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Dynamic FineGrained Localization in AdHoc Networks of
Sensors

Andreas Savvides, ChihChieh Han and Mani B. Strivastava
Networked and Embedded Systems Lab

Department of Electrical Engineering
University of Calfornia, Los Angeles

fasavvide, simonhan, mbsg�ee.ula.edu

ABSTRACT
The reen t adv anes in radio and em beddedsystem teh-
nologies ha ve enabled the proliferation of wireless miro-
sensor net w orks.Su h wirelessly onneted sensors are re-
leased in many div erse en vironments to perform various mon-
itoring tasks. In many su h tasks, loation aw areness is in-
heren tly one of the most essen tial system parameters. It
is not only needed to report the origins of events, but also
to assist group querying of sensors, routing, and to answer
questions on the netw ork o verage.In this paper we presen t
a no vel approah to the loalization of sensors in an ad-
ho net w ork.We desribe a system alled AHLoS (Ad-Ho
Loalization System) that enables sensor nodes to disover
their loations using a set distributed iterative algorithms.
The operation of AHLoS is demonstrated with an auray
of a few entimeters using our prototype testbed while sal-
abilit y and performane are studied through simulation.

Keywords
loation disovery, loalization, wireless sensor netw orks

1. INTRODUCTION

1.1 Sensor Networks and Location Discovery
No w ada ys, wireless devies enjoy widespread use in numer-
ous div erse appliations inluding that of sensor netw orks.
The exiting new �eld of wir eless sensor networks breaks
aw ay from the traditional end-to-end ommuniation of voie
and data systems, and introdues a new form of distributed
information exhange. Myriads of tiny embedded devies,
equipped with sensing apabilities, are deplo yed in the en-
vironment and organize themselves in an ad-ho netw ork.
Information exhange among ollaborating sensors beomes
the dominant form of ommuniation, and the netw ork es-
sentially beha vesas a large, distributed omputation ma-
hine. Appliations featuring suh netw ork eddevies are
beoming inreasingly prevalen t, ranging from environmen-
tal and natural habitat monitoring, to home netw orking,

medial appliations and smart battle�elds. Net w ork ed sen-
sors an signal a mahine malfuntion to the ontrol en ter
in a fatory , or alternatively w arn about smoke on a remote
forest hill indiating that a dangerous �re is about to start.
Other wireless sensor nodes an be designed to detet the
ground vibrations generated by the silen t footsteps of a at
burglar and trigger an alarm.

Naturally, the question that immediately follows the atual
detetion of events, is: wher e? Where are the abnormal vi-
brations deteted, where is the �re, whih house is about to
be robbed? T o answer this question, a sensor node needs
to possess knowledge of its physial loation in spae. Fur-
thermore, in large sale ad-ho netw orks, knowledge of node
loation an assist in routing [5℄ [6℄, it an be used to query
nodes o ver a spei geographialarea or it an be used to
study the overage properties of a sensor netw ork [31℄.Addi-
tionally, we envision that loation aw areness developed here
will enjoy a wide spetrum of appliations. In tatial envi-
ronments, it an be used to trak the movements of targets.
In a smart kindergarten [32℄ it an be used to monitor the
progress of  hildren by tra king their interation with toys
and with eah other ; in hospitals it an keep tra k of equip-
ment, patien ts,dotors and nurses or it an drive on text
aw are servies similar to the ones desribed in [4℄, [29℄.

The inorporation of loation aw arenessin wireless sensor
netw orks is far from a trivial task. Sine the netw ork an
onsist of a large number of nodes that are deployed in an
ad-ho fashion, the exat node loations are not known a-
priori. Unfortunately, the straigh tforw ard solution of adding
GPS to all the nodes in the netw ork is not pratial sine:

� GPS annot work indoors or in the presene of dense
vegetation, foliage or other obstales that blo k the
line-of-sigh t from the GPS satellites.

� The pow er onsumption of GPS will redue the bat-
tery life on the sensor nodes thus reduing the e�etive
lifetime of the entire netw ork.

� The prodution ost fator of GPS an beome an issue
when large numbers of nodes are to be produed.

� The size of GPS and its antenna inreases the sensor
node form fator. Sensor nodes are required to be
small and inobstrusive.
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To this end, we seek an alternative solution to GPS that
is low ost, rapidly deployable and an operate in many di-
verse environments without requiring extensive infrastru-
ture support.

Figure 1: WINS Sensor Node from RSC

1.2 Our Work
We propose a new distributed tehnique that only requires a
limited fration of the nodes (beaons) to know their exat
loation (either through GPS or manual on�guration) dur-
ing deployment and that nevertheless an attain network-
wide �ne-grain loation awareness. Our tehnique, whih
we all AHLoS (Ad-Ho Loalization System), relieves the
drawbaks of GPS as it is low ost, it an operate indoors
and does not require expensive infrastruture or pre-planning.
AHLoS enables nodes to dynamially disover their own lo-
ation through a two-phase proess, ranging and estimation.
During the ranging phase, eah node estimates its distane
from its neighbors. In the estimation phase, nodes with un-
known loations use the ranging information and known bea-
on node loations in their neighborhood to estimate their
positions. One a node estimates its position it beomes a
beaon and an assist other nodes in estimating their posi-
tions by propagating its own loation estimate through the
network. This proess iterates to estimate the loations of
as many nodes as possible.

