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Dynamic Finite Element Modelling and Free Vibration 

Analysis of Delaminated Composite Beams 

Abstract 

Nicholas Erdelyi, Master of Applied Science, Aerospace Engineering 

Ryerson University, Toronto, 2012 

 

The requirement for accurate analysis tools to predict the behaviour of delaminated 

composites has grown and will continue to grow into the future, due to the high demand of 

these materials on major structural components. In the following, a detailed analysis of single- 

and double-delaminated beams is made, using traditional finite element techniques, as well as 

two dynamic element-based techniques. The Dynamic Stiffness Matrix (DSM) and Dynamic 

Finite Element (DFE) techniques introduce the concept of frequency-dependent stiffness 

matrices and shape functions, respectively, and have been documented to exhibit excellent 

convergence qualities when compared to traditional finite elements. Current trends in the 

literature are critically examined, and insight into different types of modeling techniques and 

constraint types are introduced. In particular, the continuity (both kinematic and force) 

conditions at delamination tips plays a large role in each model’s formulation. In addition, the 

data previously available from a commercial finite element suite are also utilized to validate the 

natural frequencies of the systems analyzed here. Beam element-based techniques are used 

and the results are compared to those obtained using the dynamic element techniques and 

data from the literature. In each case excellent agreement between different techniques was 

observed.  Finally, general concluding remarks are made on the usefulness of the presented 

theories, and some comments are made on the future work of this research path. 
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𝑖 

Nomenclature 

Beam segment number 

𝑥𝑖 Axial coordinate of beam segment i 

𝐿𝑖 Length of beam segment i 

𝜉 𝑥/𝐿 

𝑊�𝑖 Actual transverse displacement 

𝑤𝑖 Assumed transverse displacement 

𝑊𝑖 Frequency-domain magnitude of 𝑤𝑖 

𝜔 Circular frequency of excitation 

𝐸𝐼𝑖  Bending stiffness of beam segment i 

𝐸𝐴𝑖 Axial stiffness of beam segment i 

𝜌𝑖 Mass per unit length of beam segment i 

𝐴𝑖  Cross-sectional area of beam segment i 

𝑎 Delamination length 

𝜆 Non-dimensional frequency  𝜆2 = 𝜔2𝜌𝐴
𝐸𝐼

𝐿4 

(∙)′ 𝑑(∙)
𝑑𝑥

 

𝑀 Bending moment 

𝑆 Shear force 

𝑃 Axial force 

{∙} Column vector 

〈∙〉 Row vector 

[∙] 2-dimensional matrix 

𝑭 Column vector of nodal forces 

𝑲 Stiffness matrix 

𝒖 Column vector of nodal displacements 

 

 



1 
 

1. 

Layered structures have seen greatly increased use in civil, shipbuilding, mechanical and 

aerospace structural applications in recent decades, primarily due to their many attractive 

features, such as high specific stiffness, high specific strength, good buckling resistance, and 

formability into complex shapes, to name a few. The replacement of traditionally metallic 

structural components with laminated composites has resulted in new and unique design 

challenges. Metallic structures exhibit mainly isotropic material properties and failure modes. 

By contrast, sandwich/composite materials are anisotropic, which can result in more complex 

failure modes. Delamination is a common failure mode in layered structures. It may arise from 

manufacturing defects, loss of adhesion between two layers of the structure, from interlaminar 

stresses arising from geometric or material discontinuities, or from mechanical loadings. The 

presence of delamination may significantly reduce the stiffness and strength of the structures. 

A reduction in the stiffness will affect the vibration characteristics of the structures, such as the 

natural frequencies and mode shapes. Changes in the natural frequency, as a direct result of 

the reduction of stiffness, may lead to resonance if the reduced frequency is close to an 

excitation frequency.  

Introduction 

The dynamic modeling of flexible delaminated multi-layer beams has been a topic of 

interest for many researchers. With the increased use of laminated composite structures, the 

requirement for accurate delamination models has also grown. The most common 

delamination models, first formulated in the 1980s [49], dealt with the vibration of two-layer 

sandwich beams, where layers were governed by the Euler-Bernoulli bending beam theory.  

The upper and lower intact portions of the delaminated segment were assumed to vibrate 

freely – independent of each other; as a result this model is known as ‘free mode’ 

delamination. It was later discovered that the free mode under-predicted natural frequencies 

for off-midplane delaminations due to unrestricted penetration of the beams into each other. 

This was accounted for in 1988 by Mujumdar [35] by constraining the transverse displacements 

of the top and bottom beams to be equal. The resulting model, known as the ‘constrained 

mode’ delamination model, predicts vibration behaviour much more accurately for off-
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midplane delamination. However, in modeling terms, the constrained mode implementation 

results in additional system constraints, leading to increased system stiffness and a possible 

over-prediction of natural frequencies. As well, the ability to capture opening delamination 

modes – where the layers separate from each other – which is commonly seen in experimental 

analysis [31, 43, 47], is lost when using the constrained model. Thus, in the work to follow, the 

free delamination model will be utilized. Another result of Mujumdar’s work [35] was the rigid 

connector assumption. The assumption states that, for the beam models presented, the 

delamination faces, which are planar and normal to the neutral axis of the undeformed beam, 

remain planar (and normal) to the neutral axis of the deformed beam. This assumption, 

visualized in Figure 1, produces a set of kinematic and force continuity conditions at the 

delamination tips. It is also worth noting that, in general, a laminated composite beam may 

have orthotropic, layer-wise material properties, resulting in displacement coupling behaviour. 

The model used in this work assumes an isotropic or homogenized material, and is not 

immediately applicable to fibre-reinforced laminated composite beams with arbitrary lay-up 

patterns, as there would, in general, be a torsional and/or extensional response coupled with 

flexural vibration [20-22]. Work on extending the presented theory to include these effects has 

begun, and will be a topic for future research.  

 

Figure 1 – Soft and rigid delamination connectors for a through-width midplane delamination. The 
originally planar delamination faces are visualized post-deformation. 

The accuracy of vibration analysis and forced response calculation of a flexible structure 

depends greatly on the reliability of the modal analysis method used and the resulting natural 

frequencies and modes. There are various analytical, semi-analytical and numerical methods to 
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predict the natural frequencies and mode shapes of such a system. Several exact solution 

methods exist for well-defined systems, such as delaminated uniform isotropic beams with 

constant geometric and material properties. Single [13, 14, 16, 45, 47], multiple [17, 44], and 

various overlapping and enveloped [15] delamination conditions in space and on various elastic 

media, such as Pasternak soil [23] have been studied using analytical solution methods. Some 

work has also been done on delaminated sandwich structures [24], albeit with some 

mathematical simplification. These solution methods generally use the same procedure as 

Mujumdar [35] to formulate the kinematic continuity conditions across the delamination tips. 

The power of this type of formulation lies in the ability to be applied to any number of different 

system configurations. However, a potential drawback to this procedure is that the system 

equation must be re-formulated after any configuration change, potentially limiting its 

applicability. 

The conventional Finite Element Method (FEM) has a long, well-established history and 

is one of the most commonly used methods for modal analysis. The FEM is a general systematic 

approach to formulate the element mass and stiffness matrices, which are constant in the 

frequency domain, for a given system. FEM is easily adaptable to complex systems containing 

variations in geometry or loading through the use of particular modelling techniques. Non-

uniform geometry, for example, is often modeled as a stepped, piecewise-uniform 

configuration. With the method of weighted residuals and Galerkin finite element formulation, 

the exact variation of the geometry, material properties can also be modeled directly in the 

formulation [19]. Conventional FEM formulation, based on polynomial shape functions, leads to 

constant mass and stiffness matrices and results in a linear eigenvalue problem from which the 

natural frequencies and modes of the system can be readily extracted. One of the advantages 

of FEM is that one could use Lagrange multipliers to enforce continuity conditions. Although 

these formulations show good agreement [37] with experimental values, they introduce extra 

computational overhead by inflating the size of the element matrices, whereas an element 

developed with the constraints in the formulation would produce results with similar 

agreement – shown in [30], [29] including axial compression and [25], where a similar 

technique for delaminated plates was shown– but with a smaller solution domain. The results 
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would not be strictly identical, since including the conditions explicitly in the formulation 

enforces them explicitly (exactly equal to zero), while the accuracy of the conditions imposed 

using the Lagrange multiplier technique would be subject to convergence criteria (suitably close 

to zero to assume convergence has been obtained).  

Other FEM techniques use layerwise theory [28], wherein delamination is represented 

by the reduction in stiffness of the cross-sections of the beam where the delamination exists, 

depending on the number of delaminations present and hence, the number of layers which 

compose the region. The benefit of this type of formulation is that it can model multiple 

delaminations easily, but the elements are very problem-specific. Rather than discretizing the 

system into multiple beams and applying delamination conditions to the endpoints of those 

beams in order to satisfy continuity conditions, this method produces an element for each 

spanwise location of the beam. This somewhat limits the usefulness of the technique, as a 

library of different element types would have to be developed for each delamination scenario, 

rather than simply the application of different boundary conditions to different beam sections.  

Another avenue of FEM analysis has been the static analysis of delaminated beams. 

Although an understanding of dynamic properties of defective composites is important and is 

the focus of the work presented here, an adequate understanding of composite behaviour in all 

regimes has been an important focus of academic research by many. For example, FEM 

formulations based on the principle of virtual work have shown excellent agreement with 

existing analytical techniques. These modeling techniques, which assume certain kinematics 

and continuity conditions about the delamination condition, develop equations for the strain 

energy of the system, either homogenized [40] or using laminated material relationships [39]. 

Some work has also been done to incorporate shear deformation and rotary inertia into the 

formulation [41], although the continuity conditions were incorporated using a technique 

similar to Lagrange multipliers, rather than directly in the formulation. For non-slender beams, 

this technique showed excellent agreement with a reference FE solution, also noting that the 

formulation was free of shear-locking, which was shown to cause poor convergence 

characteristics with high connection stiffness [41]. Most static techniques employ non-linear 
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methods to ensure the delaminated beam sections do not inter-penetrate each other. Such 

non-linearities are not able to be resolved into the frequency domain and thus are unsuitable 

for dynamic analysis without modification, but the use of the principle of virtual work and the 

application of continuity conditions at the delamination tips are areas of crossover between the 

dynamic and static FE formulations. 

Alternatively, semi-analytical formulations, such as the Dynamic Finite Element (DFE) 

method [19-22], can be used to carry out structural modal analysis. DFE formulation results in a 

more accurate prediction method than traditional and FEM modeling techniques, allowing for a 

reduced mesh size. The main principle of the DFE is the weighted residual integral formulation, 

which provides a general systematic modeling procedure. The word dynamic in DFE acronym 

refers to the frequency-dependent basis/shape functions of approximation space used to 

express the displacements, which in turn lead to the dynamic stiffness matrix of the system. 

These shape functions are derived from the general solution to a subset of the differential 

equations of motion, rather than arbitrary polynomials, as with traditional FEM. The DFE 

technique follows the same typical procedure as FEM by formulating the element equations 

discretized to a local domain, where element stiffness matrices are constructed and then 

assembled into a single global matrix.  

Analytical methods, such as the Dynamic Stiffness Matrix (DSM), have also been used 

for the vibrational analysis of isotropic [2, 3], sandwich [5, 6, 7] and composite structural 

elements [8] and beam-structure combinations [4, 8]. The DSM approach makes use of the 

general, closed-form solution to the governing differential equations of motion of the system to 

formulate a frequency-dependent stiffness matrix. The DSM describes the free vibration of the 

system and exhibits both inertia and stiffness properties of the system and produces exact 

results, within the limits of the theory, for simple structural elements, such as uniform beams, 

using only one element [2, 3]. Banerjee and his colleagues [2- 9] have developed a number of 

DSM formulations for various beam configurations, where the root-finding technique proposed 

by Wittrick-Williams (W-W) [53] was exploited to determine the eigenvalues of the system. The 

DSM has also been used by Wang et al. [51] to simulate a cracked beam. Wang [50] also 
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investigated the effects of a through-thickness crack on the free vibration modes, aeroelastic 

flutter and divergence of a composite wing. Borneman et al. [12] presented explicit expressions 

of a DSM for the coupled composite beams, exhibiting both material and geometric couplings. 

These expressions were consequently used to develop a cracked DSM formulation, and the free 

vibration of doubly coupled cracked composite beams was investigated. Given these 

considerations, the DSM method for a single beam can be modified to accurately model 

delaminated multi-layer beams. 

FEM analysis of 2-dimensional plates and shells including delaminations has also been 

investigated. These techniques use similar methods as the layerwise beam models [28], which 

again would require a library of elements for each configuration considered. The effects of 

different bonding conditions have been examined by altering the behaviour of interlaminar slip 

[32]. Damage models have also been incorporated into some solutions [18, 54] in order to 

accurately predict crack and delamination propagation over time. Other work, using spectral 

elements to model 2-dimensional delaminated plates has been used to model time-variant 

mechanics, such as Lamb wave reflections [27]. This behaviour, if modeled accurately, can assist 

in non-destructive testing of components to locate delaminations. 

