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ABSTRACT
The re
en t adv an
es in radio and em beddedsystem te
h-
nologies ha ve enabled the proliferation of wireless mi
ro-
sensor net w orks.Su
 h wirelessly 
onne
ted sensors are re-
leased in many div erse en vironments to perform various mon-
itoring tasks. In many su
 h tasks, lo
ation aw areness is in-
heren tly one of the most essen tial system parameters. It
is not only needed to report the origins of events, but also
to assist group querying of sensors, routing, and to answer
questions on the netw ork 
o verage.In this paper we presen t
a no vel approa
h to the lo
alization of sensors in an ad-
ho
 net w ork.We des
ribe a system 
alled AHLoS (Ad-Ho

Lo
alization System) that enables sensor nodes to dis
over
their lo
ations using a set distributed iterative algorithms.
The operation of AHLoS is demonstrated with an a

ura
y
of a few 
entimeters using our prototype testbed while s
al-
abilit y and performan
e are studied through simulation.

Keywords
lo
ation dis
overy, lo
alization, wireless sensor netw orks

1. INTRODUCTION

1.1 Sensor Networks and Location Discovery
No w ada ys, wireless devi
es enjoy widespread use in numer-
ous div erse appli
ations in
luding that of sensor netw orks.
The ex
iting new �eld of wir eless sensor networks breaks
aw ay from the traditional end-to-end 
ommuni
ation of voi
e
and data systems, and introdu
es a new form of distributed
information ex
hange. Myriads of tiny embedded devi
es,
equipped with sensing 
apabilities, are deplo yed in the en-
vironment and organize themselves in an ad-ho
 netw ork.
Information ex
hange among 
ollaborating sensors be
omes
the dominant form of 
ommuni
ation, and the netw ork es-
sentially beha vesas a large, distributed 
omputation ma-

hine. Appli
ations featuring su
h netw ork eddevi
es are
be
oming in
reasingly prevalen t, ranging from environmen-
tal and natural habitat monitoring, to home netw orking,

medi
al appli
ations and smart battle�elds. Net w ork ed sen-
sors 
an signal a ma
hine malfun
tion to the 
ontrol 
en ter
in a fa
tory , or alternatively w arn about smoke on a remote
forest hill indi
ating that a dangerous �re is about to start.
Other wireless sensor nodes 
an be designed to dete
t the
ground vibrations generated by the silen t footsteps of a 
at
burglar and trigger an alarm.

Naturally, the question that immediately follows the a
tual
dete
tion of events, is: wher e? Where are the abnormal vi-
brations dete
ted, where is the �re, whi
h house is about to
be robbed? T o answer this question, a sensor node needs
to possess knowledge of its physi
al lo
ation in spa
e. Fur-
thermore, in large s
ale ad-ho
 netw orks, knowledge of node
lo
ation 
an assist in routing [5℄ [6℄, it 
an be used to query
nodes o ver a spe
i
 geographi
alarea or it 
an be used to
study the 
overage properties of a sensor netw ork [31℄.Addi-
tionally, we envision that lo
ation aw areness developed here
will enjoy a wide spe
trum of appli
ations. In ta
ti
al envi-
ronments, it 
an be used to tra
k the movements of targets.
In a smart kindergarten [32℄ it 
an be used to monitor the
progress of 
 hildren by tra
 king their intera
tion with toys
and with ea
h other ; in hospitals it 
an keep tra
 k of equip-
ment, patien ts,do
tors and nurses or it 
an drive 
on text
aw are servi
es similar to the ones des
ribed in [4℄, [29℄.

The in
orporation of lo
ation aw arenessin wireless sensor
netw orks is far from a trivial task. Sin
e the netw ork 
an

onsist of a large number of nodes that are deployed in an
ad-ho
 fashion, the exa
t node lo
ations are not known a-
priori. Unfortunately, the straigh tforw ard solution of adding
GPS to all the nodes in the netw ork is not pra
ti
al sin
e:

� GPS 
annot work indoors or in the presen
e of dense
vegetation, foliage or other obsta
les that blo
 k the
line-of-sigh t from the GPS satellites.

� The pow er 
onsumption of GPS will redu
e the bat-
tery life on the sensor nodes thus redu
ing the e�e
tive
lifetime of the entire netw ork.

� The produ
tion 
ost fa
tor of GPS 
an be
ome an issue
when large numbers of nodes are to be produ
ed.

� The size of GPS and its antenna in
reases the sensor
node form fa
tor. Sensor nodes are required to be
small and inobstrusive.
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To this end, we seek an alternative solution to GPS that
is low 
ost, rapidly deployable and 
an operate in many di-
verse environments without requiring extensive infrastru
-
ture support.

Figure 1: WINS Sensor Node from RSC

1.2 Our Work
We propose a new distributed te
hnique that only requires a
limited fra
tion of the nodes (bea
ons) to know their exa
t
lo
ation (either through GPS or manual 
on�guration) dur-
ing deployment and that nevertheless 
an attain network-
wide �ne-grain lo
ation awareness. Our te
hnique, whi
h
we 
all AHLoS (Ad-Ho
 Lo
alization System), relieves the
drawba
ks of GPS as it is low 
ost, it 
an operate indoors
and does not require expensive infrastru
ture or pre-planning.
AHLoS enables nodes to dynami
ally dis
over their own lo-

ation through a two-phase pro
ess, ranging and estimation.
During the ranging phase, ea
h node estimates its distan
e
from its neighbors. In the estimation phase, nodes with un-
known lo
ations use the ranging information and known bea-

on node lo
ations in their neighborhood to estimate their
positions. On
e a node estimates its position it be
omes a
bea
on and 
an assist other nodes in estimating their posi-
tions by propagating its own lo
ation estimate through the
network. This pro
ess iterates to estimate the lo
ations of
as many nodes as possible.