The �rst part of our work examines the ranging hallenges.
Sine almost all ranging tehniques rely on signal propaga-
tion harateristis, they are suseptible to external biases
suh as interferene, shadowing and multipath e�ets, as
well as environmental variations suh as hanges in tem-
perature and humidity. These physial e�ets are diÆult
to predit and depend greatly on the atual environment in
whih the system is operated. It is therefore ritial to har-
aterize the behavior of di�erent ranging alternatives exper-
imentally in order to determine their usefulness in sensor
networks. To justify our rangining hoie we performed a de-
tailed omparison of two promising ranging tehniques: one
based on reeived RF signal strength and the other based on
the Time of Arrival (ToA) of RF and ultrasoni signals. Our
experiments of distane disovery with RF signal strength
were onduted on the WINS wireless sensor nodes [12℄ (�g-
ure 1) developed by the Rokwell Siene Center (RSC). To
perform our evaluation of ToA, we have designed and im-
plemented a testbed of ultrasound-equipped sensor nodes,

alled Medusa (from Greek mythology - a monster with
many heads) nodes (�gure 2). To address the variation of
propagation harateristis of ultrasound from plae to plae
AHLoS estimates the propagation harateristis on the y
in the atual deployment environment. The seond part of
our work uses the ranging tehniques desribed above, to
develop a set of distributed loalization algorithms. Node
positions are estimated using least squares estimation in an
iterative multilateration proess. This ability of AHLoS to
estimate node loations in an ad-ho setting with a few en-
timeters auray is demonstrated on a testbed omprised
of �rst generation Medusa nodes. Error propagation, sys-
tem salability and energy onsumption are studied through
simulation.

Figure 2: Medusa experimental node

1.3 Paper Organization
This paper is organized as follows: In the next setion we
provide some bakground on loalization and we survey the
related work. Setion 3 presents the evaluation of our two
andidate ranging methods: Reeived signal strength and
time of arrival. Setion 4 desribes the loalization algo-
rithms and setion 5 is a short study on node and beaon
node plaement. In setion 6 we disuss our implementation
and experiments. Setion 7 disusses the tradeo�s between
entralized and distributed loalization and setion 8 on-
ludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Background
The majority of existing loation disovery approahes on-
sist of two basi phases: (1) distane (or angle) estimation
and (2) distane (or angle) ombining. The most popular
methods for estimating the distane between two nodes are:

� Reeived Signal Strength Indiator (RSSI) teh-
niques measure the power of the signal at the reeiver.
Based on the known transmit power, the e�etive prop-
agation loss an be alulated. Theoretial and empiri-
al models are used to translate this loss into a distane
estimate. This method has been used mainly for RF
signals.
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� Time based methods (ToA,TDoA) reord the time-
of-arrival (ToA) or time-di�erene-of-arrival (TDoA).
The propagation time an be diretly translated into
distane, based on the known signal propagation speed.
These methods an be applied to many di�erent sig-
nals, suh as RF, aousti, infrared and ultrasound.

� Angle -of -Arrival (AoA) systems estimate the an-
gle at whih signals are reeived and use simple geo-
metri relationships to alulate node positions.

A detailed disussion of these methods an be found in [20℄.
For the ombining phase, the most popular alternatives are:

� The most basi and intuitive method is alled hyper-
boli tri-lateration. It loates a node by alulating
the intersetion of 3 irles (�gure 3a).

� Triangulation is used when the diretion of the node
instead of the distane is estimated, as in AoA systems.
The node positions are alulated in this ase by using
the trigonometry laws of sines and osines (�gure 3b).

� The third method is Maximum Likelihood (ML) esti-
mation (�gure 3). It estimates the position of a node
by minimizing the di�erenes between the measured
distanes and estimated distanes. We have hosen
this tehnique as the basis of AHLoS for obtaining the
Minimum Mean Square Estimate(MMSE) from a set
of noisy distane measurements.
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Sines Rule
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c
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Figure 3: Loalization Basis a) Hyperboli tri-
lateration, b) Triangulation, ) ML Multilateration

2.2 Related Work
In the past few deades, numerous loalization systems have
been developed and deployed. In the 1970s, the automati
vehile loation (AVL) systems were deployed to determine
the position of polie ars and military ground transporta-
tion vehiles. A set of stationary base stations ating as
observation points use ToA and TDoA tehniques to gen-
erate distane estimates. The vehile position is then de-
rived through multilaterations, using Taylor Series Expan-
sion to transform a non-linear least squares problem to a

linear [7℄[8℄. Similar approahes an also be found in mili-
tary appliations for determining the position of airplanes.

In 1993, the well-known Global Positioning System (GPS)
[34℄ system was deployed, whih is based on the NAVSTAR
satellite onstellation (24 satellites). LORAN [28℄ operates
in a similar way to GPS but uses ground based beaons
instead of sattelites. In 1996, the U.S Federal Communia-
tions Commission (FCC) required that all wireless servie
providers give loation information to the Emergeny 911
servies. Cellular base stations are used to loate mobile
telephone users within a ell [9℄[10℄. Distane estimates are
generated with TDoA. The base station transmits a bea-
on and the handset reets the signal bak to the base
station. Loation information is again alulated by mul-
tilateration using least squares methods. By Otober 2001,
FCC requires a 125-meter root mean square(RMS) auray
in 67% of the time and by Otober 2006 a 300-meter RMS
auray for 95% of the times is required.

Reently, there has been an inreasing interest for indoor lo-
alization systems. The RADAR system [1℄ an trak the lo-
ation of users within a building. To alulate user loations
the RADAR system uses RF signal strength measurements
from three �xed base stations in two phases. First, a om-
prehensive set of reeived signal strength measurements is
obtained in an o�ine phase to build a set of signal strength
maps. The seond phase is an online phase during whih
the loation of users an be obtained by observing the re-
eived signal strength from the user stations and mathing
that with the readings from the o�ine phase. This proess,
eliminates multipath and shadowing e�ets at the ost of
onsiderable preplanning e�ort.