The aim of this work is to present a complete analytical, FEM, DSM and DFE formulation 

for the free vibration analysis of delaminated two- and three-layer beams, using the free mode 

delamination model. The delamination of a two-layer beam (single-delamination) is 

represented by two intact beam segments; one for each of the top and bottom sections of the 

delamination. Similarly, the delamination of a three-layer beam (double-delamination) is 

represented by three intact beam segments. The delaminated region is bounded on either side 

by intact, full-height beams. The beams transverse displacements are assumed to be governed 

by the Euler-Bernoulli slender beam bending theory. Shear deformation and rotary inertia, 

commonly associated with Timoshenko beam theory, are neglected. For harmonic oscillations, 

the governing equations are developed and used as the basis for the model development. 

Continuities of forces, moments, displacements and slopes at the delamination tips are 

enforced, leading to solutions of the system. Assembly of element matrices for the element-
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based techniques, and in all cases the application of boundary conditions results in a 

characteristic system of equations representing the system. The FEM model will utilize cubic 

Hermite interpolation functions of approximation to express the flexural displacement 

functions, i.e., both field variables and weighting functions [10]. 

In the following, systematic methods will be formulated for the analysis of various 

configurations using different approaches. First, the single-delamination configuration will be 

examined, involving a single, through-width delamination at an arbitrary location oriented 

parallel to the neutral axis of the intact beam. An analytical solution will be presented, 

following the same approach presented by [14, 16, 35]. Following this, a traditional finite 

element formulation will be presented, which will take the continuity conditions required at the 

delamination tips into account. Additionally, two types of dynamic element formulations will be 

presented – the dynamic stiffness matrix and dynamic finite elements. These methods take into 

account the frequency-dependency of the solution in their approximations, making them more 

accurate than traditional FEM for coarser mesh densities [2-9, 19-22]. Following the 

formulations, a numerical validation will be presented, comparing the results obtained by the 

presented models with those for equivalent configurations taken from existing literature. 

Comments will be made on the solution accuracy and efficiency of the presented dynamic 

solutions, relative to analytical and FEM solutions. 

Next, the double-delamination configuration will be presented, involving two through-

width delaminations at the same arbitrary lengthwise location, but at different heightwise 

locations oriented parallel to the neutral axis of the intact beam. An analytical solution will be 

presented for this configuration, based on [17]. Then, a traditional finite element formulation 

will be presented, which again will take into account the continuity conditions at the 

delamination tips. Since the double-delamination configuration contains many beam elements 

at overlapping lengthwise locations, a 2- and 3-node beam element model was formulated for 

double-delaminations, in an attempt to reduce the mesh size while retaining solution accuracy. 

Finally, DSM and DFE formulations will be presented for this configuration, producing 

frequency-dependent stiffness matrices. Following this, a numerical comparison will again be 
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made with values obtained from the literature. Comments will be made on the solution 

accuracy and efficiency, as before, with emphasis on the quality of results and effort required 

to obtain those results using dynamic element-based methods as compared to analytical and 

FEM solutions. 

To conclude the model presentation, the penultimate chapter will present a verification 

of the presented theories using commercial FEM software. Beam element modeling techniques 

will be explored. A comparison will be made with each FEM model, and discrepancies will be 

explained and analyzed. 

Finally, conclusions will be drawn from the previous chapters and remarks will be made 

on the results obtained from the presented theory and the usefulness of the formulations with 

respect to expandability to include other effects, such as coupling or non-constant material and 

geometric parameters. A discussion on work planned for the future will be presented, based on 

the trends observed during the current model development. 
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2. 

2.1. Analytical Formulation 

Single Delamination 

 
Figure 2 – The co-ordinate system and notation for a single delaminated composite beam 

Figure 2 shows the general coordinate system and notation for a delaminated beam, 

with total length L, intact beam segment lengths L1 and L4, delamination length a and total 

height H1. This model incorporates a general delamination, which can include laminated 

composites or bi-layered isotropic materials, with different material and geometric properties 

above and below the delamination plane. Thus, the top layer has thickness H2, Young’s modulus 

E2, density ρ2, cross-sectional area A2 and second moment of area I2. The bottom layer has 

corresponding properties, with subscript 3. The delamination tips occur at stations 𝑥1 = 𝐿1 and 

𝑥4 = 0, and torsion, shear deformation, axial (warping effects and axial deformation) and out 

of plane delamination are ignored. Following this notation, the general equation of motion for 

the ith Euler-Bernoulli beam in free vibration is written as [14, 17]: 

 
𝐸𝐼𝑖

𝜕4𝑤𝑖
𝜕𝑥4

+ 𝜌𝑖𝐴𝑖
𝜕2𝑤𝑖
𝜕𝑡2

= 0 ,   𝑖 = 1, … 4 (1) 

For harmonic oscillations, the transverse displacements can be described in the 

frequency domain by using the transformation 

 

x4

Beam 1

Beam 2

EI1

EI2

Beam 3
EI3

Beam 4
EI4

x1 x2 x3

L1 L2 L3 L4a

L0

H1

H2

H3

M, w’
P, u

S, w

z

x

Through-width 
delamination
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 𝑤𝑖(𝑡) = 𝑊𝑖 sin(𝜔𝑡) (2) 

where ω is the circular frequency of excitation of the system, Wi is the amplitude of the 

displacement wi, and subscript ‘i’ represents the beam segment number.  By substituting (2) 

into (1), the equations of motion reduce to 

 𝐸𝐼𝑖
𝜕4𝑊𝑖

𝜕𝑥4
− 𝜌𝑖𝐴𝑖𝜔2𝑊𝑖 = 0 ,   𝑖 = 1, … 4 (3) 

The general solution to the 4th-order, homogeneous differential equation (3) can be 

written in the following form 

 𝑊𝑖(𝑥𝑖) = 𝐴𝑖 cos�𝜆𝑖
𝑥𝑖
𝐿𝑖
� + 𝐵𝑖 sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐶𝑖 cosh�𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐷𝑖 sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� (4) 

which represents the bending displacement Wi of beam segment ‘i’, Li is the beam segment 

length, and λi stands for nondimensional frequency of oscillation, defined as: 

 𝜆𝑖
4 =

𝜔2𝜌𝑖𝐴𝑖
𝐸𝐼𝑖

𝐿𝑖4 (5) 

Coefficients Ai, Bi, Ci, and Di (i=1,…4) are evaluated to satisfy the displacement continuity 

requirements of the beam segments and the system boundary conditions. As also observed and 

reported by several researchers [14, 17], the inclusion of delamination into the beam model 

results in a coupling between axial and transverse motion of the delaminated beam segments. 

This is primarily due to the continuity requirements imposed on the delaminated beam 

endpoints at the delamination tips. Since the delamination tip cross sections are assumed to 

remain planar after deformation, the ends of the top and bottom beams must have the same 

relative axial location after deformation, preventing interlaminar slip. Since the midplanes 

(assumed to be the neutral axes of the beam segments) in the delaminated segments are 

located at a distance from the midplanes of the intact segments, they will not have the same 

axial deformation unless some internal axial force is imposed. This imposed axial will be derived 

as described by Mujumdar [35]. 
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Consider a delamination tip after deformation. According to the numbering scheme in 

Figure 2, and since no external axial load is applied, the top and bottom beam segments must 

have equal and opposite internal axial forces, i.e.,  P3 = -P2, applied to prevent interlaminar slip 

(Figure 3). Additionally, the requirement that the delamination tip faces remain planar after 

deformation results in, at the left delamination tip: 

 𝑢2(𝑥2 = 0) − 𝑢3(𝑥3 = 0) =
𝐻1
2
𝑊1

′(𝑥1 = 𝐿1) (6) 

where 𝑢𝑖 is the axial displacement of beam section i, and 𝑊1
′(𝑥1 = 𝐿1) = 𝑊2

′(𝑥2 = 0) =

𝑊3
′(𝑥3 = 0) from the kinematic continuity conditions. If this is combined with the same 

formulation from the right delamination tip, 

 
�𝑢3(𝑥3 = 𝐿3) − 𝑢3(𝑥3 = 0)� − �𝑢2(𝑥2 = 𝐿2) − 𝑢2(𝑥2 = 0)�

=
𝐻1
2 �𝑊4

′(𝑥4 = 0) −𝑊1
′(𝑥1 = 𝐿1)� 

(7) 

The assumption is made by Mujumdar [35] and by other researchers (for example, [14, 

17]) that the axial displacement will behave according to the following, for small deformations 

and material and geometric properties which remain constant along the length of the beam: 

 𝑢𝑖(𝑥𝑖 = 𝐿𝑖) − 𝑢𝑖(𝑥𝑖 = 0) = �
𝑃𝑖(𝑥𝑖)
𝐸𝐴𝑖(𝑥𝑖)

𝑑𝑥𝑖 =

𝐿𝑖

0

𝑃𝑖𝐿𝑖
𝐸𝐴𝑖

 (8) 

where 𝐸𝐴𝑖  is the axial stiffness of beam section i. Substituting this into (7) yields: 

 
𝑃2𝐿2
𝐸𝐴2

−
𝑃3𝐿3
𝐸𝐴3

=
𝐻1
2 �𝑊4

′(𝑥4 = 0) −𝑊1
′(𝑥1 = 𝐿1)� (9) 

Using the continuity of axial forces across the delamination tip, P3=-P2, 

 𝑃3 = Λ∗�𝑊4
′(𝑥4 = 0) −𝑊1

′(𝑥1 = 𝐿1)� (10) 
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where the parameter Λ* is defined as 

 Λ∗ =
𝐻1
2𝐿2

�
𝐸𝐴2𝐸𝐴3
𝐸𝐴2 + 𝐸𝐴3

� (11) 

           

 

Figure 3 – The faces of the delamination remain planar after deformation (rigid connectors) 

At the delamination tips, continuity of bending moments leads to 

At the left of 

delamination tip: 𝑀1(𝑥1 = L1) = 𝑀2(𝑥2 = 0) + 𝑀3(𝑥3 = 0) − 𝑃2
𝐻3
2

+ 𝑃3
𝐻2
2

 (12) 

At the right of 

delamination tip: 
𝑀4(𝑥4 = 0) = 𝑀2(𝑥2 = L2) + 𝑀3(𝑥3 = L3) − 𝑃2

𝐻3
2

+ 𝑃3
𝐻2
2

 (13) 

Using expression (10), which represents the internal axial force, and noting that from 

beam theory, bending moments and shear forces in beam segment ‘i’ are related to 

displacements, Wi , through 𝑀𝑖 = −𝐸𝐼𝑖𝑊𝑖ʹʹ, and 𝑆𝑖 = 𝐸𝐼𝑖𝑊𝑖ʹʹʹ,  respectively, it can be shown 

that, for continuity of bending moments, 

 𝐸𝐼1𝑊1
′′(𝑥1 = L1) = 𝐸𝐼2𝑊2

′′(𝑥2 = 0) + 𝐸𝐼3𝑊3
′′(𝑥3 = 0) + 𝛬[𝑊4

′(𝑥4 = 0) −𝑊1
′(𝑥1 = L1)] (14) 

where the coefficient Λ is defined as: 

 𝛬 =
𝐻12

4𝐿2
�
𝐸𝐴2𝐸𝐴3
𝐸𝐴2 + 𝐸𝐴3

� (15) 

+

=

2
3

2
3

2
3

P2 P2

P3 = -P2P3

M2 M2

M3M3

Faces remain 
planar after 
deformation
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Likewise, to satisfy the continuity of shear forces about the left delamination tip, 

 𝐸𝐼1𝑊1
′′′(𝑥1 = L1) = 𝐸𝐼2𝑊2

′′′(𝑥2 = 0) + 𝐸𝐼3𝑊3
′′′(𝑥3 = 0) (16) 

Additionally, there exist 2 kinematic continuity conditions at each delamination tip. Again, 

about the left delamination tip: 

Continuity of displacements: 𝑊1(𝑥1 = 𝐿1) = 𝑊2(𝑥2 = 0) = 𝑊3(𝑥3 = 0) 
(17) 

Continuity of slopes: 𝑊1′(𝑥1 = 𝐿1) = 𝑊2′(𝑥2 = 0) = 𝑊3′(𝑥3 = 0) 

 These kinematic and force continuity conditions, when applied to each delamination tip, 

produce six equations per tip. In addition to four endpoint boundary conditions of the system, 

this process results in 16 equations. If the general solution from (4) is applied to each of the 

four beam sections, this results in 16 unknown constant coefficients. The 16 equations can be 

solved simultaneously, using a root finding algorithm to find the natural frequencies and mode 

shapes of the system. Thus, an analytical solution can be produced for each set of imposed 

boundary conditions. One of the advantages of utilizing an element-based approach, such as 

FEM, DSM, or DFE is that the system need not be re-developed for a different set of boundary 

conditions. 

2.2. Finite Element Method (FEM) Formulation 

 

Figure 4 – A 2-node, 4 degree-of-freedom beam element 

The finite element approach used here is based on the Galerkin method of weighted 

residuals. The equations of motion for each beam are used as the basis of this solution method. 