The �rst part of our work examines the ranging 
hallenges.
Sin
e almost all ranging te
hniques rely on signal propaga-
tion 
hara
teristi
s, they are sus
eptible to external biases
su
h as interferen
e, shadowing and multipath e�e
ts, as
well as environmental variations su
h as 
hanges in tem-
perature and humidity. These physi
al e�e
ts are diÆ
ult
to predi
t and depend greatly on the a
tual environment in
whi
h the system is operated. It is therefore 
riti
al to 
har-
a
terize the behavior of di�erent ranging alternatives exper-
imentally in order to determine their usefulness in sensor
networks. To justify our rangining 
hoi
e we performed a de-
tailed 
omparison of two promising ranging te
hniques: one
based on re
eived RF signal strength and the other based on
the Time of Arrival (ToA) of RF and ultrasoni
 signals. Our
experiments of distan
e dis
overy with RF signal strength
were 
ondu
ted on the WINS wireless sensor nodes [12℄ (�g-
ure 1) developed by the Ro
kwell S
ien
e Center (RSC). To
perform our evaluation of ToA, we have designed and im-
plemented a testbed of ultrasound-equipped sensor nodes,


alled Medusa (from Greek mythology - a monster with
many heads) nodes (�gure 2). To address the variation of
propagation 
hara
teristi
s of ultrasound from pla
e to pla
e
AHLoS estimates the propagation 
hara
teristi
s on the 
y
in the a
tual deployment environment. The se
ond part of
our work uses the ranging te
hniques des
ribed above, to
develop a set of distributed lo
alization algorithms. Node
positions are estimated using least squares estimation in an
iterative multilateration pro
ess. This ability of AHLoS to
estimate node lo
ations in an ad-ho
 setting with a few 
en-
timeters a

ura
y is demonstrated on a testbed 
omprised
of �rst generation Medusa nodes. Error propagation, sys-
tem s
alability and energy 
onsumption are studied through
simulation.

Figure 2: Medusa experimental node

1.3 Paper Organization
This paper is organized as follows: In the next se
tion we
provide some ba
kground on lo
alization and we survey the
related work. Se
tion 3 presents the evaluation of our two

andidate ranging methods: Re
eived signal strength and
time of arrival. Se
tion 4 des
ribes the lo
alization algo-
rithms and se
tion 5 is a short study on node and bea
on
node pla
ement. In se
tion 6 we dis
uss our implementation
and experiments. Se
tion 7 dis
usses the tradeo�s between

entralized and distributed lo
alization and se
tion 8 
on-

ludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Background
The majority of existing lo
ation dis
overy approa
hes 
on-
sist of two basi
 phases: (1) distan
e (or angle) estimation
and (2) distan
e (or angle) 
ombining. The most popular
methods for estimating the distan
e between two nodes are:

� Re
eived Signal Strength Indi
ator (RSSI) te
h-
niques measure the power of the signal at the re
eiver.
Based on the known transmit power, the e�e
tive prop-
agation loss 
an be 
al
ulated. Theoreti
al and empiri-

al models are used to translate this loss into a distan
e
estimate. This method has been used mainly for RF
signals.
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� Time based methods (ToA,TDoA) re
ord the time-
of-arrival (ToA) or time-di�eren
e-of-arrival (TDoA).
The propagation time 
an be dire
tly translated into
distan
e, based on the known signal propagation speed.
These methods 
an be applied to many di�erent sig-
nals, su
h as RF, a
ousti
, infrared and ultrasound.

� Angle -of -Arrival (AoA) systems estimate the an-
gle at whi
h signals are re
eived and use simple geo-
metri
 relationships to 
al
ulate node positions.

A detailed dis
ussion of these methods 
an be found in [20℄.
For the 
ombining phase, the most popular alternatives are:

� The most basi
 and intuitive method is 
alled hyper-
boli
 tri-lateration. It lo
ates a node by 
al
ulating
the interse
tion of 3 
ir
les (�gure 3a).

� Triangulation is used when the dire
tion of the node
instead of the distan
e is estimated, as in AoA systems.
The node positions are 
al
ulated in this 
ase by using
the trigonometry laws of sines and 
osines (�gure 3b).

� The third method is Maximum Likelihood (ML) esti-
mation (�gure 3
). It estimates the position of a node
by minimizing the di�eren
es between the measured
distan
es and estimated distan
es. We have 
hosen
this te
hnique as the basis of AHLoS for obtaining the
Minimum Mean Square Estimate(MMSE) from a set
of noisy distan
e measurements.

Cosines Rule

Sines Rule

b

c

(a)

(c)

(b)

a

C

B

A

A

sina
= B

sinb
= C

sin


C
2 = A

2 + B
2 + 2AB
os(
)

B
2 = A

2 + C
2
� 2BC
os(b)

A2 = B2 + C2
� 2BC
os(a)

Figure 3: Lo
alization Basi
s a) Hyperboli
 tri-
lateration, b) Triangulation, 
) ML Multilateration

2.2 Related Work
In the past few de
ades, numerous lo
alization systems have
been developed and deployed. In the 1970s, the automati

vehi
le lo
ation (AVL) systems were deployed to determine
the position of poli
e 
ars and military ground transporta-
tion vehi
les. A set of stationary base stations a
ting as
observation points use ToA and TDoA te
hniques to gen-
erate distan
e estimates. The vehi
le position is then de-
rived through multilaterations, using Taylor Series Expan-
sion to transform a non-linear least squares problem to a

linear [7℄[8℄. Similar approa
hes 
an also be found in mili-
tary appli
ations for determining the position of airplanes.

In 1993, the well-known Global Positioning System (GPS)
[34℄ system was deployed, whi
h is based on the NAVSTAR
satellite 
onstellation (24 satellites). LORAN [28℄ operates
in a similar way to GPS but uses ground based bea
ons
instead of sattelites. In 1996, the U.S Federal Communi
a-
tions Commission (FCC) required that all wireless servi
e
providers give lo
ation information to the Emergen
y 911
servi
es. Cellular base stations are used to lo
ate mobile
telephone users within a 
ell [9℄[10℄. Distan
e estimates are
generated with TDoA. The base station transmits a bea-

on and the handset re
e
ts the signal ba
k to the base
station. Lo
ation information is again 
al
ulated by mul-
tilateration using least squares methods. By O
tober 2001,
FCC requires a 125-meter root mean square(RMS) a

ura
y
in 67% of the time and by O
tober 2006 a 300-meter RMS
a

ura
y for 95% of the times is required.

Re
ently, there has been an in
reasing interest for indoor lo-

alization systems. The RADAR system [1℄ 
an tra
k the lo-

ation of users within a building. To 
al
ulate user lo
ations
the RADAR system uses RF signal strength measurements
from three �xed base stations in two phases. First, a 
om-
prehensive set of re
eived signal strength measurements is
obtained in an o�ine phase to build a set of signal strength
maps. The se
ond phase is an online phase during whi
h
the lo
ation of users 
an be obtained by observing the re-

eived signal strength from the user stations and mat
hing
that with the readings from the o�ine phase. This pro
ess,
eliminates multipath and shadowing e�e
ts at the 
ost of

onsiderable preplanning e�ort.