The Criket loation support system [4℄ is also designed for
indoor loalization. It provides support for ontext aware
appliations and is low ost. Unlike the systems disussed so
far, it uses ultrasound instead of RF signals. Fixed beaons
inside the building distribute geographi information to the
listener nodes. Criket an ahieve a granularity of 4 by 4
feet. Room level granularity an be obtained by the ative
badge [22℄ system, whih uses infrared signals. The next
development in this area on indoor loalization is BAT [29℄
[30℄. A BAT node arries an ultrasound transmitter whose
signals are piked up by an array of reeivers mounted on
the eiling. The loation of a BAT an be alulated via
multilateration with a few entimeters of auray. An RF
base station oordinates the ultrasound transmissions suh
that interferene from nearby transmitters is avoided. This
system relies heavily on a entralized infrastruture.

In the ad-ho domain, fewer loalization systems exist. An
RF based proximity method is presented in [21℄, in whih
the loation of a node is given as a entroid. This entroid is
generated by ounting the beaon signals transmitted by a
set of beaons pre-positioned in a mesh pattern. A di�erent
approah is taken in the Pioradio projet at UC Berkeley.
It provides a geoloation sheme for an indoor environment
[11℄, based on RF reeived signal strength measurements
and pre-alulated signal strength maps.

Our system, AHLoS, also belongs to the ad-ho lass. Al-
though uses RF and ultrasound transmissions similar to the
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Criket and BAT Systems, it also has some key di�erenes.
AHLoS does not rely on a preinstalled infrastruture. In-
stead, it is a fully ad-ho system with distributed loaliza-
tion algorithms running at every node. This results in a
exible system that only requires a small initial fration of
the nodes to be aware of their loations. Furthermore, it
enables nodes to estimate their loations even if they are
not within range with the beaon nodes. From a power
awareness perspetive, it also ensures that all nodes play an
equal role in the loation disovery proess resulting in an
even distribution of power onsumption. The resulting lo-
alization system provides �ne-grained loalization with an
auray of a few entimeters, similar to the BAT system
without requiring infrastruture support. Finally, unlike all
the systems disussed so far, AHLoS provisions for dynami
on-line estimation of the ultrasound propagation harater-
istis. This renders our approah extremely robust even in
the presene of hanging environments.

3. RESEARCH METHODOLOGY
As a �rst step in our study, we haraterize the ranging a-
pabilities of our two target tehnologies: Reeived RF signal
strength using the WINS nodes and RF and ultrasound ToA
using the Medusa nodes.

3.1 Ranging Characterization

3.1.1 Received Signal Strength
The signal strength method uses the relationship of RF sig-
nal attenuation as a funtion of distane. From this rela-
tionship a mathematial propagation model an be derived.
From detailed studies of the RF signal propagation hara-
teristis[18℄, it is well known that the propagation hara-
teristis of radio signals an vary with hanges in the sur-
rounding environment (weather hanges, urban / rural and
indoor / outdoor settings). To evaluate signal strength mea-
surements we onduted some experiments with the target
system of interest, the WINS sensor nodes [12℄. The WINS
nodes have a 200MHz StrongARM 1100 proessor, 1MB
Flash, 128KB RAM and the Hummingbird digital ordless
telephony (DECT) radio hipset that an transmit at 15
distint power levels ranging from -9.3 to 15.6 dBm (0.12 to
36.31 mW). The WINS nodes arry an omni-diretional an-
tenna hene the radio signal is uniformly transmitted with
the same power in all diretions around the node. As part
of the radio arhiteture, the WINS nodes provide a pair of
RSSI (Reeived Signal Strength Indiators) resisters. RSSI
registers are a standard feature in many wireless network
ards [23℄. Using these registers we onduted a set of mea-
surements in order to derive an appropriate model for rang-
ing. We performed measurements in several di�erent set-
tings (inside our lab, in the parking lot and between build-
ings). Unfortunately, a onsistent model of the signal atten-
uation as a funtion of distane ould not be obtained. This
is mainly attributed to multipath, fading and shadowing ef-
fets. Another soure of inonsisteny is the great variation
of RSSI assoiated with the altitude of the radio antenna.
For instane, at ground level, the radio range at the max-
imum transmit power level the usable radio transmission
range is around 30m whereas when the node is plaed at
a height of 1.5m the usable transmission range inreases to
around 100m. Beause of these inonsistenies, we were only
able to derive a model for an idealized setting; in a football

�eld with all the nodes positioned at ground level. For this
setup we developed a model based on the RSSI register read-
ings at di�erent transmission power levels and di�erent node
separations.

A model (equation 1) is derived by obtaining a least square
�t for eah power level. PRSSI is the RSSI register reading
and r is the distane between two nodes. Parameters X and
n are onstants that an be derived as funtions of distane
r for eah power level. Averaged measurements and the
orresponding derived models are shown in �gure 4. Table
1 gives the X and n parameters for eah ase.

PRSSI =
X

rn
(1)
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Figure 4: Radio Signal Strength Radio Charateri-
zation using WINS nodes(power levels P=7,13)

Table 1: RSSI Ranging Model Parameters for WINS
nodes

Power Level dBm mW X n

7 2.5 1.78 21778.338 0.178186
13 14.4 27.54 25753.63 0.198641

With all the nodes plaed on a at plane, signal strength
ranging an provide a distane estimate with an auray
of a few meters. In all other ases, this experiment has
shown that the use of radio signal strength an be very
unpreditable. Another problem with the reeived signal
strength approah is that radios in sensor nodes are low ost
ones without preise well-alibrated omponents, suh as the
DECT radios in Rokwell's nodes or the emerging Bluetooth
radios. As a result, it is not unusual for di�erent nodes to
exhibit signi�ant variation in atual transmit power for the
same transmit power level, or in the RSSI measured for the
same atual reeived signal strength. Di�erenes of several
dBs are often seen. While these variations are aeptable for
using transmit power adaptation and RSSI measurements
for link layer protools, they do not provide the auray
required for �ne-grained loalization. A potential solution

169



would be to alibrate eah node against a referene node
prior to deployment, and store gain fators in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a ommon sale.