1 2
x

L

W1 W2

W1'
W2'
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Simple harmonic motion is again assumed, and the equations of motion, according to the Euler-

Bernoulli beam theory, take the following form:  

 𝐸𝐼𝑖
𝜕4𝑊�𝑖
𝜕𝑥4

− 𝐸𝐼𝑖 �
𝜆𝑖
𝐿𝑖
�
4

𝑊�𝑖 = 0 ,   𝑖 = 1, … 4 (18) 

where 𝑊�𝑖 is the actual transverse displacement of beam i, and the same non-

dimensionalization used in (5) has been applied. An approximate transverse displacement 𝑊𝑖 is 

introduced in place of the actual displacement, such that 𝑊𝑖 ≅ 𝑊�𝑖. This results in the following 

residual equation 

 𝐸𝐼𝑖
𝜕4𝑊𝑖

𝜕𝑥4
− 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝑊𝑖 = ℛ ,   𝑖 = 1, … 4 (19) 

where ℛ is the residual of the approximate equation. Following the Galerkin method of 

weighted residuals, the residual above is weighted by a virtual displacement 𝛿𝑊 and the 

integral is set to zero across the domain of the system. Since the system is composed of 4 

distinct beam sections occupying their own subset of the domain, the following is 

representative of the Galerkin method applied to the delaminated system: 

 ��� �𝐸𝐼𝑖𝛿𝑊𝑖𝑊𝑖
′′′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
4

𝑖=1

= 0 (20) 

with 𝑊𝑖(𝑥𝑖) = 〈𝑁𝑖(𝑥𝑖)〉{𝑊𝑛}  

where 〈𝑁𝑖(𝑥𝑖)〉 are the shape functions of the beam elements, which will be defined later. Since 

the virtual displacement is applied to the entire domain, and the four different beam sections 

occupy unique sub-domains, 𝛿𝑊 = ∑ 𝛿𝑊𝑖
4
𝑖=1 . In order to produce the force and displacement 

continuity terms, a set of integrations by parts is performed on the above, resulting in the 

following weak form: 

 ��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0
𝐿𝑖�

4

𝑖=1���������������������
∗

+ ��� �𝐸𝐼𝑖𝛿𝑊𝑖′′𝑊𝑖
′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
4

𝑖=1

= 0 (21) 
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The terms in (*), above, represent the boundary and continuity conditions imposed on 

the system. Using Euler-Bernoulli beam theory, the shear force and bending moment at any 

point are defined based on the transverse displacement as: 

 
𝑆(𝑥) = 𝐸𝐼(𝑥)𝑊(𝑥)′′′ 

𝑀(𝑥) = 𝐸𝐼(𝑥)𝑊(𝑥)′′ 
(22) 

For the endpoints of beam sections 1 and 4, the following is true for free vibration: 

 
𝐸𝐼1�(𝛿𝑊1𝑊1

′′′ − 𝛿𝑊1
′𝑊1

′′)|𝑥1=0 = �𝛿𝒲𝑒𝑥𝑡|𝑥1=0 

𝐸𝐼4�(𝛿𝑊4𝑊4
′′′ − 𝛿𝑊4

′𝑊4
′′)|𝑥4=𝐿4 = 𝛿�𝒲𝑒𝑥𝑡|𝑥4=𝐿4 

(23) 

where 𝛿𝒲𝑒𝑥𝑡 is the external virtual work caused by applied external forces on the system, 

causing virtual displacements. For the free vibration of this system, the total external work is 
�𝛿𝒲𝑒𝑥𝑡 = 𝛿𝒲𝑒𝑥𝑡|𝑥1=0 + �𝛿𝒲𝑒𝑥𝑡|𝑥4=𝐿4 = 0. The remaining terms in (*) above can be resolved by 

applying the continuity conditions from (16) and (17), with the following as a result:  

 

��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0

𝐿𝑖� =
4

𝑖=1

𝛿𝒲𝑒𝑥𝑡

+ 𝛿𝑊2(0) �𝐸𝐼1𝑊1′′′(𝐿1)− 𝐸𝐼2𝑊2′′′(0)− 𝐸𝐼3𝑊3′′′(0)������������������������������
∗∗

− 𝛿𝑊2
′(0)�𝐸𝐼1𝑊1

′′(𝐿1)− 𝐸𝐼2𝑊2
′′(0) − 𝐸𝐼3𝑊3

′′(0)�

− 𝛿𝑊2(𝐿2) �𝐸𝐼4𝑊4′′′(0) − 𝐸𝐼2𝑊2′′′(𝐿2)− 𝐸𝐼3𝑊3′′′(𝐿3)������������������������������
∗∗∗

+ 𝛿𝑊2′(𝐿2)�𝐸𝐼4𝑊4′′(0)− 𝐸𝐼2𝑊2′′(𝐿2)− 𝐸𝐼3𝑊3′′(𝐿3)� 

(24) 

The terms (**) and (***) in equation (24), as well as the external work term go to zero directly 

as a result of the shear force continuity conditions. However, the remaining terms do not 

vanish, since the continuity of bending moments contains an additional implicit bending-axial 

coupling term, in (14), such that  

 ��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0

𝐿𝑖� =
4

𝑖=1

�𝛿𝑊2
′(𝐿2)− 𝛿𝑊2′(0)� �Λ�𝑊2

′(𝐿2) − 𝛿𝑊2′(0)�� (25) 
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With the boundary and continuity conditions satisfied, the system can be discretized into 

elements, which will each be approximated using their own basis functions, from which FE 

shape functions can be found. The system can be discretized as follows, using the result of (25): 

 

Λ�𝛿𝑊2
′(𝐿2)− 𝛿𝑊2′(0)��𝑊2

′(𝐿2)− 𝛿𝑊2′(0)�

+ � � � � �𝐸𝐼𝑖𝛿𝑊𝑖′′𝑊𝑖
′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�𝑑𝑥

𝑥𝑚+1

𝑥𝑚

�
# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑚=1

4

𝑖=1

= 0 
(26) 

where ‘# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖’ is the number of elements in beam section i. Following the traditional 

Euler-Bernoulli finite element development, Hermite cubic polynomials [33] will be used as the 

basis functions of approximation for each beam, such that, for a two-node, 2 degree-of-

freedom per node beam element (transverse displacement and slope defined at each node) 

 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3〉{𝐶} (27) 

where {C} is a column vector of unknown constant coefficients. The following represents the 

vector of nodal displacements used in further FE development: 

 
{𝑊𝑛} = �

𝑊1
𝑊1

′

𝑊2
𝑊2

′

� = �

1 0 0 0
0 1 0 0
1 𝐿 𝐿2 𝐿3
0 1 2𝐿 3𝐿2

� {𝐶} = [𝑃𝑛]{𝐶} (28) 

Thus 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3〉[𝑃𝑛]−1{𝑊𝑛} = 〈𝑵(𝒙)〉{𝑾𝒏}  

〈𝑁(𝑥)〉 is a row vector of shape functions, which describe the displacements at any point along 

the domain of the element in terms of the nodal displacements at the endpoints of the element 

domain, {𝑊𝑛}. Additionally, the shape functions may also be used to approximate the virtual 

displacements, 𝛿𝑊(𝑥) = 〈𝑁(𝑥)〉{𝛿𝑊𝑛}. With the shape functions fully defined, they may be 

substituted for the approximate displacements in (26) 

 

〈𝛿𝑊𝑛〉 �Λ�{𝑁2}′(𝐿2) − {𝑁2}′(0)��〈𝑁2〉′(𝐿2) − 〈𝑁2〉′(0)�� {𝑊𝑛}

+ � � 〈𝛿𝑊𝑛〉� � �𝐸𝐼𝑖{𝑁𝑖}′′〈𝑁𝑖〉′′ − 𝐸𝐼𝑖 �
𝜆𝑖
𝐿𝑖
�
4

{𝑁𝑖}〈𝑁𝑖〉� 𝑑𝑥

𝑥𝑚+1

𝑥𝑚

�
# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑛=1

4

𝑖=1

{𝑊𝑛} = 0 
(29) 



17 
 

Frequency-dependent and non-frequency-dependent terms above can be gathered to 

form the following eigenvalue problem, common to structural vibration analysis with FEM, with 

a modification caused by the presence of the delamination: 

 〈𝛿𝑊𝑛〉�(𝐊+ 𝐊𝐝𝐞𝐥𝐚𝐦) −𝜔2𝐌�{𝑊𝑛} = 𝟎 (30) 

if det�(𝐊 + 𝐊𝐝𝐞𝐥𝐚𝐦)−𝜔2𝐌� = 0  

where K is the structural stiffness matrix formed by assembling the associated beam elements, 

as per equation (29), Kdelam is the delamination stiffness matrix, from the term appearing 

outside the integral expression in equation (29), and M is the structural mass matrix. From this 

formulation, the simplest solution methods involve eigensolutions. However, sweeping the 

frequency ω until (30) is satisfied is another solution method which will be used extensively for 

DSM and DFE solutions outlined below, since no simple eigenvalue problem can be derived for 

those methods as outlined here for FEM.  

2.3. Dynamic Stiffness Matrix (DSM) Formulation 

Another solution method for describing the free vibration natural frequencies and mode 

shapes of a delaminated beam system is the method of the Dynamic Stiffness Matrix. Most 

actively and recently developed by Banerjee [2-8], this method takes advantage of the 

analytical solution as a basis for an element-based approach. While the DSM technique does 

not use traditional FEM methods to formulate a solution, the result of the DSM process, 

nonetheless, is a stiffness matrix, whose entries are frequency-dependent. In the development 

presented here, a dynamic stiffness matrix formulation will be presented for the central, 

delaminated beam sections (2 and 3 from Figure 2), including the coupling relationships, which 

enforce the continuity conditions at the delamination tips. Additionally, a general DSM 

formulation, in the form of 𝑭 = 𝑲 𝒖 will be presented, which is used to formulate the stiffness 

matrices for the intact sections (1 and 4 from Figure 2), which is then assembled to the 

delaminated section using standard element assembly techniques. 
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The basis of the DSM technique is that the force-displacement relationship can be found 

in directly from a general solution to the differential equations of motion, after some 

manipulation of the equations. In the case of uncoupled motion, the equations presented here 

will not need to be modified, but the specific techniques used for more complex cases, such as 

intact sandwich beams can be found in [5-7]. Once expressions for the general solutions for the 

displacements are found in terms of constant coefficients, the beam theory definitions of the 

forces are used (in the form of displacement-dependent differential equations) to find the 

nodal force-nodal displacement relationship, in the form of a stiffness matrix. The equations of 

motion take the following form, as established previously: 

 𝐸𝐼𝑖
𝜕4𝑊𝑖

𝜕𝑥4
− 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝑊𝑖 = 0 ,   𝑖 = 1, … 4 (31) 

where 𝑊𝑖 is now taken to be the actual displacement of the ith beam section, as a function of 

the axial degree of freedom 𝑥𝑖. The general solution to this equation, in terms of constant 

coefficients is: 

 𝑊𝑖(𝑥𝑖) = 𝐴𝑖 cos�𝜆𝑖
𝑥𝑖
𝐿𝑖
� + 𝐵𝑖 sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐶𝑖 cosh�𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐷𝑖 sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� (32) 

Then, the Euler-Bernoulli beam theory equations for the shear force and bending moment are 

used to describe the internal forces and moments at any point in the domain: 

 
𝑆𝑖(𝑥𝑖) = 𝐸𝐼(𝑥𝑖)𝑊(𝑥𝑖)′′′ 

𝑀𝑖(𝑥𝑖) = 𝐸𝐼(𝑥𝑖)𝑊(𝑥𝑖)′′ 
(33) 

where (∙)′ = d(∙)
d𝑥𝑖

. Naturally, the expression (32) can be substituted into (33), since the 

derivatives of (32) can easily be expressed in terms of the coefficients Ai — Di. Then, the nodal 

values of the shear force can be expressed in terms of the coefficients: 

 𝑭𝒊  =  𝑩𝒊𝒂𝒊,   where   𝒂𝒊 = 〈𝐴𝑖 𝐵𝑖 𝐶𝑖 𝐷𝑖〉𝑇 (34) 
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Furthermore from equation (32), the end displacements and slopes can be related to 

coefficient vector, 𝒂𝒊, through the following expression 

where 

𝒖𝒊 = 𝑫𝒊𝒂𝒊 

𝒖𝒊 = 〈𝑊𝑖(𝑥𝑖 = 0) 𝑊𝑖′(𝑥𝑖 = 0) 𝑊𝑖(𝑥𝑖 = 𝐿𝑖) 𝑊𝑖′(𝑥𝑖 = 𝐿𝑖)〉𝑇 
(35) 

Finally, using expressions (34) and (35), leads to 

 𝑭𝒊 = 𝑩𝒊𝑫𝒊
−𝟏𝒖𝒊  =  𝑲𝑫𝑺𝑴,𝒊 𝒖𝒊 (36) 

where KDSM,i is the frequency-dependent, dynamic stiffness matrix of beam section i.  The 

standard assembly process similar to FEM leads to the nonlinear eigenvalue problem of the 

system:  

 [𝐾�(𝜔)]{𝑈�} = {0} (37) 

where [𝐾�(𝜔)] is the overall (global) dynamic stiffness matrix and {𝑈�} represents the vector of 

defrees of freedom of the system.  The solution of the problem consists of finding the 

eigenvalue, ω, and corresponding eigenvector, {𝑈�}, that satisfy equation (37) and the boundary 

conditions imposed using, for example, the penalty method [10]. Powerful algorithms exist for 

solving a linear eigenvalue problem (i.e., system’s natural frequencies), resulting from discrete 

or lumped mass models. In the case of the nonlinear eigenproblem shown in equation (37), 

which involves frequency-dependent dynamic stiffness matrices arising from the DFE or DSM 

formulations, one can use the Wittrick-Williams (W-W) root-finding technique [53] to 

determine the eigenvalues of the system.  The W-W algorithm is a simple method of calculating 

the number of natural frequencies of a system that are below a given trial frequency value. The 

method exploits the bisection method and the Sturm sequence properties of the dynamic 

stiffness matrix to converge on any particular natural frequency of the system, to any desired 

accuracy. This allows one to solve for any specific frequency number without having to solve for 

all previous frequencies, which is the requirement of some linear eigenvalue solvers.  