The Cri
ket lo
ation support system [4℄ is also designed for
indoor lo
alization. It provides support for 
ontext aware
appli
ations and is low 
ost. Unlike the systems dis
ussed so
far, it uses ultrasound instead of RF signals. Fixed bea
ons
inside the building distribute geographi
 information to the
listener nodes. Cri
ket 
an a
hieve a granularity of 4 by 4
feet. Room level granularity 
an be obtained by the a
tive
badge [22℄ system, whi
h uses infrared signals. The next
development in this area on indoor lo
alization is BAT [29℄
[30℄. A BAT node 
arries an ultrasound transmitter whose
signals are pi
ked up by an array of re
eivers mounted on
the 
eiling. The lo
ation of a BAT 
an be 
al
ulated via
multilateration with a few 
entimeters of a

ura
y. An RF
base station 
oordinates the ultrasound transmissions su
h
that interferen
e from nearby transmitters is avoided. This
system relies heavily on a 
entralized infrastru
ture.

In the ad-ho
 domain, fewer lo
alization systems exist. An
RF based proximity method is presented in [21℄, in whi
h
the lo
ation of a node is given as a 
entroid. This 
entroid is
generated by 
ounting the bea
on signals transmitted by a
set of bea
ons pre-positioned in a mesh pattern. A di�erent
approa
h is taken in the Pi
oradio proje
t at UC Berkeley.
It provides a geolo
ation s
heme for an indoor environment
[11℄, based on RF re
eived signal strength measurements
and pre-
al
ulated signal strength maps.

Our system, AHLoS, also belongs to the ad-ho
 
lass. Al-
though uses RF and ultrasound transmissions similar to the
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Cri
ket and BAT Systems, it also has some key di�eren
es.
AHLoS does not rely on a preinstalled infrastru
ture. In-
stead, it is a fully ad-ho
 system with distributed lo
aliza-
tion algorithms running at every node. This results in a

exible system that only requires a small initial fra
tion of
the nodes to be aware of their lo
ations. Furthermore, it
enables nodes to estimate their lo
ations even if they are
not within range with the bea
on nodes. From a power
awareness perspe
tive, it also ensures that all nodes play an
equal role in the lo
ation dis
overy pro
ess resulting in an
even distribution of power 
onsumption. The resulting lo-

alization system provides �ne-grained lo
alization with an
a

ura
y of a few 
entimeters, similar to the BAT system
without requiring infrastru
ture support. Finally, unlike all
the systems dis
ussed so far, AHLoS provisions for dynami

on-line estimation of the ultrasound propagation 
hara
ter-
isti
s. This renders our approa
h extremely robust even in
the presen
e of 
hanging environments.

3. RESEARCH METHODOLOGY
As a �rst step in our study, we 
hara
terize the ranging 
a-
pabilities of our two target te
hnologies: Re
eived RF signal
strength using the WINS nodes and RF and ultrasound ToA
using the Medusa nodes.

3.1 Ranging Characterization

3.1.1 Received Signal Strength
The signal strength method uses the relationship of RF sig-
nal attenuation as a fun
tion of distan
e. From this rela-
tionship a mathemati
al propagation model 
an be derived.
From detailed studies of the RF signal propagation 
hara
-
teristi
s[18℄, it is well known that the propagation 
hara
-
teristi
s of radio signals 
an vary with 
hanges in the sur-
rounding environment (weather 
hanges, urban / rural and
indoor / outdoor settings). To evaluate signal strength mea-
surements we 
ondu
ted some experiments with the target
system of interest, the WINS sensor nodes [12℄. The WINS
nodes have a 200MHz StrongARM 1100 pro
essor, 1MB
Flash, 128KB RAM and the Hummingbird digital 
ordless
telephony (DECT) radio 
hipset that 
an transmit at 15
distin
t power levels ranging from -9.3 to 15.6 dBm (0.12 to
36.31 mW). The WINS nodes 
arry an omni-dire
tional an-
tenna hen
e the radio signal is uniformly transmitted with
the same power in all dire
tions around the node. As part
of the radio ar
hite
ture, the WINS nodes provide a pair of
RSSI (Re
eived Signal Strength Indi
ators) resisters. RSSI
registers are a standard feature in many wireless network

ards [23℄. Using these registers we 
ondu
ted a set of mea-
surements in order to derive an appropriate model for rang-
ing. We performed measurements in several di�erent set-
tings (inside our lab, in the parking lot and between build-
ings). Unfortunately, a 
onsistent model of the signal atten-
uation as a fun
tion of distan
e 
ould not be obtained. This
is mainly attributed to multipath, fading and shadowing ef-
fe
ts. Another sour
e of in
onsisten
y is the great variation
of RSSI asso
iated with the altitude of the radio antenna.
For instan
e, at ground level, the radio range at the max-
imum transmit power level the usable radio transmission
range is around 30m whereas when the node is pla
ed at
a height of 1.5m the usable transmission range in
reases to
around 100m. Be
ause of these in
onsisten
ies, we were only
able to derive a model for an idealized setting; in a football

�eld with all the nodes positioned at ground level. For this
setup we developed a model based on the RSSI register read-
ings at di�erent transmission power levels and di�erent node
separations.

A model (equation 1) is derived by obtaining a least square
�t for ea
h power level. PRSSI is the RSSI register reading
and r is the distan
e between two nodes. Parameters X and
n are 
onstants that 
an be derived as fun
tions of distan
e
r for ea
h power level. Averaged measurements and the

orresponding derived models are shown in �gure 4. Table
1 gives the X and n parameters for ea
h 
ase.

PRSSI =
X

rn
(1)
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Figure 4: Radio Signal Strength Radio Chara
teri-
zation using WINS nodes(power levels P=7,13)

Table 1: RSSI Ranging Model Parameters for WINS
nodes

Power Level dBm mW X n

7 2.5 1.78 21778.338 0.178186
13 14.4 27.54 25753.63 0.198641

With all the nodes pla
ed on a 
at plane, signal strength
ranging 
an provide a distan
e estimate with an a

ura
y
of a few meters. In all other 
ases, this experiment has
shown that the use of radio signal strength 
an be very
unpredi
table. Another problem with the re
eived signal
strength approa
h is that radios in sensor nodes are low 
ost
ones without pre
ise well-
alibrated 
omponents, su
h as the
DECT radios in Ro
kwell's nodes or the emerging Bluetooth
radios. As a result, it is not unusual for di�erent nodes to
exhibit signi�
ant variation in a
tual transmit power for the
same transmit power level, or in the RSSI measured for the
same a
tual re
eived signal strength. Di�eren
es of several
dBs are often seen. While these variations are a

eptable for
using transmit power adaptation and RSSI measurements
for link layer proto
ols, they do not provide the a

ura
y
required for �ne-grained lo
alization. A potential solution
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would be to 
alibrate ea
h node against a referen
e node
prior to deployment, and store gain fa
tors in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a 
ommon s
ale.