3.1.2 ToA using RF and Ultrasound
To haraterize ToA ranging on the Medusa nodes we mea-
sure the time di�erene between two simultaneously trans-
mitted radio and ultrasound signals at the reeiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distane measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a onve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher
ost and power premiums. The Polaroid 6500 ultrasoni
ranging module [17℄ for example has a range of more than
10 meters (the seond generation of Medusa nodes will have
a 10-15 meter range). We haraterize ToA ranging by us-
ing two Medusa nodes plaed on the oor of our lab. We
reorded the time di�erene of arrival at 25-entimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distane in entimeters and the y
axis represent the miroontroller timer ounter value.
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Figure 6: Ulrasound Ranging Charaterization

The speed of sound is haraterized in terms of the miro-
ontroller timer tiks. To estimate the speed to sound as
a funtion of miroontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer tiks, d is the estimated distane between 2

nodes and k is a onstant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system an provide an auray of 2 entime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�ets. Fortu-
nately, they are easier to detet. ToA measurement use the
�rst pulse reeived ensuring that the shortest path(straight
line) reading is observed. Reeted pulses from nodes that
do not have diret line of sight are �ltered out using statis-
tial tehniques similar to the ones used in [30℄.

3.2 Signal Strength vs. ToA ranging
On omparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than reeived
signal strength. While reeived signal strength is greatly af-
feted by amplitude variations of the reeived signal, ToA
ranging only depends on the time di�erene, a muh more
robust metri. Based on our haraterization results we
hose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation hara-
teristis may hange with variations in the surrounding en-
vironment. To minimize these e�ets, AHLoS dynamially
estimates the signal propagation harateristis every time
suÆient information is available. This ensures that AHLoS
will operate in many diverse environments without prior al-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation harateristis may vary from region
to region aross the �eld. The alulation of the ultrasound
propagation harateristis in the loality of eah node en-
sures better loation estimates auray. Table 2 summa-
rizes the omparison between signal strength and ultrasound
ranging. One possible solution we are onsidering for our
future work is to ombine reeived signal strength and ToA
methods. Sine the reeived signal strength method has
the same e�etive range as the radio ommuniation range,
it an be used to provide a proximity indiation in plaes
where the network onnetivity is very sparse for ToA loal-
ization to take plae. The ultrasound approah will provide
�ne grained loalization in denser parts of the networks. For
this on�guration, we plan to have the Medusa boards at
as loation oproessors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging tehnology that estimates node separation
we now desribe our loalization algorithms. These algo-
rithms operate on an ad-ho network of sensor nodes where
a small perentage of the nodes are aware of their positions
either through manual on�guration or using GPS. We re-
fer to the nodes with known positions as beaon nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed loa-
tion disovery algorithms follow an iterative proess. After
the sensor network is deployed, the beaon nodes broadast
their loations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broadasted beaon positions to estimate their own
positions. One an unknown node estimates its position,
it beomes a beaon and broadasts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This proess repeats until all the unknown
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Table 2: A omparison of RSSI and ultrasound ranging
Property RSSI Ultrasound

Range same as radio ommuniation range 3 meters (up to a few 10s of meters)
Auray O(m), 2-4m for WINS O(m), 2m for Medusa
Measurement Reliability hard to predit, multipath and

shadowing
multipath mostly preditable,time
is a more robust metri

Hardware Requirements RF signal strength must be avail-
able to CPU

ultrasound transduers and ampli-
�er iruitry

Additional Power Requirements none tx and rx signal ampli�ation
Challenges large varianes in RSSI readings,

multipath, shadowing, fading ef-
fets

interferene, obstales, multipath

nodes that satisfy the requirements for multilateration ob-
tain an estimate of their position. This proess is de�ned
as iterative multilateration whih uses atomi multilatera-
tion as its main primitive. In the following subsetions we
provide the details of atomi and iterative multilateration.
Furthermore, we desribe ollaborative multilateration as an
additional enhaned primitive for iterative multilateration
and we provide some suggestions for further optimizations.

4.1 Atomic Multilateration
Atomi multilateration makes up the basi ase where an
unknown node an estimate its loation if it is within range
of at least three beaons. If three or more beaons are avail-
able, the node also estimates the ultrasound speed of prop-
agation for its loality. Figure 7a illustrates a topology for
whih atomi multilateration an be applied.

The error of the measured distane between an unknown
node and its ith beaon an be expressed as the di�erene
between the measured distane and the estimated Eulidean
distane (equation 3). x0 and y0 are the estimated oordi-
nates for the unknown node 0 for i = 1; 2; 3:::N , where N is
the total number of beaons, and ti0 is the time it takes for
an ultrasound signal to propagate from beaon i to node 0,
and s is the estimated ultrasound propagation speed.
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Figure 7: Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)2 + (yi � y0)2 (3)

Given that an adequate number of beaon nodes are avail-
able, a Maximum Likelihood estimate of the node's position
an be obtained by taking the minimum mean square esti-
mate (MMSE) of a system of fi(x0; y0; s) equations (equa-
tion 4). Term � represents the weight applied to eah equa-
tion. For simpliity we assume that � = 1.

