For example, the simplest Index Model, the CAPM, has the market portfolio as Ft,
a variable that has to be predicted before the predictive covariance structure of stocks
can be evaluated through our DGM framework. Now, let It = {Y1, · · · ,Yt,F1, · · · ,Ft}
denote the data and information set. Assume Ft has a prior p(Ft | It−1) at time t. Then
under the assumption that the priors of (Θt,Σt) and Ft are conditionally independent
given It−1, namely, (Θt,Σt) ⊥⊥ Ft | It−1, the following results apply.

Theorem 2. Under the initial prior of equation (8) and with data observed sequentially
to update information sets It the sequential updating for the matrix normal DLM on G

is given as follows:

(i) Posterior at t− 1: (Θt−1,Σt−1 | It−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1).

(ii) Prior at t: (Θt,Σt | It−1) ∼ NHIWG(at,Rt, δbt−1, δSt−1) where at = mt−1 and
Rt = Ct−1 + Wt.
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Figure 3: Persistent signals over time. Each value represents the number

of times a given edge has inclusion probability greater than 0.5 out of four

different time points at 09/1988, 09/1992, 05/1994 and 05/1996 respectively.

(iii) One-step forecast: p(Yt | It−1) =
∫

HTG(ft, qtδSt−1, δbt−1)p(Ft | It−1)dFt with
first two moments:

rt,G ≡ E(Yt | It−1) = a′tµFt

Qt,G ≡ cov(Yt | It−1) = a′tΣFtat + {Vt + µ′Ft
RtµFt + tr(RtΣFt)}E(Σt | It−1)

where f ′t = F′tat and qt = F′tRtFt + Vt, the first and second moments of the
predictive regression vector, µFt = E(Ft | It−1) and ΣFt = cov(Ft | It−1).

(iv) Posterior at t: (Θt,Σt | It) ∼ NHIWG(mt,Ct, bt,St) with mt = at + Ate′t,
Ct = Rt−AtA′qt, bt = δbt−1 +1, St = δSt−1 + ete′t/qt where At = RtFt/qt and
et = Yt − ft.

Proof. (i)(ii)(iv) follow directly from Theorem 1. (iii) results from the properties of
conditional expectations applied to p(Yt | It−1), E(Yt | It−1) and cov(Yt | It−1).

The above theorem suggests a two stage model on the vector time series {Yt}:
first, a model is fitted on low dimensional regression vectors {Ft}; second, the fitted
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model provides the necessary quantities for the dynamic graphical DLMs. Some specific
contexts of {Ft} include:

� Pre-fixed regression vector in which the Ft values are specified in advance by
design. This is the assumption made by the standard dynamic linear model,
which yields a degenerated prior distribution p(Ft | It−1) with µFt = Ft and
ΣFt

= 0 . In such cases, Theorem 1 applies as a special case of Theorem 2.

� Independent and identically distributed regression vector in which the n−vectors
Ft are commonly assumed to be independent and identically distributed from a
multivariate normal distribution with mean vector µF and covariance matrix ΣF.

� Dynamic regression vector in which another dynamic model structure could be
imposed on vector process {Ft}. For example, in asset pricing models, if Ft is the
market excessive return, an AR-GARCH type of model could be applied.

It is important to note that G is pre-specified in Theorem 2. If G is chosen to be
empty based on substantive prior information, then the model is essentially the dynamic
version of Financial Index Models. If G is allowed to be uncertain, we may use the two
practical graph predicting models of equations (11) and (12) to predict graphs in random
regression vector DLMs. We may also use equation (15) to choose among different α

representing different pairs of graph predicting models and discount factors. Finally, for
a given α, the predicted covariance matrix of return Yt at time t− 1 is given by:

cov(Yt | It−1) =
∑

Gt,j∈G
Qt,Gt,j π(Gt,j | It−1, α) (16)

where Qt,Gt,j is defined in (iii) of Theorem 2.