3.1.2 ToA using RF and Ultrasound
To 
hara
terize ToA ranging on the Medusa nodes we mea-
sure the time di�eren
e between two simultaneously trans-
mitted radio and ultrasound signals at the re
eiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distan
e measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a 
onve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher

ost and power premiums. The Polaroid 6500 ultrasoni

ranging module [17℄ for example has a range of more than
10 meters (the se
ond generation of Medusa nodes will have
a 10-15 meter range). We 
hara
terize ToA ranging by us-
ing two Medusa nodes pla
ed on the 
oor of our lab. We
re
orded the time di�eren
e of arrival at 25-
entimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distan
e in 
entimeters and the y
axis represent the mi
ro
ontroller timer 
ounter value.
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Figure 6: Ulrasound Ranging Chara
terization

The speed of sound is 
hara
terized in terms of the mi
ro-

ontroller timer ti
ks. To estimate the speed to sound as
a fun
tion of mi
ro
ontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer ti
ks, d is the estimated distan
e between 2

nodes and k is a 
onstant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system 
an provide an a

ura
y of 2 
entime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�e
ts. Fortu-
nately, they are easier to dete
t. ToA measurement use the
�rst pulse re
eived ensuring that the shortest path(straight
line) reading is observed. Re
e
ted pulses from nodes that
do not have dire
t line of sight are �ltered out using statis-
ti
al te
hniques similar to the ones used in [30℄.

3.2 Signal Strength vs. ToA ranging
On 
omparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than re
eived
signal strength. While re
eived signal strength is greatly af-
fe
ted by amplitude variations of the re
eived signal, ToA
ranging only depends on the time di�eren
e, a mu
h more
robust metri
. Based on our 
hara
terization results we

hose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation 
hara
-
teristi
s may 
hange with variations in the surrounding en-
vironment. To minimize these e�e
ts, AHLoS dynami
ally
estimates the signal propagation 
hara
teristi
s every time
suÆ
ient information is available. This ensures that AHLoS
will operate in many diverse environments without prior 
al-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation 
hara
teristi
s may vary from region
to region a
ross the �eld. The 
al
ulation of the ultrasound
propagation 
hara
teristi
s in the lo
ality of ea
h node en-
sures better lo
ation estimates a

ura
y. Table 2 summa-
rizes the 
omparison between signal strength and ultrasound
ranging. One possible solution we are 
onsidering for our
future work is to 
ombine re
eived signal strength and ToA
methods. Sin
e the re
eived signal strength method has
the same e�e
tive range as the radio 
ommuni
ation range,
it 
an be used to provide a proximity indi
ation in pla
es
where the network 
onne
tivity is very sparse for ToA lo
al-
ization to take pla
e. The ultrasound approa
h will provide
�ne grained lo
alization in denser parts of the networks. For
this 
on�guration, we plan to have the Medusa boards a
t
as lo
ation 
opro
essors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging te
hnology that estimates node separation
we now des
ribe our lo
alization algorithms. These algo-
rithms operate on an ad-ho
 network of sensor nodes where
a small per
entage of the nodes are aware of their positions
either through manual 
on�guration or using GPS. We re-
fer to the nodes with known positions as bea
on nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed lo
a-
tion dis
overy algorithms follow an iterative pro
ess. After
the sensor network is deployed, the bea
on nodes broad
ast
their lo
ations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broad
asted bea
on positions to estimate their own
positions. On
e an unknown node estimates its position,
it be
omes a bea
on and broad
asts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This pro
ess repeats until all the unknown
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Table 2: A 
omparison of RSSI and ultrasound ranging
Property RSSI Ultrasound

Range same as radio 
ommuni
ation range 3 meters (up to a few 10s of meters)
A

ura
y O(m), 2-4m for WINS O(
m), 2
m for Medusa
Measurement Reliability hard to predi
t, multipath and

shadowing
multipath mostly predi
table,time
is a more robust metri


Hardware Requirements RF signal strength must be avail-
able to CPU

ultrasound transdu
ers and ampli-
�er 
ir
uitry

Additional Power Requirements none tx and rx signal ampli�
ation
Challenges large varian
es in RSSI readings,

multipath, shadowing, fading ef-
fe
ts

interferen
e, obsta
les, multipath

nodes that satisfy the requirements for multilateration ob-
tain an estimate of their position. This pro
ess is de�ned
as iterative multilateration whi
h uses atomi
 multilatera-
tion as its main primitive. In the following subse
tions we
provide the details of atomi
 and iterative multilateration.
Furthermore, we des
ribe 
ollaborative multilateration as an
additional enhan
ed primitive for iterative multilateration
and we provide some suggestions for further optimizations.

4.1 Atomic Multilateration
Atomi
 multilateration makes up the basi
 
ase where an
unknown node 
an estimate its lo
ation if it is within range
of at least three bea
ons. If three or more bea
ons are avail-
able, the node also estimates the ultrasound speed of prop-
agation for its lo
ality. Figure 7a illustrates a topology for
whi
h atomi
 multilateration 
an be applied.

The error of the measured distan
e between an unknown
node and its ith bea
on 
an be expressed as the di�eren
e
between the measured distan
e and the estimated Eu
lidean
distan
e (equation 3). x0 and y0 are the estimated 
oordi-
nates for the unknown node 0 for i = 1; 2; 3:::N , where N is
the total number of bea
ons, and ti0 is the time it takes for
an ultrasound signal to propagate from bea
on i to node 0,
and s is the estimated ultrasound propagation speed.
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Figure 7: Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)2 + (yi � y0)2 (3)

Given that an adequate number of bea
on nodes are avail-
able, a Maximum Likelihood estimate of the node's position

an be obtained by taking the minimum mean square esti-
mate (MMSE) of a system of fi(x0; y0; s) equations (equa-
tion 4). Term � represents the weight applied to ea
h equa-
tion. For simpli
ity we assume that � = 1.