Consequently, the corresponding modes can be evaluated [2-8, 19].  
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Through continuity conditions, a coupling relationship can be found within the 

delamination region to reduce the total number of unknowns from eight (Ai — Di, i =2,3, for the 

top and bottom beams within the delaminated region) to four. Of particular interest are the 

continuity conditions for displacement and slope at the delamination tips, from which a 

coupling between the coefficients for the top beam and the bottom one can be derived. 

Stemming from the requirement that the displacement and slope of each beam, at the 

delamination tips, must be equal, the transverse displacements of beam segments 2 and 3 can 

be linked through the following relationship: 
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(38) 

or 𝑫𝟐𝒂𝟐 = 𝑫𝟑𝒂𝟑  

Using this result, a direct relationship between the coefficients of beam 2 and 3 can be 

found. Due to this, the force-displacement relationships of the central delaminated section (2 

and 3 from Figure 2) can be expressed in terms of a single set of nodal displacements. This was 

expected, since it is explicitly required by the kinematic delamination conditions. The result is 

the following, if for the sake of formulation, 𝒖𝟐 is taken to be the reference displacements, 

even though 𝒖𝟐 = 𝒖𝟑: 

 

𝑭𝟐,𝟑 = 𝑩𝟐𝒂𝟐 +𝑩𝟑𝒂𝟑 

= �𝑩𝟐 + 𝑩𝟑𝑫𝟑
−𝟏𝑫𝟐�𝒂𝟐 

= �𝑩𝟐 + 𝑩𝟑𝑫𝟑
−𝟏𝑫𝟐�𝑫𝟐

−𝟏���������������
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𝒖𝟐 
(39) 
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The final result being a dynamic stiffness matrix, which incorporates the effects of both beams 

2 and 3, with one set of nodal displacements, which can be assembled to the intact sections’ 

stiffness matrices, found using (36).  

2.4. Dynamic Finite Element (DFE) Formulation 

Dynamic Finite Elements (DFE) takes advantage of the accuracy offered to DSM 

solutions from the frequency-dependent nature of the approximations, with the added benefits 

that a Galerkin finite element formulation provides. These include the ease of boundary 

condition modification, coupled material response implementation, non-linear material 

properties, and more. Using the already discretized weak form equation from the FEM 

formulation, 
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(40) 

another set of integrations by parts is performed on the system. This results in the following, 

where the differentiation of 𝛿𝑊𝑖 and 𝑊𝑖 have been reversed from their original form in (20),  
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(41) 

From this point, unlike traditional finite elements, the basis functions are chosen such 

that (*) in (41) goes to zero, resulting in the elimination of integral equations for this 

uncoupled, linear system. The general solution to (*), which will be used as DFE basis functions, 

is 
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= 〈𝑷𝒊〉{𝑪𝒊} 

(42) 

where {𝐶𝑖} is a column vector of constant coefficients, 𝜉𝑖 is the non-dimensional axial 

coordinate, 𝑥𝑖/𝐿𝑖 , and 𝛼𝑖 is a constant coefficient from the general solution to (*) in (41), equal 

to 

 𝛼𝑖 =
𝜔2𝜌𝑖𝐴𝑖
𝐸𝐼𝑖

 (43) 

The shape functions are a linear combination of the more simplified form introduced in 

(4), but the specific format of the basis functions serves an important purpose. If the frequency 

of excitation 𝜔 goes to zero, the basis functions here will simultaneously become 

mathematically identical to the Hermite cubic basis functions, and similarly with the shape 

functions. If this approach is not taken, then the shape functions diverge as the frequency 

approaches zero, and the method would not be complete, as static deformation would not be 

possible to find. The shape functions were found using the following, 

 
{𝑊𝑛} =

⎩
⎨

⎧
𝑊𝑖(𝜉𝑖 = 0)
𝑊𝑖

′(𝜉𝑖 = 0)
𝑊𝑖(𝜉𝑖 = 1)
𝑊𝑖

′(𝜉𝑖 = 1)⎭
⎬

⎫
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0
0 1 0 0

cos(𝛼𝑖)
sin(𝛼𝑖)
𝛼𝑖

cosh(𝛼𝑖) − cos(𝛼𝑖)
𝛼𝑖2

sinh(𝛼𝑖) − sin(𝛼𝑖)
𝛼𝑖3

−𝛼𝑠𝑖𝑛(𝛼𝑖) cos(𝛼𝑖)
𝛼 sinh(𝛼𝑖) + 𝛼 sin(𝛼𝑖)

𝛼𝑖2
𝛼 sinh(𝛼𝑖) − 𝛼 cos(𝛼𝑖)

𝛼𝑖3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

= [𝑷𝒏]𝒊{𝑪𝒊} 

(44) 

Thus 𝑊𝑖(𝜉𝑖) = 〈𝑃〉[𝑃𝑛]𝑖
−1{𝑊𝑛} = 〈𝑵𝒊〉{𝑾𝒏} (45) 

where (∙)𝑛 represents the nodal values at the endpoints of the beam element. It should be 

noted also that, while the coordinate non-dimensionalization to 𝜉𝑖 was made, the 

differentiation is still with respect to 𝑥𝑖  , and this should be respected in the formulation.  

2.5. Numerical Tests 

Numerical checks were performed to confirm the predictability, accuracy and practical 

applicability of the proposed DSM method. To solve the nonlinear eigenproblem (37) resulting 
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from DSM formulation, a determinant search method was used; the non-dimensional 

frequency was swept, searching a particular frequency, ω, which would make the determinant 

of the global dynamic stiffness matrix zero, |𝐾�(𝜔)| = 0, whose corresponding eigenvector, {𝑈�}, 

represented the degrees of freedom of the mode shape associated with the natural frequency. 

The use of the non-dimensional frequency (5) in the calculations removed material 

dependencies from the system, provided that the material was isotropic, or at least orthotropic 

with principal axes aligned with the Cartesian coordinate system in Figure 1.  

In what follows, an illustrative example of fixed-fixed, homogeneous, 2-layer delaminated 

beam will be examined. The natural frequencies of the system with a central split, about the 

mid-section (L1 = L4), of various lengths up to 60% of the span (0 ≤ a/L ≤ 0.6), occurring 

symmetrically along the midplane of the beam and surrounded by intact beam segments, are 

considered. This split beam configuration has also been presented and studied in [14, 35, 49]. 

The FEM, DSM, and DFE models were created and used to compute the natural frequencies and 

mode shapes of various delamination cases. As the benchmarks for comparison, the results 

from references [14, 35, 49] as well as an alternative formulation from [28] were used to 

validate the solution methods. Also as suggested in [49], the first two frequencies were 

computed for a delamination length of 0.0002L, to check for numerical instability when the split 

length becomes extremely small. This case showed negligible discrepancies from those of a 

solid intact beam.  

A split beam FEM model was formulated, exploiting cubic Hermite [10] interpolation 

functions. Using the model presented in Section 2.2, the weigted residual method was applied 

on the differential equations governing the free vibration of 2-layer delaminated beams. The 

residual was made orthogonal to a virtual displacement over the domain of the element, and 

two integrations by parts were carried out to reduce the continuity requirements of 

displacement functions. The principle of virtual work was used to determine the element 

system equations. As presented earlier, the differential stretching of the top and bottom layers 

was present to keep the delamination faces planar after deformation (i.e., no interlaminar slip 

at the delamination faces).  The FEM formulation results in an additional stiffness term not 
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present if interlaminar slip were included. This 'delamination stiffness' has the effect of 

stiffening the system at the delamination tips. Table 1 summarizes the first two natural 

frequencies obtained using the developed (cubic Hermite-type) finite element model (FEM), 

with 6- and 10-element discretizations of midplane delaminated region (60% of span). The 

intact beam segments were modeled using single beam elements. As can be seen from Table 1, 

the FEM frequencies exhibit a convergence towards the DSM results, as the number of 

elements is increased. Conventional FEM natural frequencies reported by Lee (2000) [28] are 

also presented for reference.  

Table 1 – Natural frequency parameter λ2 of a single delaminated beam. FEM sensitivity presented 

Delam. 
Length 

a/Ltot 

Wang et al. [49] Analytical 
FEM†; 

6 Elements 
FEM†; 

10 Elements 
Layerwise FEM 

[28] 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

Intact 22.39 61.67 22.39 61.67 - - - - 22.36 61.61 
0.1 22.37 60.76 22.37 60.76 22.37 60.77 22.37 60.76 22.36 60.74 
0.2 22.35 55.97 22.36 55.99 22.36 56.01 22.36 55.99 22.35 55.95 
0.3 22.23 49.00 22.24 49.03 22.24 49.05 22.24 49.03 22.23 48.97 
0.4 21.83 43.87 21.84 43.90 21.84 43.95 21.84 43.90 21.82 43.86 
0.5 20.88 41.45 20.89 41.52 20.89 41.57 20.89 41.55 20.88 41.50 
0.6 19.29 40.93 19.30 41.03 19.29 41.08 19.29 41.04 19.28 41.01 

† Conventional FEM displays numerical instabilities with delamination lengths approaching 0 

The FEM formulation produced excellent agreement with both the analytical results 

(including from the literature) as well as with the layerwise FEM theory. It can be seen that the 

FEM result discrepancy was low, even for a coarse mesh size. It was observed that the 

discrepancy for the first natural modes was lower than for the second natural modes. This is 

consistent with traditional FEM theory, where more elements are required to guarantee 

accurate solutions for higher mode numbers. 

Table 2 summarizes the DSM results for the first two natural frequencies of the system. 

The DSM results are compared to those presented by Wang et al. [49] and Della and Shu [17]. 

The DSM model incorporates a total of only three ‘elements’; one intact element on each end 

of the delamination representing the undamaged beam segments (1 and 4), obtained using the 

methods outlined in previous sections, and one fully delaminated element.  
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Table 2 – Natural frequency parameter λ2 of a single delaminated beam. DSM, CM, and FEM [28] models 

Delamination 
Length 
a/Ltot 

Wang, et al. [49] DSM Della and Shu [17] 
Layerwise FEM 

[28] 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

Intact 22.39 61.67 22.39 61.67 22.37 61.67 22.36 61.61 
0.1 22.37 60.76 22.37 60.80 22.37 60.76 22.36 60.74 
0.2 22.35 55.97 22.36 55.99 22.36 55.97 22.35 55.95 
0.3 22.23 49.00 22.24 49.00 22.24 49.00 22.23 48.97 
0.4 21.83 43.87 21.83 43.89 21.83 43.87 21.82 43.86 
0.5 20.88 41.45 20.89 41.52 20.89 41.45 20.88 41.50 
0.6 19.29 40.93 19.30 41.03 19.30 40.93 19.28 41.01 
 

The DSM natural frequencies are in excellent agreement with those reported in the 

literature, with a maximum difference of 0.24%. It is also worth noting that a slight dissimilarity 

was found between the 2nd natural frequency values (61.67, 60.76, 55.97, 49.00, 43.87, 41.45, 

and 40.93, respectively) reported in Table 1 of reference [49] and the same data reported in 

[17]. Conventional FEM natural frequencies obtained based on layerwise theory, as reported by 

Lee (2000) [28], are also presented for comparison. Excellent agreement was found between 

the DSM and these FEM results. 

Additionally, the presented DFE solution was used to compute the natural frequencies 

and mode shapes of selected delamination cases. A clamped-clamped beam with a central 

delamination (L1=L4) surrounded by intact beam segments, was modeled again. FEM and DSM 

were used to compare the results. 

In order to solve for the natural frequencies of the system, a sweep of the non-

dimensional frequency was performed, and a search for the following condition was carried 

out, which represents free vibration of the assembled system: 

 [𝐾(𝜔)]{𝑤𝑛} = 0   if   |𝐾(𝜔)| = 0  

where the assembly of local element stiffness matrices was carried out in the traditional FEM 

manner. The use of the non-dimensional frequency λ2 removed material dependencies from 
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the system, provided that the material was isotropic, or at least orthotropic with principal axes 

aligned with the Cartesian coordinate system in Figure 2. 

Table 3 summarizes the DFE results, comparing them with DSM and Wang, et al. [49] for 

the free mode delamination model. The initial results, even for 4 elements, agree well with 

those results taken from the literature. This provides promise for using the DFE technique as a 

possible Mesh Reduction Method (MRM) in the analysis of delaminated beams, as it has been 

used previously for undamaged beams [19-22].  