8 Example: portfolio allocation in stocks

To demonstrate the use of DGMs in the Index Model context we work with 100 stocks
randomly selected from the population of domestic commonly traded stocks in the New
York Stock Exchange. By selecting a random sample of 100 we hope to reduce potential
selection biases. The sample period is from January 1989 to December 2008 in a total of
240 monthly returns. The first 60 months are used as a training set to set up the prior at
time zero and therefore, the analysis starts at observation 61. Monthly US Treasury bill
returns are used as the risk-free rate in the computation of the excess returns. Excess
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Model Mean Std Min 25th Median 75th Max

Sample 0.158 0.166 −0.530 0.046 0.159 0.269 0.836
CAPM 0.040 0.170 −0.594 −0.075 0.036 0.150 0.825
FF 0.014 0.154 −0.557 −0.092 0.011 0.114 0.816

Table 1: Summary statistics of correlations among sampled stocks. First row, summary
of sample correlations; second and third row report summaries of residual correlations
after fitting CAPM and FF models respectively. For each case, at the end of April of
each year from 1994 to 2008, pairwise correlations are calculated based on the monthly
excess returns over the prior 60 months. Summary statistics are based on the estimated
values pooled over all years.

returns from a market weighted basket of all stocks in the AMEX, NYSE and NASDAQ
were used as the market returns. This index along with the Fama-French three factor
return data were obtained from the data library of Professor Kenneth R. French 1.
Summary statistics for the excess returns series are given in the first row in Table 1.
The median pairwise correlation is 0.159, indicating that there were potentially large
payoffs to portfolio diversification.

In an initial exploration of the data we fitted OLS regressions to the returns using the
capital asset pricing model (CAPM) and Fama-French (FF) models. The second and
third rows in Table 1 show summary statistics of cross-sectional residual correlations.
The generally lower correlations compared with the sample correlation suggest that the
indexes capture most of the common variation among the securities under consideration.
However, there are remaining signals in the residuals as indicated by the maximum and
minimum correlations, and these are precisely the quantities we are aiming to explore
by relaxing the independence assumption with the inclusion of graphs.

To appreciate the importance and contribution of the use of graphical models, we
consider the following alternatives: (1) sample covariance model; (2) Standard dynamic
CAPM: Ft is the market returns and cov(Yt | It−1) is the Qt,G of Theorem 2 when G

is empty; (3)Dynamic CAPM with graphs: Ft is the market returns and cov(Yt | It−1)
is given by equation (16); (4) Standard dynamic FF: Ft is the FF three factors and
cov(Yt | It−1) is the Qt,G of Theorem 2 when G is empty; (5) Dynamic FF with
graphs: Ft is the FF three factors and cov(Yt | It−1) is given by equation (16); and (6)
mixtures of (3) and (5) where mixture weights are based on equation (15).

1see, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html�
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In model (1), at each month t, the one-step ahead covariance matrix is based on
the data from the preceding 60 months as the in-sample period. For models (2)-(6),
we use weak priors, m0 = 0, C0 = 10000I, b0 = 3, S0 = 0.0003I100, and δ = 0.983
corresponding to a rolling window of about 60 months. For the random regression
vector Ft, we use the sample mean and covariance matrix of the past 60 months as
forecasts of the first and second predictive moments, µFt and ΣFt . Furthermore, based
on simulation experiments in Section 6, we chose to model graph uncertainty with the
predictive model of equation (11) for alternatives (3) and (5). Our current code is in
a serial version. On a dual-cpu 2.4GHz desktop running CentOS 5.0 unix, the cpu
benchmarks for this example run to around 2 to 15 minutes for each month t; the time
depends on the change of graphical spaces from π(Gt,j | It−1) to π(Gt+1,j | It). Parallel
implementations can be expected to run an order of magnitude faster (Jones et al. 2005).
We conduct two additional runs of the sequential stochastic search algorithm starting
from randomly chosen initials. The computing time and performances are persistent.
We report the results from one run. In (6), CAPM and FF models are compared with
each other and then averaged based upon their marginal likelihood of equation (15).
The resulting posterior probabilities of FF model reach 1 after a short period of time.
This should not be surprising as most of the current literature points to the use of a
multi-factor model as opposeed to the traditional single factor CAPM. Due to this fact,
the overall performances of models (5) and (6) are close so we only report results from
model (5) hereafter.

Figure 4 displays the estimated expected number of edges over time starting from
January 1994 under models (3) and (5). Three results are worth noting here. First,
all graphs are sparse relative to the total 4950 possible edges. The inclusion of graphs
provides the necessary flexibility to capture the remaining signals from the residual
covariance matrix and the data is responsible to inform which of these non-zero entries
are relevant. Second, when comparing with each other, the CAPM model has more
edges than FF – once again no surprises here: FF imposes a richer structure for Σ so
we should expect more non-zero elements in the residual covariation of assets when the
market returns are the only covariate. Third, as more information becomes available,
more signals in the residuals are detected.