F (x0; y0; s) =
NX
i=1

�
2
f(i)2 (4)

If a node has three or more bea
ons a set of three equa-
tions of the form of (3) 
an be 
onstru
ted yield an over-
determined system with a unique solution for the position
of the unknown node 0. If four or more bea
ons are avail-
able, the ultrasound propagation speed s 
an also be esti-
mated. The resulting system of equations 
an be linearized
by setting fi(x0; y0; s) = equation 3, squaring and rearrang-
ing terms to obtain equation 5.

�x2i � y
2
i =

(x20 + y
2
0) + x0(�2xi) + y0(�2yi)� s

2
t
2
i0

(5)

for k su
h equations we 
an eliminate the (x20 + y20) terms
by subtra
ting the kth equation from the rest.

�x2i � y
2
i + x

2
k + y

2
k = 2xo(xk � xi)

+2y0(yk � yi) + s
2(tik

2 � ti0
2)

(6)

this system of equations has the form y = bX and 
an be
solved using the matrix solution for MMSE [25℄ given by
b = (XTX)�1XT y where
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X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

Based on this solution we de�ne the following requirement
for atomi
 multilateration.

Requirement 1. Atomi
 multilateration 
an take pla
e
if the unknown node is within one hop distan
e from at least
three bea
on nodes. The node may also estimate the ultra-
sound propagation speed if four or more bea
ons are avail-
able.

Although requirement 1 is ne
essary for atomi
 multilater-
ation, it is not always suÆ
ient. In the spe
ial 
ase when
bea
ons are in a straight line, a position estimate 
annot be
obtained by atomi
 multilateration. If this o

urs, the node
will attempt to estimate its position using 
ollaborative mul-
tilateration. We also note that atomi
 multilateration 
an
be performed in 3-D without requiring an additional bea
on
[33℄.

4.2 Iterative Multilateration
The iterative multilateration algorithm uses atomi
 multilat-
eration as its main primitive to estimate node lo
ations in
an ad-ho
 network. This algorithm is fully distributed and

an run on ea
h individual node in the network. Alterna-
tively, the algorithm 
an also run at a single 
entral node or
a set of 
luster-heads, if the network is 
luster based. Fig-
ure 8 illustrates how iterative multilateration would exe
ute
from a 
entral node that has global knowledge of the net-
work. The algorithm operates on a graphG whi
h represents
the network 
onne
tivity. The weights of the graph edges
denote the separation between two adja
ent nodes. The al-
gorithm starts by estimating the position of the unknown
node with the maximum number of bea
ons using atomi

multilateration. Sin
e at a 
entral lo
ation all the the entire
network topology is known so we start from the unknown
node with the maximum number of bea
ons to obtain better
a

ura
y and faster 
onvergen
e (in the distributed version
an unknown will perform a multilateration as soon as in-
formation from three bea
ons). When an unknown node
estimates its lo
ation, it be
omes a bea
on. This pro
ess
repeats until the positions of all the nodes that eventually

an have three or more bea
ons are estimated.

boolean iterativeMultilateration (G)
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

while Bea
onCount � 3
setBea
on (MaxBea
onNode)
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

Figure 8: Iterative Multilateration Algorithm as it
exe
utes on a 
entralized node

A drawba
k of iterative multilateration is the error a

u-
mulation that results from the use of unknown nodes that
estimate their positions as bea
ons. Fortunately, this error
a

umulation is not very high be
ause of the high pre
ision
of our ranging method. Figure 9 shows the position errors
in a simulated network of 50 Medusa nodes when 10% of
the nodes are initially 
on�gured as bea
ons. The nodes are
deployed on a square grid of side 15 meters. The simulation

onsiders two types of errors: 1) ranging errors and 2) bea-

on pla
ement errors. In both 
ases a 20mm white Gaussian
error is used. In both 
ases the estimated node positions are
within 20 
m from the a
tual positions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12 13 16 18 20 21 24 26 28 31 34 36 38 40 42 44 47 49

Node Id

E
rr

o
r

D
is

ta
n

c
e

(m
)

Ranging Error Ranging + Beacon Error

Figure 9: Iterative Multilateration A

ura
y in a
network of 50 nodes and 10% bea
ons

4.3 Collaborative Multilateration
In an ad-ho
 deployment with random distribution of bea-

ons, it is highly possible that at some nodes, the 
ondi-
tions for atomi
 multilateration will not be met; i.e. an
unknown node may never have three neighboring bea
on
nodes therefore it will not be able to estimate its position
using atomi
 multilateration. When this o

urs, a node may
attempt to estimate its position by 
onsidering use of lo
a-
tion information over multiple hops in a pro
ess we refer
to as 
ollaborative multilateration. If suÆ
ient information
is available to form an over-determined system of equations
with a unique solution set, a node 
an estimate its position
and the position of one or more additional unknown nodes
by solving a set of simultaneous quadrati
 equations. Fig-
ure 7b illustrates one of the most basi
 topologies for whi
h

ollaborative multilateration 
an be applied. Nodes 2 and 4
are unknown nodes, while nodes 1,3,5,6 are bea
on nodes.
Sin
e both nodes 2 and 4 have three neighbors (degree d = 3)
and all the other nodes are bea
ons, a unique position es-
timate for nodes 2 and 4 
an be 
omputed. More formally,

ollaborative multilateration 
an be stated as follows: Con-
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sider the ad-ho
 network to be a 
onne
ted undire
ted graph
G = (N;E) 
onsisting of jN j = n nodes and a set E of n�1
or more edges. The bea
on nodes are denoted by a set B
where B � N and the set of unknown nodes is denoted by
U where U � G. Our goal is to solve for

xu; yu 8u � U by minimizing

f(xu; yu) = Diu �
p
(xi � xu)2 + (yi � yu)2 (7)

for all parti
ipating node pairs i; u where i � B or i � U
and u � U . Subje
t to:
xi; yi are known if i � B, and every node pair i; u is a
parti
ipating pair. Parti
ipating nodes and parti
ipating
pair are de�ned as follows:

Definition 1. A node is a parti
ipating node if it is ei-
ther a bea
on or if it is an unknown with at least three par-
ti
ipating neighbors.

In �gure 7b if 
ollaborative multilateration starts at node
2, node 2 must have at least three parti
ipating neighbors.
Nodes 1 and 3 are bea
ons therefore they are parti
ipating.
Node 4 is unknown but has two bea
ons: nodes 5 and 6.
Node 4 is also 
onne
ted to node 2 thus making both of
them parti
ipating nodes.

Definition 2. A parti
ipating node pair is a bea
on-unknown
or unknown-unknown pair of 
onne
ted nodes where all un-
knowns are parti
ipating.