Table 3 – Natural frequency parameter λ2 of a single-delaminated beam. DSM, DFE presented 

Delamination 
Length  

a/L0 

Wang, et al. [49] DSM DFE 4 Elements† DFE 8 Elements† 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

intact - - 22.39 61.67 22.39 61.67 22.39 61.67 
0.1 22.37 60.76 22.37 60.80 22.37 60.81 22.37 60.80 
0.2 22.35 55.97 22.36 55.99 22.36 56.00 22.36 55.99 
0.3 22.23 49.00 22.24 49.00 22.24 49.00 22.24 49.00 
0.4 21.83 43.87 21.83 43.89 21.84 43.90 21.83 43.89 
0.5 20.88 41.45 20.89 41.52 20.89 41.52 20.89 41.52 
0.6 19.29 40.93 19.30 41.03 19.29 41.03 19.30 41.03 

† - 4 and 8 element meshing contains a single element and 2 elements, respectively per beam section in Figure 2. 

 

From the results presented above, it is clear that even a single DFE element per beam 

section produced excellent agreement with the DSM formulation and with those results 

obtained from existing literature. In particular, the agreement observed between a coarse-

mesh DFE model and analytical solutions for higher modes is of note. Using traditional FEM-

based solution methods, higher mode information requires the use of a finer mesh. The 

number of elements required for a mode number for good accuracy scales with the mode 

number, as the natural frequencies and mode shape information are dependent on the size of 

the mass and stiffness matrices and thus, the number of nodes present in the mesh. DFE does 

not exhibit this dependency, and in theory, an infinite number of modes can be found using the 

smallest mesh possible, provided that for very high frequencies, the root-finding algorithm does 

not suffer from numerical overflow. To illustrate this point, traditional FEM-based solutions 
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were obtained using the FEM formulation presented earlier, with the following results for a 

centrally-located through-width delamination: 

Table 4 – Natural frequency parameter λ2 of a single-delaminated beam. DFE, FEM presented 

Delamination 
Length a/L0 

DFE 4 Elements† FEM 8 Elements†† FEM 20 Elements†† 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

intact 22.39 61.67 - - - - 
0.1 22.37 60.81 22.54 69.37 22.37 60.60 
0.2 22.36 56.00 22.42 58.56 22.36 56.05 
0.3 22.24 49.00 22.27 49.63 22.24 49.57 
0.4 21.84 43.90 21.87 44.24 21.84 44.01 
0.5 20.89 41.52 20.97 42.20 20.89 41.55 
0.6 19.29 41.03 19.44 42.77 19.29 41.04 

† - 4 and 8 element meshing contains a single element and 2 elements, respectively per beam section in Figure 2. 
†† - 8 and 20 element meshing contains 2 elements and 5 elements, respectively per beam section in Figure 2. 

Conventional FEM displayed numerical instability for delamination lengths approaching 0 

While the first mode shows fair agreement between DFE and FEM for the coarse FEM 

mesh, the second exhibited a maximum discrepancy of 12%. In contrast, when the number of 

elements was increased, the FEM formulation exhibited much better correlation with the DFE 

results, and by extension from Table 4, with analytical results as well. This trend of increasing 

FEM accuracy with finer mesh density was expected, but also served to highlight the utility of a 

dynamic formulation such as DFE for obtaining information about higher natural modes. 
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Figure 5 – The first two natural modes of a single-delaminated beam. Top: First mode shape; Bottom: 
Second mode shape. Intact mode shapes are also visualized. 

Figure 5 shows the first two natural modes of the 2-layered beam, with 60% of span 

midplane delamination, compared with those of an intact configuration.  It is worth noting that 

the conventional FEM-based models are characterized by constant mass and stiffness matrices, 

in the frequency domain, of limited number of total degrees of freedom (DOF); i.e., number of 

nodes times number of DOF per node. Accordingly, the natural modes obtained from the 
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conventional FEM model – being the eigenmodes of the governing linear eigenvalue problem – 

have the same dimension as the total degrees of freedom of the FEM model. Unlike the 

conventional FEM (e.g., 4-DOF Hermite beam element), the DSM and frequency-dependent DFE 

matrices are formulated based on continuous element assumptions, which introduces infinite 

number of degrees of freedom within each element (see, e.g., [2-9, 46, 52]). Therefore, through 

the use of these techniques, additional modes of vibration can be found than would otherwise 

be available using FEM with an equal number of elements. Additionally, certain modes of 

vibration are the result of the denominator of the global dynamic stiffness matrix going to zero; 

and correspondingly the determinant of the global stiffness matrix approaching infinity, 

|𝐾�(𝜔)| → ∞.  Also known as the poles of a system, they can represent real physical mode 

shapes [51, 52] even though at least one eigenvalue goes to zero. Through simplification, it was 

found that the denominator of the dynamic stiffness matrix (DSM and DFE), has the following 

form:  

 𝐷𝐸𝑁 = cos(𝜆2) cosh(𝜆2) − 1  

While the mode shapes of the poles were not necessarily important in this analysis, 

their corresponding natural frequencies are important when using more advanced root solving 

techniques [51, 52].  Zero-nodal-displacement modes have also been observed and reported in 

the literature for other structural configurations (see, for example, [46, 51, 52]).  There are also 

certain frequencies captured through the modal analysis whose mode shapes, while 

mathematically possible, do not represent physically admissible displacements. These modes – 

for example a natural mode at λ2 = 31.0 in the case of present study – are simply the result of 

the free model assumptions [35]. They correspond to interpenetration of the beams and would 

not be present in a constrained mode analysis. As seen in Figure 6, the vibration of the top and 

bottom delaminated beams would be inadmissible due to non-linear phenomena such as 

contact, which cannot be modeled in the frequency domain. Similar inadmissible partial and 

complete interpenetration modes have also been reported in the literature [39].   
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Figure 6 – The first opening mode shape for a midplane delamination. λ2 = 31.88 

In addition to real natural modes of vibration, poles and inadmissible interpenetration 

modes examined above, under small vibration amplitudes a split layered beam may exhibit a 

mode at a frequency corresponding to a delamination-opening mode. Figure 5 shows the first 

opening mode for a delaminated beam with top beam thickness equal to 40% the height of the 

intact beam, 60% of span, off-midplane delamination, obtained using DSM, DFE and FEM 

models (FEM nodes visualized).  Similar opening modes have also been reported in the 

literature (see, e.g. [14, 17]).  

 
Figure 7 – The first mode shape for an off-midplane delamination. λ2 = 36.88 
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3. 

3.1. Analytical Formulation 

Double Delamination 

The study of delaminated composite beams is not limited to a single through-width 

delamination. In fact, the literature contains many examples of different delamination 

configurations. To show the extensibility of the dynamic modelling presented in the previous 

section, a multiple-delaminated beam model will be analyzed and the results compared to 

analytical formulations, as well as data obtained from the literature. 

 
Figure 8– The co-ordinate system and notation for a double delaminated composite beam 

According to Euler-Bernoulli beam theory, each beam section will deform according to 

the differential equation of motion 

 
𝐸𝐼𝑖

𝜕4𝑤𝑖
𝜕𝑥4

+ 𝜌𝑖𝐴𝑖
𝜕2𝑤𝑖
𝜕𝑡2

= 0 ,   𝑖 = 1, … 5 (46) 

For harmonic oscillations, the transverse displacements can be described in the frequency 

domain by using the transformation 

 𝑤𝑖(𝑡) = 𝑊𝑖 sin(𝜔𝑡) (47) 
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where ω is the circular frequency of excitation of the system, Wi is the amplitude of the 

displacement wi, and subscript ‘i’ represents the beam segment number.  By substituting (47) 

into (46), the equations of motion reduce to 

 𝐸𝐼𝑖
𝜕4𝑊𝑖

𝜕𝑥4
− 𝜌𝑖𝐴𝑖𝜔2𝑊𝑖 = 0 ,   𝑖 = 1, … 5 (48) 

The general solution to the 4th-order, homogeneous differential equation can be written in the 

following form 

 𝑊𝑖(𝑥𝑖) = 𝐴𝑖 cos�𝜆𝑖
𝑥𝑖
𝐿𝑖
� + 𝐵𝑖 sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐶𝑖 cosh�𝜆𝑖

𝑥𝑖
𝐿𝑖
� + 𝐷𝑖 sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� (49) 

which represents the bending displacement Wi of beam segment ‘i’, Li is the beam segment 

length, and λi represents the nondimensional frequency of oscillation, defined as: 

 𝜆𝑖
4 =

𝜔2𝜌𝑖𝐴𝑖
𝐸𝐼𝑖

𝐿𝑖4 (50) 

The expressions (46) through (50) are, respectively, identical to (1) through (5) 

presented in Chapter 2. The basic assumption at the delamination tips, again, is that the change 

in length of the delaminated beams, as imposed by requirement that the delamination tips 

remain planar after deformation (rigid connectors), is equal to the length change caused by an 

internal axial force acting at the delaminated beam endpoints (see Figure 1). In this way, the 

axial forces can be treated as unknown and solved to provide sufficient information to generate 

bending moment continuity equations at the delamination tips. These moment continuity 

equations include the following factors, for equal-length double delaminations, written about 

the left delamination tip: 

 𝑀1 = 𝐸𝐼1𝑊1
′′ = 𝐸𝐼2𝑊2

′′ + 𝐸𝐼3𝑊3
′′ + 𝐸𝐼4𝑊4

′′ 

                          +𝑷𝟐
𝑯𝟐

𝟐
+ 𝑷𝟑 �𝑯𝟐 +

𝑯𝟑

𝟐
�+ 𝑷𝟒 �𝑯𝟐 +𝑯𝟑 +

𝑯𝟒

𝟐
� (51) 

The terms in bold (the last three terms in equation (51)) represent the moment 

contribution from the axial forces, which are unknown at this point and are treated as variable. 
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In order to find the values of these axial forces as functions of the displacement magnitude, W – 

which when solved will be an appropriate approximation function – some physical assumptions 

have to be made. Equilibrium of axial forces at either delamination tips demands that 

P2+P3+P4=0, assuming the system has no externally applied axial forces. Additionally, the 

following conditions, based on the assumption that the differential axial stretching is caused 

completely by the unknown axial forces, can be written: 

 
𝑃2𝑎
𝐸𝐴2

−
𝑃3𝑎
𝐸𝐴3

= �𝑊5
′(𝑥5 = 0) −𝑊1

′(𝑥1 = 𝐿1)�
𝐻2 + 𝐻3

2
 

𝑃3𝑎
𝐸𝐴2

−
𝑃4𝑎
𝐸𝐴3

= �𝑊5
′(𝑥5 = 0) −𝑊1′(𝑥1 = 𝐿1)�

𝐻3 + 𝐻4
2

 
(52) 

where the terms on the right represent the differential stretching to maintain axial 

displacement continuity at the delamination tips and the terms on the left represent the 

stretching/shrinking caused by the axial forces. This is the same technique used in Chapter 

Analytical Formulation2.1 to find the equivalent statement for the single delamination case. 

Setting these two equal, the form of the axial forces can be determined as functions of the 

difference in slope between the delamination tips, 𝑊1
′(𝑥1 = 𝐿1) −𝑊5

′(𝑥5 = 0). The moment 

continuity equation above then becomes, after substitution and simplification: 

 𝐸𝐼1𝑊1
′′ = 𝐸𝐼2𝑊2

′′ + 𝐸𝐼3𝑊3
′′ + 𝐸𝐼4𝑊4

′′ + Λ�𝑊1
′(𝑥1 = 𝐿1) −𝑊5

′(𝑥5 = 0)� 

(53) 
where Λ =

(𝐻1 + 𝐻3)2𝐸𝐴2𝐸𝐴4 + (𝐻2 + 𝐻3)2𝐸𝐴2𝐸𝐴3 + (𝐻3 + 𝐻4)2𝐸𝐴3𝐸𝐴4
4𝑎(𝐸𝐴2 + 𝐸𝐴3 + 𝐸𝐴4)  

Similarly, the form of the moment continuity condition at the right delamination tip can 

be found. In addition, the other continuity conditions at the delamination tips may be found. 

For example at the left delamination tip:  

Continuity of displacements: 𝑊1 = 𝑊2 = 𝑊3 = 𝑊4 

(54) Continuity of slopes: 𝑊1′ = 𝑊2′ = 𝑊3′ = 𝑊4′ 

Continuity of shear forces: 𝐸𝐼1𝑊1
′′′ = 𝐸𝐼2𝑊2

′′′ + 𝐸𝐼3𝑊3
′′′ + 𝐸𝐼4𝑊4

′′′ 
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Using the requirement for a force-displacement relationship with the already 

established general solution, the standard, Euler-Bernoulli beam theory descriptions of 

internally developed bending moment and shear stress may be written at each point 𝑥𝑖  as: 

 𝑀𝑖 = 𝐸𝐼𝑖
𝑑2𝑊𝑖(𝑥𝑖)
𝑑𝑥𝑖2

 

(55)  
𝑆𝑖 = 𝐸𝐼𝑖

𝑑3𝑊𝑖(𝑥𝑖)
𝑑𝑥𝑖3

 

Similar relationships can be derived for the right delamination tip. These relationships result in 

20 equations, and 20 unknown constants, from the {Ci} vectors. When the determinant of the 

coefficient matrix of these constants vanishes, the conditions for natural modes of free 

vibration are met, and the frequencies at which this occurs are the natural frequencies of the 

system. These frequencies may be found in a number of ways, from a frequency-sweep to more 

advanced root-finding algorithms [53]. 