We now evaluate these forecasting models in two ways: forecasting ability of future
correlation matrices and in the construction of optimal portfolios. This is a predictive
test in the sense that our investment strategy does not require any hindsight.
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Figure 4: Estimated expectation of the numbers of edges across each month.

8.1 Out-of-sample covariance forecasts

At the end of every month, the correlations forecasts from each model are compared
to the sample correlations realized over a subsequent 12 month period in the first ex-
periment, and 36 months in the second experiment. Forecast performance is evaluated
in terms of the absolute difference between the realized and forecasted values. Table
2 provides summary statistics on the absolute differences from these two experiments.
When the performances evaluated using subsequent 12 months data are compared with
those from subsequent 36 months, the average absolute forecast errors are reduced in
the 36 month case. The drop in forecast errors suggests that there is a lot of noise in
covariance matrices measured over a period as short as 12 months. Nevertheless, in
both experiments, the relative performance of each model is generally the same.

The full sample covariance model, which is the most complex model in terms of the
number of free parameters, has the highest median absolute error and root mean square
error. All other models are better than the full covariance model. More complex models
do not necessarily offer smaller forecast errors. This message is consistent with many
empirical studies on correlation matrix forecasts of stock returns.

Comparing model (2) with (3) in the CAPM family, and model (4) with (5) in the
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12 month 36 month

Model Median Std 95th
√

MSE Median Std 95th
√

MSE

(1) Full covariance 0.238 0.200 0.654 0.340 0.160 0.141 0.460 0.235

(2) CAPM Empty 0.234 0.186 0.612 0.323 0.146 0.127 0.413 0.212

(3) CAPM Graph 0.230 0.184 0.605 0.319 0.143 0.123 0.402 0.207

(4) FF Empty 0.230 0.185 0.609 0.321 0.143 0.124 0.405 0.208

(5) FF Graph 0.230 0.185 0.607 0.320 0.143 0.123 0.404 0.208

Table 2: Performance of correlation forecasting models. Forecasts of monthly return
correlation matrices are generated from different models, based on the prior 60 months of
data for model (1) and based on discount factor δ = 0.983 for models (2)-(5). Forecasts
are then compared against the realized sample covariance estimated over the subsequent
12 months (first four columns) and 36 months (last four columns). The last estimation
period ends in December 2005. Summary statistics are provided for both the distribution
of the absolute difference between realized and forecasted value of pairwise correlations:
Std, standard deviation of absolute differences; 95th, 95th quantile of absolute difference,
and

√
MSE, the root mean square errors of forecasts.

FF family, we see that models with graphs are better than their empty graph peers.
This is more evident in the CAPM family. Model (3) has reduced the median of the
absolute differences and the root mean square errors relative to model (2), while model
(5) has almost the same absolute differences as model (4). The clearer advantage in
the CAPM family is because there are more structures in the residuals left unexplained
by only the market index than by the FF three indexes. In general, the improvement
of out-of-sample covariance forecasts is minor. This is actually as expected, since the
signals are very sparse which indicates the covariance matrices based on the graphical
models do not differ much from those based on the traditional index models. This
is actually as expected, since the empty and the graphical models generate different
second moments, and the only difference between these second moments is that graphical
models have additional sparse signals in their residual covariance matrices. However,
as the experiments in the following section will show, these signals, though sparse, are
influential when the forecasted covariance matrices are used to build optimal portfolios.
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8.2 Portfolio optimization

From a practical point of view, the optimization experiments provide perhaps more
important metrics for evaluating forecasting models. The setup of our portfolio op-
timization experiments is as follows. To highlight the role of the second predictive
moment, we first form the global minimum variance portfolio. At the end of April of
each year starting from 1994, we use the different models to predict the one-step ahead
covariance matrix for the 100 stocks. These predictions are the input to a quadratic pro-
gramming routine that defines the minimum variance portfolio (Markowitz 1959). Short
sales are allowed so that the weights are only required to be summed up to 1. These
weights are then applied to buy-and-hold portfolio returns until the next April, when
the forecasting and optimization procedures are repeated. The resulting time series of
monthly returns of portfolios allow us to characterize the performance of the optimized
portfolio based on each model. We also form a mean-variance portfolio using the first
two moment forecast {rt,Qt} from Theorem 2 with a target annualized excessive mean
return of 15%.