In this formulation, the nodes parti
ipating in 
ollabora-
tive multilateration make up a subgraph of G, for whi
h an
equation of the form of 7 
an be written for ea
h edge E
that 
onne
ts a pair of parti
ipating nodes. To ensure a
unique solution, all nodes 
onsidered must be parti
ipating.
In �gure 7b for example, we have �ve edges thus a set of
�ve equations 
an be obtained. In some 
ases other 
ases ,
we may have a well-determined system of n equations and
n unknowns su
h as in the 
ase shown �gure 7
. We 
an
easily observe however, that node X 
an have two possible
positions that would satisfy this system therefore the solu-
tion is not unique and node X is not a parti
ipating node. If
the above 
onditions are met, the resulting system of non-
linear equations 
an be solved with optimization methods
su
h as gradient des
end [26℄ and simulated annealing [27℄.

The algorithm in �gure 10 provides a basi
 example of how
a node determines whether it 
an initiate 
ollaborative mul-
tilateration. The parameter node denotes the node id from
where the sear
h for a 
ollaborative multilateration begins.
The se
ond parameter 
allerId holds the node id of the node
that 
alls the parti
ular instan
e of the fun
tion. isInitia-
tor is a boolean variable that is set to true if the node was
the initiator of the 
ollaborative multilateration pro
ess and
false otherwise. This is used to set the limit 
ag that drives
the re
ursion.

boolean isCollaborative (node, 
allerId, isInitiator)
if isInitiator==true limit  3
else limit  2

ount  bea
onCount(node)
if 
ount � limit return true
for ea
h unknown neighbor i not previously visited
if isCollaborative (i, node, false) 
ount++
if 
ount == limit return true

return false

Figure 10: Algorithm for 
he
king the feasibility for

ollaborative multilateration

Collaborative multilateration 
an be used to assist iterative
multilateration in pla
es of the network where the bea
on
density is low and the requirement for atomi
 multilateration
is not satis�ed. Figure 11 illustrates how iterative multi-
lateration would 
all 
ollaborative multilateration when the
requirement for atomi
 multilateration is not met.

boolean iterativeMultilateration (G)
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

while Bea
onCount � 3
setBea
on (MaxBea
onNode)
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

while isCollaborative (MaxBea
onNode, -1, true)
set all nodes in 
ollaborative set as bea
ons
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

while Bea
onCount � 3
setBea
on (MaxBea
onNode)
(MaxBea
onNode, Bea
onCount)  unknown
node with most bea
ons

Figure 11: Enhan
ed Iterative Multilateration

Collaborative multilateration 
an help in situations where
the per
entage of bea
ons is low. This e�e
t is shown in
�gure 12. This s
enario 
onsiders a sensor �eld of 100 by
100 and a sensing range of 10 and two network sizes of 200
and 300 nodes. As shown in the �gure, if the per
entage of
bea
ons is small, the number of node lo
ations that 
an be
resolved is substantially in
reased with 
ollaborative mul-
tilateration. This result also shows how network density is
related to the lo
alization pro
ess. In the 300 node network,
more node lo
ations 
an be estimated than in the 200 node
network with the same per
entage of bea
ons. This is due
to the higher degree of 
onne
tivity. The e�e
ts of node and
bea
on pla
ement on the lo
alization pro
ess is studied in
more detail in se
tion 5.

4.4 Further Optimizations
The a

ura
y of the estimated lo
ations in the multilater-
ation algorithms des
ribed in this se
tion may be further
improved with two additional optimizations. First, error
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Figure 12: E�e
t of 
ollaborative multilateration top, 300 nodes, bottom 200 nodes

propagation 
an be redu
ed by using weighted multilatera-
tion. In this s
heme, bea
ons with higher 
ertainty about
their lo
ation are weighted more than bea
ons with lower

ertainty during a multilateration. As new nodes be
ome
bea
ons, the 
ertainty of their estimated lo
ation 
an also
be 
omputed and used as a weight in future multilaterations.
Additionally, by applying 
ollaborative multilateration over
a wider s
ope, the a

umulated error 
an be redu
ed. The
solution methodology and further evaluation of these opti-
mizations are part of our future work and will be the subje
t
of a future paper.

5. NODE AND BEACON PLACEMENT
The su

ess of the lo
ation dis
overy algorithm depends on
network 
onne
tivity and bea
on pla
ement. In this se
tion,
we 
ondu
t a brief probabilisti
 analysis to determine how
the 
onne
tivity requirements 
an be met when nodes are
uniformly deployed in a �eld. Based on these results, we
later perform a statisti
al analysis to get an indi
ation on
the per
entage of bea
ons required. When 
onsidering node
deployment, the main metri
 of interest is the probability
with whi
h any node in the network has a degree of three or
more, assuming that sensor nodes are uniformly distributed
over the sensor �eld. In a network of N nodes deployed in a
square �eld of side L, the probability P (d) of a node having
degree d is given by the binomial distribution in equation 8
and the probability PR being in transmission range.

P (d) = P
d

R:(1� PR)
N�d�1

:

 
N � 1

d

!
(8)

PR =
�R2

L2
(9)

For large values of N tending to in�nity, the above bino-
mial distribution 
onverges to a Poisson distribution. When
taking into a

ount that � = N:PR we get equation 10, the

probability of a node have degree of three or more 
an be

al
ulated. Also, an indi
ation of the number of nodes re-
quired per unit area 
an be 
al
ulated in terms of �. Table
3 shows the number of nodes required to 
over a square �eld
of size L = 100 and range R = 10 as well as the probabil-
ity for a node to have degree greater than three or four for
di�erent values of �. These probabilities are obtained from
equation 11.