3.2. Finite Element Method (FEM) Formulation 

The conventional finite element approach used here is based on the Galerkin weighted 

residual method. The equations of motion for each beam are used as the basis of this solution 

method. Simple harmonic motion is again assumed, and the equations of motion, according to 

the Euler-Bernoulli beam theory, take the following form: 

 𝐸𝐼𝑖
𝜕4𝑊�𝑖
𝜕𝑥4

− 𝐸𝐼𝑖 �
𝜆𝑖
𝐿𝑖
�
4

𝑊�𝑖 = 0 ,   𝑖 = 1, … 5 (56) 

where 𝑊�𝑖 is the actual transverse displacement of beam i, and the same non-

dimensionalization used in (5) has been applied. An approximate transverse displacement 𝑊𝑖 is 

introduced in place of the actual displacement, such that 𝑊𝑖 ≅ 𝑊�𝑖. This results in the following 

residual equation 

 𝐸𝐼𝑖
𝜕4𝑊𝑖

𝜕𝑥4
− 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝑊𝑖 = ℛ ,   𝑖 = 1, … 5 (57) 
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Then, following the Galerkin method of weighted residuals, this residual is weighted by a virtual 

displacement, and integrated over the entire domain, the result being set equal to zero, such 

that: 

 
��� �𝐸𝐼𝑖𝛿𝑊𝑖𝑊𝑖

′′′′ − 𝐸𝐼𝑖 �
𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
5

𝑖=1

= 0 (58) 

where 𝑊𝑖(𝑥𝑖) = 〈𝑁𝑖(𝑥𝑖)〉{𝑊𝑛}  

The row vector of shape functions, N, depend on the element type being used for 

analysis and Wn is a column vector of nodal displacements. Integration by parts is then carried 

out twice, to produce the following: 

 ��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0
𝐿𝑖�

5

𝑖=1���������������������
∗

+ ��� �𝐸𝐼𝑖𝛿𝑊𝑖′′𝑊𝑖
′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
5

𝑖=1

= 0 (59) 

The term on the left, representing the boundary terms, is also related to the external virtual 

work 𝛿𝒲𝑒𝑥𝑡, which is imparted to the system by external forces. Since the bending moment is 

affected by the aforementioned axial force coupling, the boundary term of the above equation 

can be expressed as For the endpoints of beam sections 1 and 4, the following is true for free 

vibration: 

 
𝐸𝐼1�(𝛿𝑊1𝑊1

′′′ − 𝛿𝑊1
′𝑊1

′′)|𝑥1=0 = �𝛿𝒲𝑒𝑥𝑡|𝑥1=0 

𝐸𝐼5�(𝛿𝑊5𝑊5
′′′ − 𝛿𝑊5

′𝑊5
′′)|𝑥5=𝐿5 = 𝛿�𝒲𝑒𝑥𝑡|𝑥5=𝐿5 

(60) 

where 𝛿𝒲𝑒𝑥𝑡 is the external virtual work caused by applied external forces on the system, 

causing virtual displacements. For the free vibration of this system, the total external work is 
�𝛿𝒲𝑒𝑥𝑡 = 𝛿𝒲𝑒𝑥𝑡|𝑥1=0 + 𝛿�𝒲𝑒𝑥𝑡|𝑥5=𝐿5 = 0. The remaining terms in (*) above can be resolved by 

applying the continuity conditions from (54), with the following as a result: 
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��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0
𝐿𝑖� =

5

𝑖=1

𝛿𝒲𝑒𝑥𝑡

+ 𝛿𝑊2(0) �𝐸𝐼1𝑊1′′′(𝐿1) − 𝐸𝐼2𝑊2′′′(0) − 𝐸𝐼3𝑊3′′′(0)− 𝐸𝐼4𝑊4′′′(0)����������������������������������������
∗∗

− 𝛿𝑊2
′(0)�𝐸𝐼1𝑊1

′′(𝐿1)− 𝐸𝐼2𝑊2
′′(0)− 𝐸𝐼3𝑊3

′′(0) − 𝐸𝐼4𝑊4
′′(0)�

− 𝛿𝑊2(𝐿2) �𝐸𝐼4𝑊4′′′(0)− 𝐸𝐼2𝑊2′′′(𝐿2)− 𝐸𝐼3𝑊3′′′(𝐿3) − 𝐸𝐼4𝑊4′′′(𝐿4)����������������������������������������
∗∗∗

+ 𝛿𝑊2′(𝐿2)�𝐸𝐼5𝑊5′′(0) − 𝐸𝐼2𝑊2′′(𝐿2)− 𝐸𝐼3𝑊3′′(𝐿3) − 𝐸𝐼4𝑊4′′(𝐿4)� 

(61) 

The terms (**) and (***) in equation (24), as well as the external work term go to zero 

directly as a result of the shear force continuity conditions. However, the remaining terms do 

not vanish, since the continuity of bending moments contains an additional implicit bending-

axial coupling term, in (53), such that  

 ��𝐸𝐼𝑖[𝛿𝑊𝑖𝑊𝑖
′′′ − 𝛿𝑊𝑖

′𝑊𝑖
′′]0

𝐿𝑖� =
5

𝑖=1

�𝛿𝑊2
′(𝐿2)− 𝛿𝑊2′(0)� �Λ�𝑊2

′(𝐿2) − 𝛿𝑊2′(0)�� (62) 

Then, expression (59) becomes:  

 
�Λ�𝛿𝑊2

′(𝐿2) − 𝛿𝑊2
′(0)��𝑊2

′(𝐿2) −𝑊2
′(0)��

+��� �𝐸𝐼𝑖𝛿𝑊𝑖′′𝑊𝑖
′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
5

𝑖=1

= 0 (63) 

Discretizing the domain from into m elements and replacing the displacements above by 

their equivalent shape function expressions, the following results, which will be the final form 

of the FEM solution for this formulation: 

 〈𝛿𝑊𝑛〉 ��{𝑁2}′(𝐿2) − {𝑁2}′(0)�Λ�〈𝑁2〉′(𝐿2) − 〈𝑁2〉′(0)�

+ � � � � �𝐸𝐼𝑖{𝑁𝑖}′′〈𝑁𝑖〉′′ − 𝐸𝐼𝑖 �
𝜆𝑖
𝐿𝑖
�
4

{𝑁𝑖}〈𝑁𝑖〉�

𝑥𝑚+1

𝑥𝑚

�
# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑚=1

5

i=1

� {𝑊𝑛} = 0 

(64) 

Thence 〈𝛿𝑊𝑛〉�(𝐊 + 𝐊𝐝𝐞𝐥𝐚𝐦)−𝜔2𝐌�{𝑊𝑛} = 𝟎  
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Appropriate shape functions are then chosen, and substituted into the above to solve 

for the structural stiffness and mass matrices (K and M, respectively) and Kdelam, the 

delamination stiffness matrix, (*) in equation (64). This yields the same result as the traditional 

finite element solutions for mass and stiffness ( 𝐊 = ∫ [𝐵]𝑇𝐸𝐼[𝐵]𝑑𝑉𝑉  and 

𝐌 = ∫ {𝑁}𝜌𝐴〈𝑁〉𝑑𝑉𝑉  , where [𝐵] is the strain-displacement matrix [33]) with the added 

stiffness term due to the delamination, and noting that the frequency of excitation squared ω2 

is contained within the non-dimensional frequency term λ4, which makes this eigenproblem 

identical to the traditional FEM free vibration problem [𝐊 − 𝜔2𝐌]{𝑊𝑛} = 𝟎.  

The delamination stiffness can be used in combination with a Boolean term to include or 

neglect rigid connectors as required without completely redeveloping the system equations. 

This ability greatly increases the versatility of this method when compared to an analytical 

solution, or a solution not based on the principle of virtual work. 

A further investigation into the effects of higher-order elements was conducted in 

addition to the refinement of the theory to include multiple delaminations, in order to assess 

the possible benefits afforded to FEM solutions using higher-order shape functions. The trade-

off between increased solution accuracy and solution efficiency was examined in the process.  

3.2.1. 2-Node Beam Element 

 

Figure 9 – The 2-node, 4 degree of freedom beam element 

 The standard Hermite cubic polynomial interpolation functions were chosen to 

represent a 2-node beam element, with 2 degrees of freedom per node (displacement and 

slope). The basis functions chosen are linearly independent polynomial bases, up to order 3: 

1 2
x

L

W1 W2

W1'
W2'
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 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3〉{𝐶} (65) 

where {C} is a column vector of unknown constant coefficients. The following represents the 

vector of nodal displacements used in further FE development: 

 
{𝑊𝑛} = �

𝑊1
𝑊1

′

𝑊2
𝑊2

′

� = �

1 0 0 0
0 1 0 0
1 𝐿 𝐿2 𝐿3
0 1 2𝐿 3𝐿2

� {𝐶} = [𝑃𝑛]{𝐶} (66) 

Thus 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3〉[𝑃𝑛]−1{𝑊𝑛} = 〈𝑵〉{𝑾𝒏}  

These shape functions can then be used in the integral equation provided above to solve for the 

stiffness and mass matrices. This integration may be carried out symbolically during initial 

development, or numerically during the solution phase. Due to the relative simplicity of the 

method, the terms in the stiffness and mass matrix were solved for directly during 

development. This was true for the second element type, as well. 

3.2.2. 3-Node Beam Element 

 

Figure 10 – The 3-node, 5 degree of freedom beam element 

Here, the same concept of a polynomial interpolation function is used, as before. 

However, making use of a higher-order polynomial interpolation functions increases the 

accuracy of the solution. Whereas for the 2-node beam element a 3rd-order polynomial was 

required, for a higher-order interpolation of 4th-order one requires the addition of another 

single degree of freedom to the system. This was accomplished by adding a midpoint node with 

one degree-of-freedom (lateral displacement) to the beam model used previously. This third 

node, while increasing the mesh fineness, allows for a greater solution accuracy and possibly 

1 2 3
x

L/2 L/2

W1 W2 W3

W1'
W2'
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faster convergence, which will be investigated.  The 3-node beam element will be developed in 

the same way as the 2-node beam element, except using the following interpolation function: 

 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3 𝑥4〉{𝐶} (67) 

Consequently, the degrees of freedom for the system will be modified as discussed. The 

addition of the midpoint node and its associated lateral degree of freedom are compensated 

for by using the following degrees of freedom: 

 
{𝑊𝑛} =

⎩
⎪
⎨

⎪
⎧
𝑊1
𝑊1

′

𝑊2
𝑊3
𝑊3

′⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
1 𝐿/2 𝐿2/4 𝐿3/8 𝐿4/16
1 𝐿 𝐿2 𝐿3 𝐿4
0 1 2𝐿 3𝐿2 4𝐿3 ⎦

⎥
⎥
⎥
⎤

{𝐶} = [𝑃𝑛]{𝐶} (68) 

Thus 𝑊(𝑥) = 〈1 𝑥 𝑥2 𝑥3 𝑥4〉[𝑃𝑛]−1{𝑊𝑛} = 〈𝑵〉{𝒗𝒏}  
 

3.3. Dynamic Stiffness Matrix (DSM) Formulation 

Although the analytical solution presented above fulfils the initial requirements of this 

project, some transformations can still be made to make the solution process more intuitive 

and extensible. To this end, the concept of a Dynamic Stiffness Matrix (DSM) will be utilized. 

Whereas the analytical solution is self-contained and relies on the solution of a coefficient 

matrix, the DSM approach results in a more useful, force-displacement relationship. This can 

then be used for the same purpose as the initial approach – solving a free vibration problem at 

the delamination level – or the problem can be extended, using other dynamic finite elements. 

This allows for a greater breadth of analysis, since the delamination configuration is not limited 

to simple intact-delaminated-intact beam segments. 