F (x0; y0; s) =
NX
i=1

�
2
f(i)2 (4)

If a node has three or more beaons a set of three equa-
tions of the form of (3) an be onstruted yield an over-
determined system with a unique solution for the position
of the unknown node 0. If four or more beaons are avail-
able, the ultrasound propagation speed s an also be esti-
mated. The resulting system of equations an be linearized
by setting fi(x0; y0; s) = equation 3, squaring and rearrang-
ing terms to obtain equation 5.

�x2i � y
2
i =

(x20 + y
2
0) + x0(�2xi) + y0(�2yi)� s

2
t
2
i0

(5)

for k suh equations we an eliminate the (x20 + y20) terms
by subtrating the kth equation from the rest.

�x2i � y
2
i + x

2
k + y

2
k = 2xo(xk � xi)

+2y0(yk � yi) + s
2(tik

2 � ti0
2)

(6)

this system of equations has the form y = bX and an be
solved using the matrix solution for MMSE [25℄ given by
b = (XTX)�1XT y where
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X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

Based on this solution we de�ne the following requirement
for atomi multilateration.

Requirement 1. Atomi multilateration an take plae
if the unknown node is within one hop distane from at least
three beaon nodes. The node may also estimate the ultra-
sound propagation speed if four or more beaons are avail-
able.

Although requirement 1 is neessary for atomi multilater-
ation, it is not always suÆient. In the speial ase when
beaons are in a straight line, a position estimate annot be
obtained by atomi multilateration. If this ours, the node
will attempt to estimate its position using ollaborative mul-
tilateration. We also note that atomi multilateration an
be performed in 3-D without requiring an additional beaon
[33℄.

4.2 Iterative Multilateration
The iterative multilateration algorithm uses atomi multilat-
eration as its main primitive to estimate node loations in
an ad-ho network. This algorithm is fully distributed and
an run on eah individual node in the network. Alterna-
tively, the algorithm an also run at a single entral node or
a set of luster-heads, if the network is luster based. Fig-
ure 8 illustrates how iterative multilateration would exeute
from a entral node that has global knowledge of the net-
work. The algorithm operates on a graphG whih represents
the network onnetivity. The weights of the graph edges
denote the separation between two adjaent nodes. The al-
gorithm starts by estimating the position of the unknown
node with the maximum number of beaons using atomi
multilateration. Sine at a entral loation all the the entire
network topology is known so we start from the unknown
node with the maximum number of beaons to obtain better
auray and faster onvergene (in the distributed version
an unknown will perform a multilateration as soon as in-
formation from three beaons). When an unknown node
estimates its loation, it beomes a beaon. This proess
repeats until the positions of all the nodes that eventually
an have three or more beaons are estimated.

boolean iterativeMultilateration (G)
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

while BeaonCount � 3
setBeaon (MaxBeaonNode)
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

Figure 8: Iterative Multilateration Algorithm as it
exeutes on a entralized node

A drawbak of iterative multilateration is the error au-
mulation that results from the use of unknown nodes that
estimate their positions as beaons. Fortunately, this error
aumulation is not very high beause of the high preision
of our ranging method. Figure 9 shows the position errors
in a simulated network of 50 Medusa nodes when 10% of
the nodes are initially on�gured as beaons. The nodes are
deployed on a square grid of side 15 meters. The simulation
onsiders two types of errors: 1) ranging errors and 2) bea-
on plaement errors. In both ases a 20mm white Gaussian
error is used. In both ases the estimated node positions are
within 20 m from the atual positions.
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Figure 9: Iterative Multilateration Auray in a
network of 50 nodes and 10% beaons

4.3 Collaborative Multilateration
In an ad-ho deployment with random distribution of bea-
ons, it is highly possible that at some nodes, the ondi-
tions for atomi multilateration will not be met; i.e. an
unknown node may never have three neighboring beaon
nodes therefore it will not be able to estimate its position
using atomi multilateration. When this ours, a node may
attempt to estimate its position by onsidering use of loa-
tion information over multiple hops in a proess we refer
to as ollaborative multilateration. If suÆient information
is available to form an over-determined system of equations
with a unique solution set, a node an estimate its position
and the position of one or more additional unknown nodes
by solving a set of simultaneous quadrati equations. Fig-
ure 7b illustrates one of the most basi topologies for whih
ollaborative multilateration an be applied. Nodes 2 and 4
are unknown nodes, while nodes 1,3,5,6 are beaon nodes.
Sine both nodes 2 and 4 have three neighbors (degree d = 3)
and all the other nodes are beaons, a unique position es-
timate for nodes 2 and 4 an be omputed. More formally,
ollaborative multilateration an be stated as follows: Con-
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sider the ad-ho network to be a onneted undireted graph
G = (N;E) onsisting of jN j = n nodes and a set E of n�1
or more edges. The beaon nodes are denoted by a set B
where B � N and the set of unknown nodes is denoted by
U where U � G. Our goal is to solve for

xu; yu 8u � U by minimizing

f(xu; yu) = Diu �
p
(xi � xu)2 + (yi � yu)2 (7)

for all partiipating node pairs i; u where i � B or i � U
and u � U . Subjet to:
xi; yi are known if i � B, and every node pair i; u is a
partiipating pair. Partiipating nodes and partiipating
pair are de�ned as follows:

Definition 1. A node is a partiipating node if it is ei-
ther a beaon or if it is an unknown with at least three par-
tiipating neighbors.

In �gure 7b if ollaborative multilateration starts at node
2, node 2 must have at least three partiipating neighbors.
Nodes 1 and 3 are beaons therefore they are partiipating.
Node 4 is unknown but has two beaons: nodes 5 and 6.
Node 4 is also onneted to node 2 thus making both of
them partiipating nodes.