P (d) =
�d

d!
:e
�� (10)

P (d � n) = 1�
n�1X
i=0

P (i) (11)

Table 3: Probability of node degree for di�erent �
values

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392

The 
onne
tivity results in �gure 13 show the probabilities of
a node having 0,1,2 or 3 and more neighbors. In addition to
node 
onne
tivity, we determine per
entage of initial bea-

on nodes required for the 
onvergen
e of the lo
alization
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Figure 13: Conne
tivity result for a 100 x 100 �eld
and sensor range 10

algorithm by statisti
al analysis. Using the same network
setup as before, we report the per
entage of nodes that es-
timate their lo
ations while varying the per
entage of nodes
and bea
ons. The results in �gure 14 are the averages over
100 simulations. The �gure shows the per
entage of bea-

ons required to 
omplete the iterative multilateration pro-

ess using only atomi
 multilaterations. We note that the
per
entage of required bea
ons de
reases as network den-
sity in
reases. Also as the network density in
reases, the
transitions in the required number of bea
ons be
ome mu
h
sharper sin
e the addition of a few more bea
on nodes rein-
for
es the progress of the iterative multilateration algorithm.
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Figure 14: Bea
on Requirements for di�erent node
densities

6. IMPLEMENTATION AND EXPERIMEN­

TATION

6.1 Medusa Node Architecture
TheMedusa node design (�gure 2) is based on the AVR 8535
pro
essor [13℄ whi
h 
arries 8KB of 
ash memory, 512 bytes
SRAM and 512 bytes of EEPROM memory. The radio we
use is the DR3000 radio module from RF Monolithi
s[14℄.
This radio supports two data rates (2.4 and 19.2 kbps) and
two modulation s
hemes (ASK and OOK). The ultrasound


ir
uitry 
onsists of six (60 degree dete
t angle) pairs of
40KHz ultrasoni
 transdu
ers arranged in a hexagonal pat-
tern at the 
enter of the board (note that for experimental
purposes the Medusa node in �gure 2 has 8 transdu
ers).
Ea
h ultrasound trans
eiver is supported by a pair of solid

ore wires at an approximate height of 15 
m above the
printed 
ir
uit board. We found this very 
onvenient setup
for experimentation sin
e it allows the trans
eivers to be ro-
tated in di�erent dire
tions. The �rst generation board is
3" x 4" and it is powered by a 9V battery. The Medusa
�rmware is based on an event driven �rmware implementa-
tion suggested in [15℄. The radio 
ommuni
ation proto
ols
use a variable size framing s
heme, 4-6 bit en
oding [16℄
and 16 bit CRC. The 
ode for ranging is integrated in the
ad-ho
 routing proto
ol des
ribed in the next subse
tion.

6.2 Location Information Dissemination and

Routing
In our experimental setup all measurements from the nodes
are forwarded to a PC basestation. To route messages to
the base station, we implemented a lightweight version of
the DSDV [19℄ routing algorithm, whi
h we refer to as DS-
DVlite. Instead of maintaining a routing table with the
next hop information to every node, DSDVlite only main-
tains a short routing table that holds next hop information
for the shortest route to gateway. Furthermore, this algo-
rithm drives the lo
alization pro
ess by 
arrying the lo
ation
information of bea
ons, and by ensuring that the re
eived ul-
trasound bea
on signals originate from the same sour
e node
as the radio signals. The ultrasound bea
on signal transmis-
sion begins right after the transmission of the start symbol
for ea
h routing pa
ket. After this, the transmission of data
and ultrasound signals pro
eed simultaneously. By ensuring
that the duration of the data transmission is longer than the
ultrasound transmission, the re
eiver 
an di�erentiate be-
tween erroneous ultrasound transmissions from other nodes.
If the data pa
ket is not 
orre
tly re
eived be
ause of a 
ol-
lision with another transmission, it also implies a 
ollision of
ultrasound signals hen
e the ultrasound time measurement
is dis
arded.

Figure 15: 9 node s
enario
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6.3 Experimental Setup
Our experimental testbed 
onsists of 9 Medusa nodes and a
Pentium II 300MHz PC. One node is 
on�gured as a gateway
and it is atta
hed to the PC through the serial port. Some
of the nodes are pre-programmed with their lo
ations and
they a
t as bea
ons. All the nodes perform ranging and they
transmit all the ranging information to the PC that runs
the lo
alization algorithms and displays the node positions
on a sensor visualization tool. The node positions on the
sensor visualization tool are updated at 5-se
ond intervals.
Figures 16 and 15 show some snapshots of node lo
ations.
The bea
ons are shown as bla
k dots, the unknown nodes
are white 
ir
les and the node position estimates are shown
as gray dots. In all of our experiments all the node position
estimates for ea
h unknown node always fall within the 3"
x 4" surfa
e area of the Medusa boards.

Figure 16: 5 node s
enario

6.4 Power Characterization
In the previous subse
tion we veri�ed the 
orre
t operation
of our lo
alization system. Our experimental setup will pro-
vide a reasonable solution for a small network but as the
network s
ales, the traÆ
 to the 
entral gateway node will
in
rease substantially. Before we 
an evaluate the trade-
o�s between estimating lo
ations at the nodes and estimat-
ing lo
ations at a 
entral node we �rst 
hara
terize power

onsumption of the Medusa nodes at di�erent operational
modes. Using an HP 1660 Logi
 Analyzer, a ben
h power
supply and a high pre
ision resistor we 
hara
terized the
RFM radio and the AVR mi
ro
ontroller on the Medusa
nodes.
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Figure 17: Power and Energy Relationships and
Measurement Setup

The measurement setup and power/energy relationships are

shown in �gure 17. The power 
onsumption for di�erent
modes of the AVR mi
ro
ontroller are shown in table 4.
The power 
onsumption for the di�erent modes of the RFM
radio are shown in �gure 18 and table 5.

Table 4: AVR 8535 Power Chara
terization
AVR Mode Current Power

A
tive 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W
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Figure 18: RFM Radio power 
onsumption at dif-
ferent operational modes

7. TRADEOFFS BETWEEN CENTRALIZED

AND DISTRIBUTED SCHEMES
One important aspe
t that needs to be determined is whether
the lo
ation estimation should be done in a 
entralized or
distributed fashion. In the former 
ase, all the ranging mea-
surements and bea
on lo
ations are 
olle
ted to a 
entral
base station where the 
omputation takes pla
e and the re-
sults are forwarded ba
k to the nodes. In the latter, ea
h
node estimates its own lo
ation when the requirements for
atomi
 multilateration are met. For the AHLoS system, we
advo
ate that distributed 
omputation would be a better

hoi
e sin
e a 
entralized approa
h has several drawba
ks.
First, to forward the lo
ation information to a 
entral node,
a route to the 
entral node must be known. This implies the
use of a routing proto
ol other than lo
ation based routing
and also in
urs some additional 
ommuni
ation 
ost whi
h
is also a�e
ted by the eÆ
ien
y of the existing routing and
media a

ess 
ontrol proto
ols. Se
ond, a 
entralized ap-
proa
h, 
reates a time syn
hronization problem. Whenever
there is a 
hange in the network topology the node's knowl-
edge of lo
ation will not instantaneously updated. To 
or-
re
tly keep tra
k of events, the 
entral node will need to

a
he node lo
ations to ensure 
onsisten
y of event reports
in spa
e and time. Third, the pla
ement of the 
entral node
implies some preplanning to ensure that the node is easily
a

essible by other nodes. Also, be
ause of the large volume
of traÆ
 to and from the 
entral node, the battery lifetime
of the nodes around the 
entral node will be seriously im-
pa
ted. Fourth, the robustness of the system su�ers. If
the routes to the 
entral node are broken, the nodes will
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Table 5: RFM Power Chara
terization
Mode Power