Using the requirement for a force-displacement relationship with the already 

established general solution, we can use the standard, beam theory descriptions of internally 

developed bending moment and shear stress as: 
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 𝑀𝑖 = 𝐸𝐼𝑖
𝑑2𝑊𝑖(𝑥𝑖)
𝑑𝑥i2

 

(69) 
 

𝑆𝑖 = 𝐸𝐼𝑖
𝑑3𝑊𝑖(𝑥𝑖)
𝑑𝑥i3

 

Then, the following can be substituted into the above, noting again the general solution to the 

differential equations of motion: 

 𝑊𝑖(𝑥𝑖) = �cos �𝜆𝑖
𝑥𝑖
𝐿𝑖
� sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� cosh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
�� {𝐶𝑖} 

d𝑊𝑖(𝑥𝑖)
d𝑥

=
1
𝐿𝑖
�−sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� cos �𝜆𝑖

𝑥𝑖
𝐿𝑖
� sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� cosh �𝜆𝑖

𝑥𝑖
𝐿𝑖
�� {𝐶𝑖} 

d2𝑊𝑖(𝑥)
d𝑥𝑖2

= �
1
𝐿𝑖
�
2

�−cos �𝜆𝑖
𝑥𝑖
𝐿𝑖
� − sin �𝜆𝑖

𝑥𝑖
𝐿𝑖
� cosh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
�� {𝐶𝑖} 

d3𝑊𝑖(𝑥)
d𝑥𝑖3

= �
1
𝐿𝑖
�
3

�sin�𝜆𝑖
𝑥𝑖
𝐿𝑖
� −cos �𝜆𝑖

𝑥𝑖
𝐿𝑖
� sinh �𝜆𝑖

𝑥𝑖
𝐿𝑖
� cosh �𝜆𝑖

𝑥𝑖
𝐿𝑖
�� {𝐶𝑖} 

(70) 

where {Ci} is a column vector of constant coefficients.  Since the delamination tips will be the 

boundaries of the domain of interest, the bending moment definition is modified from that 

provided by beam theory to account for the bending-axial coupling described previously. The 

proper definitions for bending moment and shear force at the delamination tips then become: 

 
𝑀1 = 𝐸𝐼2𝑊2

′′ + 𝐸𝐼3𝑊3
′′ + 𝐸𝐼4𝑊4

′′ + Λ�𝑊1
′(𝑥1 = 𝐿1) −𝑊5

′(𝑥5 = 0)� 

𝑆1 = 𝐸𝐼2𝑊2
′′′ + 𝐸𝐼3𝑊3

′′′ + 𝐸𝐼4𝑊4
′′′ 

(71) 

where (∙)′ represents the differentiation with respect to the beam longitudinal axis, x. Similar 

relationships can be derived for the second endpoint, using the previously identified 

relationships. Creating a column vector of nodal forces, we have the following: 

 �

𝑆1
𝑀1
𝑆2
𝑀2

� = 𝐅 = 𝑨𝟐{𝐶2} + 𝑨𝟑{𝐶3} + 𝑨𝟒{𝐶4}  (72) 

where A2, A3 and A4 contain the frequency dependent coefficients of the unknown constants 

for beams 2, 3, and 4, respectively. Then, assuming some relationship can be found that relates 
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the unknown constants of beams 3 and 4 to those of 2 (which will be described later) by 

{𝐶3} = 𝑩𝟑𝟐{𝐶2},   {𝐶4} = 𝑩𝟒𝟐{𝐶2}, then: 

 𝐅 = (𝑨𝟐 + 𝑨𝟑𝑩𝟑𝟐 + 𝑨𝟒𝑩𝟒𝟐){𝐶2} (73) 

Since this development makes use of nodal displacements, nodes 1 and 2 are defined at 

the left and right endpoints, respectively, of the delaminated beam model, then the following is 

also true: 

𝑊2(𝑥2 = 0) = 𝑊3(𝑥3 = 0) = 𝑊4(𝑥4 = 0) = [1 0 1 0]�𝐶2,3,4� 

Similar continuity conditions for W’1, W2, and W’2 exist at each delamination tip. This gives the 

following relationship between nodal displacements and constant coefficients (using the 

coefficients for beam 2 as a reference): 

 
�

𝑊1
𝑊1

′

𝑊2
𝑊2

′

� =

⎣
⎢
⎢
⎢
⎡

1 0 1 0
0 1 0 1
𝐶𝜆2 𝑆𝜆2 𝐶ℎ𝜆2 𝑆ℎ𝜆2

−
𝜆2
𝐿2
𝑆𝜆2

𝜆2
𝐿2
𝐶𝜆2

𝜆2
𝐿2
𝑆ℎ𝜆2

𝜆2
𝐿2
𝐶ℎ𝜆2⎦

⎥
⎥
⎥
⎤

{𝐶2} 

𝐮 = 𝑫𝟐{𝐶2} 

(74) 

where 𝐶𝜆2 = cos(𝜆2), 𝑆𝜆2 = sin(𝜆2), 𝐶ℎ𝜆2 = cosh(𝜆2), 𝑆ℎ𝜆2 = sinh(𝜆2). Combining this with 

the force relationship, from equation (73), the following can be shown: 

 
𝐅 = (𝑨𝟐 + 𝑨𝟑𝑩𝟑𝟐 + 𝑨𝟒𝑩𝟒𝟐)𝑫𝟐

−1𝐮 

𝐅 = 𝐊𝐮 
(75) 

where K is the system stiffness matrix, whose elements are all dynamic in nature, functions of 

frequency. This system equation is in the proper form for use with other elements, as was 

intended from the start. Free vibration occurs when the determinant of this stiffness matrix 

vanishes. 
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As previously described, the form of the system stiffness matrix is dependent on the 

existence of some coupling relationship between the unknown constants for beams 3 and 4 

with respect to those for beam 2. Using the concept of nodal displacements described above, 

the following is true for each beam, with the vector u being identical in each case, since the 

transverse displacement and slope are continuous across the endpoints at which 𝐮�|element n  is 

defined: 

 𝐮�|element 2 = 𝑫𝟐{𝐶2} , 𝐮�|element 3 = 𝑫𝟑{𝐶3} , 𝐮�|element 4 = 𝑫𝟒{𝐶4} (76) 

where ui represent the column vector of nodal displacements for beam i, Di is the matrix of 

coefficients for beam i, and {Ci} represents the unknown constants for beam i. At the 

delamination tips, in order to ensure inter-element continuity of displacements and their first 

derivatives (C1 continuity), the displacements and their first derivatives are equal for each 

delaminated beam. Since these displacements and slopes also represent the nodal 

displacements and slopes Wi, it can be shown that: 

 
𝐮�|element 2 = 𝐮�|element 3 , 𝐮�|element 2 = 𝐮�|element 4 

𝑫𝟐{𝐶2} = 𝑫𝟑{𝐶3} , 𝑫𝟐{𝐶2} = 𝑫𝟒{𝐶4} 

{𝐶3} = 𝑫𝟑
−1𝑫𝟐{𝐶2} , {𝐶3} = 𝑫𝟑

−1𝑫𝟐{𝐶2} 

(77) 

Thus 𝑩𝟑𝟐 = 𝑫𝟑
−1𝑫𝟐 , 𝑩𝟒𝟐 = 𝑫𝟒

−1𝑫𝟐  

which satisfies the initial requirement that the Bij matrices exist, and also gives the explicit form 

of these coupling matrices. All terms within the stiffness matrix have now been identified, and 

the free vibration modes of the system can be solved using this newly developed K, together 

with root solving algorithms, to satisfy the free vibration condition that 𝐊𝐮 = 𝟎, if and only if 

det(𝐊) = 0.  
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3.4. Dynamic Finite Element (DFE) Formulation 

Due to the accuracy of the 2-node DFE beam element observed (see Contributions 1-6 in 

Section 6, and the results discussed in the next Section) in the single delamination formulation, 

it was not necessary to develop a 3-node DFE element in the double-delamination case. The 

formulation presented here will be for a 2-node, 2 degree-of-freedom per node beam element 

(4-DOF), with the same coordinate system and definitions presented in Figure 9. The weak form 

of the weighted residual formulation from the FEM development (expression (63)), is  

 
�Λ�𝛿𝑊2

′(𝐿2) − 𝛿𝑊2
′(0)��𝑊2

′(𝐿2) −𝑊2
′(0)��

+��� �𝐸𝐼𝑖𝛿𝑊𝑖′′𝑊𝑖
′′ − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖�

𝐿𝑖

0

d𝑥𝑖�
5

𝑖=1

= 0 (78) 

The domain is then discretized over a number of elements (# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖), and another set of 

integrations by parts is performed. The result of this is the following, where the order of 

differentiation of the displacement 𝑊𝑖 and the virtual displacement, 𝛿𝑊𝑖, have been reversed 

from the original weighted residual formulation: 

 

Λ�𝛿𝑊2
′(𝐿2) − 𝛿𝑊2

′(0)��𝑊2
′(𝐿2) − 𝛿𝑊2′(0)�

+ � � �𝐸𝐼𝑖[𝛿𝑊𝑖
′′𝑊𝑖

′ − 𝛿𝑊𝑖
′′′𝑊𝑖]𝑥𝑚

𝑥𝑚+1

# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑚=1

5

𝑖=1

+ � �𝐸𝐼𝑖𝛿𝑊𝑖
′′′′𝑊𝑖 − 𝐸𝐼𝑖 �

𝜆𝑖
𝐿𝑖
�
4

𝛿𝑊𝑖𝑊𝑖���������������������
∗

�𝑑𝑥

𝑥𝑚+1

𝑥𝑚

� = 0 

(79) 

For the DFE formulation, the interpolation functions are chosen such that the expression 

(*) above goes to zero with the approximation implemented. Thus, the general solution to (*) 

was chosen to be the basis functions from which shape functions would be derived, much in the 

same way as the single delamination DFE was implemented. Since beam sections 1-5 would be 

independent within their own unique sub-domains, each could be meshed using elements with 

different shape functions, with no effect on the finite element assembly, so long as the 
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delamination stiffness implementation – (*) in the expression above – is implemented properly. 

For an uncoupled Euler-Bernoulli beam, the interpolation functions take the following form  

 
𝑊𝑖(𝜉𝑖) = �cos(𝛼𝑖𝜉𝑖)

sin(𝛼𝑖𝜉𝑖)
𝛼𝑖

cosh(𝛼𝑖𝜉𝑖) − cos(𝛼𝑖𝜉𝑖)
𝛼𝑖2

sinh(𝛼𝑖𝜉𝑖) − sin(𝛼𝑖𝜉𝑖)
𝛼𝑖3

� {𝐶𝑖} 

= 〈𝑷𝒊〉{𝑪𝒊} 

(80) 

where {𝐶𝑖} is a column vector of constant coefficients, 𝜉𝑖 is the non-dimensional axial 

coordinate, 𝑥𝑖/𝐿𝑖 , and 𝛼𝑖 is a constant coefficient, equal to 

 𝛼𝑖 =
𝜔2𝜌𝑖𝐴𝑖
𝐸𝐼𝑖

 (81) 

In much the same way as the interpolation functions were found for the single 

delamination formulation, the form that was adopted is a linear combination of the linearly 

independent interpolation functions introduced in (4), such that they collapse to the Hermite 

cubic interpolation functions as the frequency of excitation approaches zero. The shape 

functions were found using the following: 

 
{𝑊𝑛} =

⎩
⎨

⎧
𝑊𝑖(𝜉𝑖 = 0)
𝑊𝑖

′(𝜉𝑖 = 0)
𝑊𝑖(𝜉𝑖 = 1)
𝑊𝑖

′(𝜉𝑖 = 1)⎭
⎬

⎫
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0
0 1 0 0

cos(𝛼𝑖)
sin(𝛼𝑖)
𝛼𝑖

cosh(𝛼𝑖) − cos(𝛼𝑖)
𝛼𝑖2

sinh(𝛼𝑖) − sin(𝛼𝑖)
𝛼𝑖3

−𝛼𝑠𝑖𝑛(𝛼𝑖) cos(𝛼𝑖)
𝛼 sinh(𝛼𝑖) + 𝛼 sin(𝛼𝑖)

𝛼𝑖2
𝛼 sinh(𝛼𝑖) − 𝛼 cos(𝛼𝑖)

𝛼𝑖3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

= [𝑷𝒏]𝒊{𝑪𝒊} 

(82) 

thus 𝑊𝑖(𝜉𝑖) = 〈𝑃〉[𝑃𝑛]𝑖
−1{𝑊𝑛} = 〈𝑵𝒊〉{𝑾𝒏}, (83) 

where {(∙)𝑛} represents the nodal values at the endpoints of the beam element. It should be 

noted also that, while the coordinate non-dimensionalization to 𝜉𝑖 was made, the 

differentiation is still with respect to 𝑥𝑖  , and this should be respected in the formulation.  

Introducing the shape functions back into the discretized equation, the following results: 
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〈𝛿𝑊𝑛〉��{𝑁2}′(𝐿2)− {𝑁2}′(0)�Λ�〈𝑁2〉′(𝐿2)− 〈𝑁2〉′(0)�

+ � � �𝐸𝐼𝑖[{𝑁𝑖}′′〈𝑁𝑖〉′ − {𝑁𝑖}′′′〈𝑁𝑖〉]𝑥𝑚
𝑥𝑚+1�

# 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑖

𝑚=1

5

𝑖=1

� {𝑊𝑛} = 0, 

(84) 

or 〈𝛿𝑊𝑛〉(𝐊𝐃𝐅𝐄 + 𝐊𝐝𝐞𝐥𝐚𝐦){𝑊𝑛} = 0  

where 𝐊𝐃𝐅𝐄 is the frequency-dependent structural stiffness matrix, and 𝐊𝐝𝐞𝐥𝐚𝐦 is the 

delamination stiffness matrix, from the conditions imposed at the delamination tips. The above 

statement is true if and only if 

 det(𝐊𝐃𝐅𝐄 + 𝐊𝐝𝐞𝐥𝐚𝐦) = 0  

This process gives a platform from which solutions may be obtained. Either traditional 

eigensolvers, coupled with frequency-sweeping, or more advanced root finding algorithms [53]. 

This gives the DFE formulation more flexibility over a traditional FEM-based solution alone, in 

that more solver types are available, depending on the form of the problem at hand. 

The similarities between this formulation and the previous, single delamination 

formulation should be apparent, and this is an important note. The analytical formulation had 

to expand to include additional conditions and equations in this formulation, but the 

fundamental application of the DFE theory remained the same across applications. This is more 

evidence of the utility of the DFE formulation; different scenarios, which might require a large-

scale expansion of the solution algorithm (for example, by introducing extra delamination 

conditions in an analytical formulation), may be handled relatively easily using a DFE approach. 