Definition 2. A partiipating node pair is a beaon-unknown
or unknown-unknown pair of onneted nodes where all un-
knowns are partiipating.

In this formulation, the nodes partiipating in ollabora-
tive multilateration make up a subgraph of G, for whih an
equation of the form of 7 an be written for eah edge E
that onnets a pair of partiipating nodes. To ensure a
unique solution, all nodes onsidered must be partiipating.
In �gure 7b for example, we have �ve edges thus a set of
�ve equations an be obtained. In some ases other ases ,
we may have a well-determined system of n equations and
n unknowns suh as in the ase shown �gure 7. We an
easily observe however, that node X an have two possible
positions that would satisfy this system therefore the solu-
tion is not unique and node X is not a partiipating node. If
the above onditions are met, the resulting system of non-
linear equations an be solved with optimization methods
suh as gradient desend [26℄ and simulated annealing [27℄.

The algorithm in �gure 10 provides a basi example of how
a node determines whether it an initiate ollaborative mul-
tilateration. The parameter node denotes the node id from
where the searh for a ollaborative multilateration begins.
The seond parameter allerId holds the node id of the node
that alls the partiular instane of the funtion. isInitia-
tor is a boolean variable that is set to true if the node was
the initiator of the ollaborative multilateration proess and
false otherwise. This is used to set the limit ag that drives
the reursion.

boolean isCollaborative (node, allerId, isInitiator)
if isInitiator==true limit  3
else limit  2
ount  beaonCount(node)
if ount � limit return true
for eah unknown neighbor i not previously visited
if isCollaborative (i, node, false) ount++
if ount == limit return true

return false

Figure 10: Algorithm for heking the feasibility for
ollaborative multilateration

Collaborative multilateration an be used to assist iterative
multilateration in plaes of the network where the beaon
density is low and the requirement for atomi multilateration
is not satis�ed. Figure 11 illustrates how iterative multi-
lateration would all ollaborative multilateration when the
requirement for atomi multilateration is not met.

boolean iterativeMultilateration (G)
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

while BeaonCount � 3
setBeaon (MaxBeaonNode)
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

while isCollaborative (MaxBeaonNode, -1, true)
set all nodes in ollaborative set as beaons
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

while BeaonCount � 3
setBeaon (MaxBeaonNode)
(MaxBeaonNode, BeaonCount)  unknown
node with most beaons

Figure 11: Enhaned Iterative Multilateration

Collaborative multilateration an help in situations where
the perentage of beaons is low. This e�et is shown in
�gure 12. This senario onsiders a sensor �eld of 100 by
100 and a sensing range of 10 and two network sizes of 200
and 300 nodes. As shown in the �gure, if the perentage of
beaons is small, the number of node loations that an be
resolved is substantially inreased with ollaborative mul-
tilateration. This result also shows how network density is
related to the loalization proess. In the 300 node network,
more node loations an be estimated than in the 200 node
network with the same perentage of beaons. This is due
to the higher degree of onnetivity. The e�ets of node and
beaon plaement on the loalization proess is studied in
more detail in setion 5.

4.4 Further Optimizations
The auray of the estimated loations in the multilater-
ation algorithms desribed in this setion may be further
improved with two additional optimizations. First, error
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Figure 12: E�et of ollaborative multilateration top, 300 nodes, bottom 200 nodes

propagation an be redued by using weighted multilatera-
tion. In this sheme, beaons with higher ertainty about
their loation are weighted more than beaons with lower
ertainty during a multilateration. As new nodes beome
beaons, the ertainty of their estimated loation an also
be omputed and used as a weight in future multilaterations.
Additionally, by applying ollaborative multilateration over
a wider sope, the aumulated error an be redued. The
solution methodology and further evaluation of these opti-
mizations are part of our future work and will be the subjet
of a future paper.

5. NODE AND BEACON PLACEMENT
The suess of the loation disovery algorithm depends on
network onnetivity and beaon plaement. In this setion,
we ondut a brief probabilisti analysis to determine how
the onnetivity requirements an be met when nodes are
uniformly deployed in a �eld. Based on these results, we
later perform a statistial analysis to get an indiation on
the perentage of beaons required. When onsidering node
deployment, the main metri of interest is the probability
with whih any node in the network has a degree of three or
more, assuming that sensor nodes are uniformly distributed
over the sensor �eld. In a network of N nodes deployed in a
square �eld of side L, the probability P (d) of a node having
degree d is given by the binomial distribution in equation 8
and the probability PR being in transmission range.

P (d) = P
d

R:(1� PR)
N�d�1

:

 
N � 1

d

!
(8)

PR =
�R2

L2
(9)

For large values of N tending to in�nity, the above bino-
mial distribution onverges to a Poisson distribution. When
taking into aount that � = N:PR we get equation 10, the

probability of a node have degree of three or more an be
alulated. Also, an indiation of the number of nodes re-
quired per unit area an be alulated in terms of �. Table
3 shows the number of nodes required to over a square �eld
of size L = 100 and range R = 10 as well as the probabil-
ity for a node to have degree greater than three or four for
di�erent values of �. These probabilities are obtained from
equation 11.