Level
OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mW mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

not be able to 
ommuni
ate their lo
ation information to
the 
entral node and vi
e versa. Finally, sin
e all the raw
data is required, the data aggregation that 
an be performed
within the network to 
onserve 
ommuni
ation bandwidth
is minimal. One advantage of performing the 
omputation
at a 
entralized lo
ation is that more rigorous lo
alization
algorithms 
an be applied su
h as the one presented in [35℄.
Su
h algorithms however require mu
h more powerful 
om-
putational 
apabilities than the ones available at low 
ost
sensor nodes. Overall, a 
entralized implementation will not
only redu
e the network lifetime but it will also in
rease its

omplexity and 
ompromise its robustness. On the other
hand, if lo
ation estimation takes pla
e at ea
h node in a
distributed manner the above problems 
an be alleviated.
Topology 
hanges will be handled lo
ally and the lo
ation
estimate at ea
h node 
an be updated at minimal 
ost. In
addition, the network 
an operate totally on lo
ation based
routing so the implementation 
omplexity will be redu
ed.
Also sin
e ea
h node is responsible for determining its lo
a-
tion, the lo
alization is more tolerant to node failures.

To evaluate energy 
onsumption tradeo�s between the 
en-
tralized and distributed approa
hes we run some simulations
on a typi
al sensor network setup. In our s
enario the 
en-
tral node is pla
ed at the 
enter of a square sensor �eld.
Furthermore, we assume the use of an ideal, medium a

ess

ontrol(MAC) and routing proto
ols. The MAC proto
ol is

ollision free and the routing proto
ol always uses the short-
est route to the 
entral node. The total number of bytes
transmitted by all the nodes during both distributed and

entralized lo
alization is re
orded. The network size var-
ied with the network density kept 
onstant by using a value
of � = 6 or 117 nodes for every 10,000m2 (from table 3).
The simulation setup 
onsiders the same pa
ket sizes as the
implementation on the medusa nodes. For the 
entralized
system ea
h node forwards the range measurements between
all its neighbors. If the node is bea
on it also forwards its
lo
ation information (this is 96 bits long whi
h is equiva-
lent to a GPS reading). On
e the lo
ation is 
omputed, the

entral node will forward the results ba
k to node the 
or-
responding unknown nodes. In the distributed setup, ea
h
node transmits a short bea
on signal (radio and ultrasound
pulse) followed by the senders lo
ation if the sender is a
bea
on. In both 
ases, the simulation runs for one full 
y
le
of the lo
alization pro
ess(until all feasible unknown node

positions are resolved). The average number of transmitted
bytes for ea
h 
ase are shown in �gures 19 and 20 for 10%
and 20% bea
on density respe
tively. The results shown in
the �gure are averages of over 100 simulations with random
node pla
ement following a uniform distribution.
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Figure 19: TraÆ
 in distributed and 
entralized im-
plementations with 10% bea
ons

Figure 21 shows the average energy 
onsumption per node
for the Medusa nodes when the radio transmission power
is set to 0.24mW. This result is based on the power 
har-
a
terization of the Medusa nodes from the previous se
-
tion. We also node that the energy overhead for the ultra-
sound based ranging is the same for both 
entralized and
distributed s
hemes therefore it is not in
luded in the en-
ergy results presented here. These results show that in the
distributed setup has six to ten times less 
ommunio
ation
overhead than the 
entralized setup. Another interesting
trend to note is that in the 
entralized setup, network traf-
�
 in
reases as the per
entage of bea
on nodes in
reases. In
the distributed setup however, the traÆ
 de
reases as the
per
entage of bea
on nodes in
reases. This de
rease in traf-
�
 is mainly attributed to the fa
t that most of the times
the lo
alization pro
ess 
an 
onverge faster if more bea
on
nodes are available; hen
e less information ex
hange has to
take pla
e between the nodes.
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Figure 21: Average energy spent at a node during lo
alization with a) 10% bea
ons, b) 20% bea
ons

0

100

200

300

400

500

600

700

800

900

B
y
te

s
T

ra
n

s
m

it
te

d
(t

h
o

u
s
a
n

d
s
)

100 200 300 400 500 600 700

Network Size

Distributed Centralized

Figure 20: TraÆ
 in distributed and 
entralized im-
plementations with 20% bea
ons

8. CONCLUSIONS
We have presented a new lo
alization s
heme for wireless
ad-ho
 sensor networks. From our study we found that the
use of ToA ranging is a good 
andidate for �ne-grained lo-

alization as it is less sensitive to physi
al e�e
ts. Re
eived
RF signal strength ranging on the other hand is not suit-
able for �ne-grained lo
alization. Furthermore, we 
on
lude
that our �ne-grained lo
alization s
heme should operate in
a distributed fashion. Although more a

urate lo
ation esti-
mations 
an be obtained with 
entralized implementation, a
distributed implementation will in
rease the system robust-
ness and will result in a more even distribution of power

onsumption a
ross the network during lo
alization. Fur-
thermore, the implementation of our testbed proved to be
an indispensable tool for understanding and analyzing the
strengths and limitations of our approa
h. Although our
system performed very well for our experiments, we re
-
ommend the use of a more powerful CPU on the on the

sensor nodes for the following reasons. First, RF and ul-
trasound ToA ranging requires the use of a dedi
ated high
speed timer. In our implementation the 4MHz AVR mi
ro-

ontroller is dedi
ated to lo
alization and this is suÆ
ient.
If however, the mi
ro
ontroller is expe
ted to perform ad-
ditional tasks at the same time a higher performan
e pro-

essor is highly re
ommended. Based on our experien
e, we
are 
urrently developing a se
ond generation of theMedusa

nodes. These nodes will be 
apable of performing hybrid
ranging by introdu
ing the fusion of both ultrasoni
 ToA
ranging and re
eived signal strength RF ranging. Finally,
in this initial study we found that the a

ura
y of iterative
multilateration is satisfa
tory for small networks but needs
to be improved for larger s
ale networks. To this end, as
part of our future work we plan to extend our algorithms
to a
hieve better a

ura
y by limiting the error propagation
a
ross the network.
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