Table 3 summarizes these optimization results. These are all expressed on an annu-
alized basis. In comparison within each group, it is clear that the introduction of the
graphical structure helps. The annualized standard deviation of the optimized portfolio
based on the graphical CAPM model is 10.7%, yielding a Sharpe ratio of 0.688, com-
pared to a Sharpe ratio of 0.533 for the standard CAPM portfolio. The same advantage
of using graphs can be found in the two models within FF class. The conclusion from
this example is simple: it pays to allow for a more flexible residual covariance structure
in the implementation of Index Models.

9 Further comments

By allowing more flexible models for the residual covariance matrix, Financial Index
models can be improved in their abilities to build more effective optimal portfolios. In
this paper we take advantage of the DGMs framework of Carvalho and West (2007a)
and show that graphical models can also be used to identify sparse signals in the residual
covariance matrices and thereby obtain a more complex representation of the distribu-
tion of asset returns. Unlike Carvalho and West (2007a) and Quintana et al. (2009), in
the Index Model framework, graphs are used to increase the complexity of an otherwise
very restrictive model. In that sense, it is our hope that our work complements the
widely used tool box of dynamic linear models for the analysis of asset returns. Our
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Minimum variance portfolio Mean variance portfolio

Model Rate Std Sharpe Rate Std Sharpe

(1) Full covariance - - - - - -

(2) CAPM Empty 0.064 0.120 0.533 0.064 0.119 0.535

(3) CAPM Graph 0.074 0.107 0.688 0.075 0.107 0.700

(4) FF Empty 0.062 0.109 0.569 0.069 0.109 0.627

(5) FF Graph 0.070 0.105 0.661 0.072 0.106 0.678

Table 3: Performance of portfolios based on forecasting models. Summary statistics are
presented: Rate, the annualized excessive returns r−rT , where the annualized portfolio
return r is determined by (1+ r)14 =

∏168
i=1(1+ ri), and annualized risk-free return rT is

determined by (1+rT )14 =
∏168

i=1(1+rT,i) with ri and rT,i denoting the monthly return
of portfolio and risk-free asset; Std, the annualized standard deviation of excess returns
ri − rT,i; and Sharpe ratio, the annualized excessive return divided by the annualized
standard deviation.

first example helps illustrate the model implementation and highlight the issue of spec-
ifying discount factors and graph predicting models. The second example discusses and
explores aspects of random regression vectors and variable selection. This analysis con-
firmed that the CAPM and FF models generally do well in explaining the variation of
stock returns, but identifying relevant non-zero entries in the unexplained covariation is
of real practical value: the resulting covariance matrix forecast has lower out-of-sample
forecast errors, and the corresponding portfolios achieve a lower level of realized risk in
terms of variance and higher realized returns.

In addition to our case studies, we have also provided a fully Bayesian framework
of two-stage forecasts of covariance matrices, a mechanism of graph evolution, and the
use of sequential stochastic search for high-dimensional graphical model spaces.

In regards to the modeling of graphical structure through time, alternative ap-
proaches include the use of first-order Markov probabilities in which the graph obtained
at time t depends on the graphs obtained at time t−1, but not on what happened prior
to t−1, and higher-order Markov probabilities that extend the dependence to graphs at
time t−2, t−3, · · · , etc. These alternatives require the learning of a higher-dimensional
transition matrix between graphs. Even a sparse representation of the transition matrix,
such as each graph only moves to its neighbors between two time points, is limited in
the sense that the sparse pattern would restrict the evolution of graphs between time.
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The sequential stochastic search algorithm combines the sequential Monte Carlo idea
and the shotgun stochastic search algorithm. Exploration of a static model space to
find high posterior probability graphs can be successfully carried out using direct search
such as the shotgun stochastic search method, certainly up to 100 vertices or so while
traditional MCMC is competitive only for relatively small graphs (Jones et al. 2005).
However, fast searching a sequence of large model space is more challenging. This
problem can be eased by noticing that from one step to the next we do not expect large
changes in the mass of the distribution. Therefore, we could use the high probability
graphs from the previous step as starting points to initiate a new search and rapidly
traverse the graphical model space around these promising models.
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