P (d) =
�d

d!
:e
�� (10)

P (d � n) = 1�
n�1X
i=0

P (i) (11)

Table 3: Probability of node degree for di�erent �
values

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392

The onnetivity results in �gure 13 show the probabilities of
a node having 0,1,2 or 3 and more neighbors. In addition to
node onnetivity, we determine perentage of initial bea-
on nodes required for the onvergene of the loalization
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Figure 13: Connetivity result for a 100 x 100 �eld
and sensor range 10

algorithm by statistial analysis. Using the same network
setup as before, we report the perentage of nodes that es-
timate their loations while varying the perentage of nodes
and beaons. The results in �gure 14 are the averages over
100 simulations. The �gure shows the perentage of bea-
ons required to omplete the iterative multilateration pro-
ess using only atomi multilaterations. We note that the
perentage of required beaons dereases as network den-
sity inreases. Also as the network density inreases, the
transitions in the required number of beaons beome muh
sharper sine the addition of a few more beaon nodes rein-
fores the progress of the iterative multilateration algorithm.
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Figure 14: Beaon Requirements for di�erent node
densities

6. IMPLEMENTATION AND EXPERIMEN

TATION

6.1 Medusa Node Architecture
TheMedusa node design (�gure 2) is based on the AVR 8535
proessor [13℄ whih arries 8KB of ash memory, 512 bytes
SRAM and 512 bytes of EEPROM memory. The radio we
use is the DR3000 radio module from RF Monolithis[14℄.
This radio supports two data rates (2.4 and 19.2 kbps) and
two modulation shemes (ASK and OOK). The ultrasound

iruitry onsists of six (60 degree detet angle) pairs of
40KHz ultrasoni transduers arranged in a hexagonal pat-
tern at the enter of the board (note that for experimental
purposes the Medusa node in �gure 2 has 8 transduers).
Eah ultrasound transeiver is supported by a pair of solid
ore wires at an approximate height of 15 m above the
printed iruit board. We found this very onvenient setup
for experimentation sine it allows the transeivers to be ro-
tated in di�erent diretions. The �rst generation board is
3" x 4" and it is powered by a 9V battery. The Medusa
�rmware is based on an event driven �rmware implementa-
tion suggested in [15℄. The radio ommuniation protools
use a variable size framing sheme, 4-6 bit enoding [16℄
and 16 bit CRC. The ode for ranging is integrated in the
ad-ho routing protool desribed in the next subsetion.

6.2 Location Information Dissemination and

Routing
In our experimental setup all measurements from the nodes
are forwarded to a PC basestation. To route messages to
the base station, we implemented a lightweight version of
the DSDV [19℄ routing algorithm, whih we refer to as DS-
DVlite. Instead of maintaining a routing table with the
next hop information to every node, DSDVlite only main-
tains a short routing table that holds next hop information
for the shortest route to gateway. Furthermore, this algo-
rithm drives the loalization proess by arrying the loation
information of beaons, and by ensuring that the reeived ul-
trasound beaon signals originate from the same soure node
as the radio signals. The ultrasound beaon signal transmis-
sion begins right after the transmission of the start symbol
for eah routing paket. After this, the transmission of data
and ultrasound signals proeed simultaneously. By ensuring
that the duration of the data transmission is longer than the
ultrasound transmission, the reeiver an di�erentiate be-
tween erroneous ultrasound transmissions from other nodes.
If the data paket is not orretly reeived beause of a ol-
lision with another transmission, it also implies a ollision of
ultrasound signals hene the ultrasound time measurement
is disarded.

Figure 15: 9 node senario
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6.3 Experimental Setup
Our experimental testbed onsists of 9 Medusa nodes and a
Pentium II 300MHz PC. One node is on�gured as a gateway
and it is attahed to the PC through the serial port. Some
of the nodes are pre-programmed with their loations and
they at as beaons. All the nodes perform ranging and they
transmit all the ranging information to the PC that runs
the loalization algorithms and displays the node positions
on a sensor visualization tool. The node positions on the
sensor visualization tool are updated at 5-seond intervals.
Figures 16 and 15 show some snapshots of node loations.
The beaons are shown as blak dots, the unknown nodes
are white irles and the node position estimates are shown
as gray dots. In all of our experiments all the node position
estimates for eah unknown node always fall within the 3"
x 4" surfae area of the Medusa boards.

Figure 16: 5 node senario

6.4 Power Characterization
In the previous subsetion we veri�ed the orret operation
of our loalization system. Our experimental setup will pro-
vide a reasonable solution for a small network but as the
network sales, the traÆ to the entral gateway node will
inrease substantially. Before we an evaluate the trade-
o�s between estimating loations at the nodes and estimat-
ing loations at a entral node we �rst haraterize power
onsumption of the Medusa nodes at di�erent operational
modes. Using an HP 1660 Logi Analyzer, a benh power
supply and a high preision resistor we haraterized the
RFM radio and the AVR miroontroller on the Medusa
nodes.
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Figure 17: Power and Energy Relationships and
Measurement Setup

The measurement setup and power/energy relationships are

shown in �gure 17. The power onsumption for di�erent
modes of the AVR miroontroller are shown in table 4.
The power onsumption for the di�erent modes of the RFM
radio are shown in �gure 18 and table 5.

Table 4: AVR 8535 Power Charaterization
AVR Mode Current Power

Ative 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W
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Figure 18: RFM Radio power onsumption at dif-
ferent operational modes

7. TRADEOFFS BETWEEN CENTRALIZED

AND DISTRIBUTED SCHEMES
One important aspet that needs to be determined is whether
the loation estimation should be done in a entralized or
distributed fashion. In the former ase, all the ranging mea-
surements and beaon loations are olleted to a entral
base station where the omputation takes plae and the re-
sults are forwarded bak to the nodes. In the latter, eah
node estimates its own loation when the requirements for
atomi multilateration are met. For the AHLoS system, we
advoate that distributed omputation would be a better
hoie sine a entralized approah has several drawbaks.
First, to forward the loation information to a entral node,
a route to the entral node must be known. This implies the
use of a routing protool other than loation based routing
and also inurs some additional ommuniation ost whih
is also a�eted by the eÆieny of the existing routing and
media aess ontrol protools. Seond, a entralized ap-
proah, reates a time synhronization problem. Whenever
there is a hange in the network topology the node's knowl-
edge of loation will not instantaneously updated. To or-
retly keep trak of events, the entral node will need to
ahe node loations to ensure onsisteny of event reports
in spae and time. Third, the plaement of the entral node
implies some preplanning to ensure that the node is easily
aessible by other nodes. Also, beause of the large volume
of traÆ to and from the entral node, the battery lifetime
of the nodes around the entral node will be seriously im-
pated. Fourth, the robustness of the system su�ers. If
the routes to the entral node are broken, the nodes will
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Table 5: RFM Power Charaterization
Mode Power

Level
OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mW mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

not be able to ommuniate their loation information to
the entral node and vie versa. Finally, sine all the raw
data is required, the data aggregation that an be performed
within the network to onserve ommuniation bandwidth
is minimal. One advantage of performing the omputation
at a entralized loation is that more rigorous loalization
algorithms an be applied suh as the one presented in [35℄.
Suh algorithms however require muh more powerful om-
putational apabilities than the ones available at low ost
sensor nodes. Overall, a entralized implementation will not
only redue the network lifetime but it will also inrease its
omplexity and ompromise its robustness. On the other
hand, if loation estimation takes plae at eah node in a
distributed manner the above problems an be alleviated.
Topology hanges will be handled loally and the loation
estimate at eah node an be updated at minimal ost. In
addition, the network an operate totally on loation based
routing so the implementation omplexity will be redued.
Also sine eah node is responsible for determining its loa-
tion, the loalization is more tolerant to node failures.

To evaluate energy onsumption tradeo�s between the en-
tralized and distributed approahes we run some simulations
on a typial sensor network setup. In our senario the en-
tral node is plaed at the enter of a square sensor �eld.
Furthermore, we assume the use of an ideal, medium aess
ontrol(MAC) and routing protools. The MAC protool is
ollision free and the routing protool always uses the short-
est route to the entral node. The total number of bytes
transmitted by all the nodes during both distributed and
entralized loalization is reorded. The network size var-
ied with the network density kept onstant by using a value
of � = 6 or 117 nodes for every 10,000m2 (from table 3).
The simulation setup onsiders the same paket sizes as the
implementation on the medusa nodes. For the entralized
system eah node forwards the range measurements between
all its neighbors. If the node is beaon it also forwards its
loation information (this is 96 bits long whih is equiva-
lent to a GPS reading). One the loation is omputed, the
entral node will forward the results bak to node the or-
responding unknown nodes. In the distributed setup, eah
node transmits a short beaon signal (radio and ultrasound
pulse) followed by the senders loation if the sender is a
beaon. In both ases, the simulation runs for one full yle
of the loalization proess(until all feasible unknown node

positions are resolved). The average number of transmitted
bytes for eah ase are shown in �gures 19 and 20 for 10%
and 20% beaon density respetively. The results shown in
the �gure are averages of over 100 simulations with random
node plaement following a uniform distribution.
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Figure 19: TraÆ in distributed and entralized im-
plementations with 10% beaons

Figure 21 shows the average energy onsumption per node
for the Medusa nodes when the radio transmission power
is set to 0.24mW. This result is based on the power har-
aterization of the Medusa nodes from the previous se-
tion. We also node that the energy overhead for the ultra-
sound based ranging is the same for both entralized and
distributed shemes therefore it is not inluded in the en-
ergy results presented here. These results show that in the
distributed setup has six to ten times less ommunioation
overhead than the entralized setup. Another interesting
trend to note is that in the entralized setup, network traf-
� inreases as the perentage of beaon nodes inreases. In
the distributed setup however, the traÆ dereases as the
perentage of beaon nodes inreases. This derease in traf-
� is mainly attributed to the fat that most of the times
the loalization proess an onverge faster if more beaon
nodes are available; hene less information exhange has to
take plae between the nodes.
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Figure 21: Average energy spent at a node during loalization with a) 10% beaons, b) 20% beaons
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Figure 20: TraÆ in distributed and entralized im-
plementations with 20% beaons

8. CONCLUSIONS
We have presented a new loalization sheme for wireless
ad-ho sensor networks. From our study we found that the
use of ToA ranging is a good andidate for �ne-grained lo-
alization as it is less sensitive to physial e�ets. Reeived
RF signal strength ranging on the other hand is not suit-
able for �ne-grained loalization. Furthermore, we onlude
that our �ne-grained loalization sheme should operate in
a distributed fashion. Although more aurate loation esti-
mations an be obtained with entralized implementation, a
distributed implementation will inrease the system robust-
ness and will result in a more even distribution of power
onsumption aross the network during loalization. Fur-
thermore, the implementation of our testbed proved to be
an indispensable tool for understanding and analyzing the
strengths and limitations of our approah. Although our
system performed very well for our experiments, we re-
ommend the use of a more powerful CPU on the on the

sensor nodes for the following reasons. First, RF and ul-
trasound ToA ranging requires the use of a dediated high
speed timer. In our implementation the 4MHz AVR miro-
ontroller is dediated to loalization and this is suÆient.
If however, the miroontroller is expeted to perform ad-
ditional tasks at the same time a higher performane pro-
essor is highly reommended. Based on our experiene, we
are urrently developing a seond generation of theMedusa

nodes. These nodes will be apable of performing hybrid
ranging by introduing the fusion of both ultrasoni ToA
ranging and reeived signal strength RF ranging. Finally,
in this initial study we found that the auray of iterative
multilateration is satisfatory for small networks but needs
to be improved for larger sale networks. To this end, as
part of our future work we plan to extend our algorithms
to ahieve better auray by limiting the error propagation
aross the network.
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