This ease of transitioning between test cases is one of the prime motivators for FEM-based 

techniques, and DFE combines this advantage with the frequency-based approach that DSM 

and analytical techniques use for increased solution accuracy with fewer (in the case of DSM) 

elements.  
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3.5. Numerical Tests 

In order to assess the accuracy of the proposed solution method, a series of different 

delamination configurations will be analyzed using the methods outlined above. Results 

obtained from an analytical solution and those gathered from the literature will be presented 

and compared to this method to achieve such assessment. Note that the boundary conditions 

are clamped-clamped. 

Since the models presented in this section are relatively simple and computation time is 

not relevant to the analysis, the following discretization – which may not be optimized for fast 

solution speeds – was used to mesh the domains presented below (see Appendix C a discussion 

on the numerical sensitivity of this mesh): 

 

Figure 11 – Mesh discretization for double-delaminated configurations 

 

3.5.1.  Model 1 Frequency Results 

 
Figure 12 - The first double-delamination model 

The first delamination model tested is illustrated in the figure above. The top and centre 

delaminated beams each have a height of 30% the intact beam height. In addition, the 

delamination length, a, was varied as a percentage of the total beam length from 20% to 50%. 

The delamination is central, meaning that the left and right intact segments have equal lengths. 

a
L

H1

H10.3

H1

H1

0.3

0.4
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The frequency results for these delaminated clamped-clamped beam configurations are 

presented in Table 5.  The results include those from the literature [17], which have been 

interpolated from a graph. 

Table 5 – The first and second nondimensional frequency parameter λ2 for model 1 

a/L Ref [17] 
2-Node 

FEM 
3-Node 

FEM 
Exact/ 

Analytical 
DSM DFE 

 
0.2 4.7 4.725 4.725 4.725 4.725 4.725 

Mode 
1 

0.3 4.7 4.691 4.695 4.695 4.695 4.695 
0.4 4.6 4.574 4.572 4.575 4.575 4.575 
0.5 4.3 4.318 4.315 4.315 4.315 4.315 
0.2 7.1 7.054 7.046 7.045 7.045 7.045 

Mode 
2 

0.3 6.3 6.337 6.334 6.335 6.335 6.335 
0.4 6.0 5.965 5.960 5.965 5.965 5.965 
0.5 5.9 5.860 5.846 5.845 5.845 5.845 

When it comes to conventional FEM frequency results, it can be observed from Table 5 

that both 2- and 3-node beam elements perform well with respect to both the analytical 

solution, as well as those taken from the literature. Slight deviations (0.26% for 2-node mode 2, 

with respect to the exact/analytical solution) are present for larger delamination sizes and for 

higher modes of vibration, as it was expected from the start of FEM development. 

Similarly, the same trend can be observed here as was present during the sensitivity 

analysis. For higher modes, the 3-node beam tended to perform better than the 2-node beam 

(albeit only slightly). This difference is expected to increase with an increase in mode number. 

However, for the first mode and for small delamination sizes, the 2- and 3-node beam elements 

perform similarly and differences between the results for each element were negligible. This 

could be used to justify the use of a 2-node beam element in such situations to save on 

processor requirements and solution times. 

Excellent agreement can be seen between the dynamic element-based solution 

methods (DSM and DFE) and the exact (analytical) solution method (Table 5). This was again 

expected, since the element-based solution was built upon the same general solution to the 

differential equation of motion from which the analytical solution was derived. This would 
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change if more complexities were added to the system, including coupled displacements or 

non-constant material or geometric properties. In these cases, analytical solutions would be 

cumbersome (if not impossible) to find, but it would be expected that DFE and DSM results 

would diverge from each other for low element counts, as DSM takes advantage of certain 

simplifying assumptions (see [2-9] for more detail) to allow the coupled equations to be 

expressed in a very particular form, while a DFE formulation would treat coupled and 

uncoupled parts of the set of equations separately, like FEM-based techniques. Even for these 

cases, for a finer DFE mesh, it has been shown that DSM and DFE do correlate well (for 

example, [22]), lending further confidence to the use of these techniques. 

3.5.2.  Model 1 Mode Shapes 

The vibration mode shapes are also an important consideration in free vibration 

modeling. Identifying nonphysical or physically inadmissible behaviour can be essential in 

improving a given model. To that end, the mode shapes for the first two modes above were 

compiled. These were generated from the eigenvector result corresponding to the eigenvalue, 

which represented a particular fundamental frequency. This mode shape was used to 

determine the lateral displacement, w(x), as a function of the axial coordinate, x, from the 

shape functions derived earlier.  

Since the variance between mode shapes for the 2- and 3-node beam elements was 

minimal, only the mode shape for the 3-node beam will be plotted. Additionally, using the exact 

solution presented in the preceding sections, the exact mode shapes were determined and 

plotted as another point of comparison to verify the utility of the present method. 
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Figure 13 - Model 1 mode shapes for a/L = 0.2. 

Top: mode 1;     Bottom: mode 2;     Left: FEM;     Right: Exact 

 

Note that in the figure above, the element end nodes are represented by circular 

markers, and the midpoint nodes are represented by X markers. The mode shapes generated 

using the present method are quite close in shape to those generated from the exact solution. 

Some loss in fidelity of the FEM beam shapes can be attributed to the quartic (or cubic, for 2-

node beam elements) shape functions, approximating the trigonometric and hyperbolic 

functions representing the exact solution. The DFE mode shapes, not shown here for brevity, 

were found to be almost identical (within a few pixels) to the FEM ones. See Appendix B for 

additional FEM and analytical double-delamination mode shapes for different delamination 

lengths.  
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3.5.3.  Model 2 Frequency Results 

 
Figure 14 - The second double-delamination model 

Another delamination model used for verification from [5] is illustrated above. The 

delaminated beams have the same height, equal to one third of the intact beam height. As 

before, the results reported from [17] were converted from chart to numerical form.  The final 

results of this second analysis are detailed below (Table 6).  

Table 6 – The first and second nondimensional frequency parameter λ2 for model 2 

a/L Ref [17] 
FEM 

2-Node 
FEM 

3-Node 
Exact DSM DFE 

 
0.2 4.7 4.726 4.725 4.725 4.725 4.725 

Mode 
1 

0.3 4.7 4.692 4.695 4.695 4.695 4.695 
0.4 4.6 4.580 4.578 4.575 4.575 4.575 
0.5 4.3 4.342 4.338 4.335 4.335 4.335 
0.2 7.0 7.010 7.002 7.005 7.005 7.005 

Mode 
2 

0.3 6.3 6.284 6.281 6.285 6.285 6.285 
0.4 5.9 5.922 5.917 5.915 5.915 5.915 
0.5 5.8 5.833 5.820 5.815 5.815 5.815 

It can be observed that for smaller delamination sizes, the 2-node and 3-node beam 

elements performed with similar accuracy, and both converged to a reasonable accuracy 

(largest deviation approximately 0.16% from the exact solution). However, for higher modes 

and larger delamination sizes, the 3-node beam exhibits higher accuracy and better 

convergence characteristics, as detailed in the sensitivity analysis contained in Appendix C. 

Once again, excellent agreement was observed between the frequency-based element 

solutions (DSM and DFE) and the exact (analytical) solutions. Furthermore, these results were 

a
L

H1

H1⅓

H1⅓

H1⅓
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obtained with only slight modifications to the single delamination technique presented earlier. 

While the analytical solution had to be completely modified, DSM and DFE development very 

closely followed the same process as outlined before. This lends further credence to the 

advantages of these formulations, since good correlation with analytical results can be achieved 

with less development overhead. The usage of DFE or DSM to compute results for more 

complex cases might achieve similar accuracy, where analytical solutions might be significantly 

more difficult to obtain, if not impossible to obtain without approximation.  

3.5.4.  Model 2 Mode Shapes  

The same principle was used to find the mode shapes for model 2, as well. The first 

mode shapes are presented here and, for brevity, additional FEM and analytical double-

delamination mode shapes are contained in Appendix A for different delamination lengths. 

 

 

Figure 15 – Model 2 mode shapes for a/L = 0.2. 

Top: mode 1;     Bottom: mode 2;     Left: FEM;     Right: Exact 

Similarly, the mode shapes for model 2 are similar when comparing the FEM model with 

the exact model. Discrepancies again can be mainly attributed to the use of polynomials to 

interpolate for trigonometric and hyperbolic functions, but the differences are slight and almost 
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indistinguishable when examining the mode shapes by eye. Again, the FEM model highlights 

beam end nodes with circular markers and midpoint nodes with X markers. The DFE mode 

shapes, not shown here for brevity, were found to be almost identical to the FEM ones. See 

Appendix A for the additional double-delamination mode shapes for different delamination 

lengths. 

3.5.5.  Physically Inadmissible Modes 

Some mode shapes emerged from the analysis, which involved physically inadmissible 

mode shapes. In this case, the inadmissibility came from the interpenetration of different beam 

layers with each other (see Figure 9). That is, one beam segment would vibrate laterally in one 

direction and another beam segment, occupying the same axial domain, would vibrate laterally 

in the opposite direction.  The physically inadmissible mode shapes found for normal vibration 

occur when the difference in flexural stiffness of the beams is nonzero, and worsens with 

increasing difference. Since this is purely a physical phenomenon, it can be seen for all exact, 

DSM, DFE and FEM solutions. It was observed that if the difference in beam stiffness between 

the three delaminated beams were sufficiently large, these modes would appear to be slight 

interpenetrations.  

Also, some mode shapes, corresponding to system global poles, or partial (off-

delamination) poles, emerged from the DFE modeling presented here.  The poles are a result of 

the denominator of the stiffness matrix (and shape functions) vanishing. Since the interpolation 

are known, an expression for the frequencies corresponding to the system poles, and therefore 

the number of such frequencies laying below any frequency value, can be found. This can then 

be used in more advanced root solving techniques, such as Wittrick-Williams [53], to increase 

solution speeds.  
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Figure 16 - Examples of physically inadmissible mode shapes. H2 = 0.3H1, H3 = 0.5H1, a/L = 0.5 

Left: interpenetration due to natural vibration. 4th mode, λ2 = 5.96 

Right: off-delamination level partial pole 2nd mode, λ2 = 4.67 
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4. 

The theoretical development of a model for predicting the vibration behaviour of 

delaminated beams has been presented, and validated according to results obtained by other 

researchers and those in the literature. However, in order to further validate the theoretical 

approach, it was necessary to use contemporary engineering tools to model the system and 

estimate the resulting behaviour. To this end, the frequency results reported by J. Bellcave [

Verification Using Commercial FEM Software 

11], 

obtained using a commercial FEM software package, ANSYS® 10 and its built-in element library, 

was utilized as a basis for comparison.  Two different approaches were used to predict vibration 

behaviour within the commercial FEM environment – a beam element-based model, and a 2D 

planar element-based model. The accuracy of the presented theory with respect to each model 

will be presented below. 

4.1. Beam Model 

The first approach used beam elements to model the system, which was natural since 

the analytical, DSM, DFE, and FEM solutions all utilized Euler-Bernoulli beams in their 

fundamental assumptions. Using the ANSYS® element library, the BEAM3 element (2-node, 3 

degree-of-freedom per node, linear, elastic beam) was used to mesh the intact and 

delaminated sections. The beam elements’ locations were generated according to where the 

neutral axis locations of the respective beam sections. In order to enforce the kinematic 

delamination conditions across the delamination tips, built-in ANSYS® MPC184 elements 

(multipoint constraint elements) were used, which enforced the continuity requirements at 

those points. The system, as represented in the FEM software, is shown below. 

 
Figure 17 – Beam ANSYS© model of a delaminated beam [11] 

Visible at the endpoints of the model in Figure 17 are the clamped-clamped constraints 

found in the literature, which were used here for an accurate assessment of the performance of 

the FEM model created using commercial software. 
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Convergence was determined by using different element sizing to generate the above 

mesh. A convergence to less than 0.5% error was satisfied using element lengths equal to 1% 

the total system length. It is important to note that using the BEAM3 element, axial effects are 

included, whereas these are estimated [35] in the presented theory. Thus, any axial-bending 

coupling effects from the inclusion of an axial degree of freedom not accurately captured by the 

estimate used by Mujumdar [35] would cause a discrepancy in the modal solution. The 

standard ANSYS® Block-Lanczos solver (without any pre-stressing or added mass) was used to 

solve for the natural frequencies and mode shapes of the system. 

4.2. 2D Model 

Another approach exploited to model the delaminated system in ANSYS® was using 2-

dimensional elements. This would provide a closer approximation to reality, while still having 

basis assumptions and constraint types which were consistent enough with beam theory to be 

used for comparison. It was noted that the differences between the two theories would result 

in some solution discrepancies. 

2-dimensional element PLANE182 (4-node, 2 degree-of-freedom per node, linear, elastic 

quadrilateral) was used to model the system. The system was modeled as two fully 

delaminated beams, which were then constrained at their interface to have equal 

displacements where the intact sections were found. The same MPC184 (multipoint constraint) 

elements were used for this purpose as were used previously to constrain the delamination 

tips. This effectively reproduced the intact sections with no loss in system fidelity. The system, 

as represented in the FEM software [11], is shown below. 

 
Figure 18 – 2D ANSYS® model of a delaminated beam [11] 

The same clamped-clamped constraints used previously are visible in Figure 18, where 

each node along the tip to be constrained has the constraint applied. Also visible are the 
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multipoint constraints along the delamination interfaces of those sections, which were made to 

behave as intact beam sections. 

For convergence analysis of the 2D elements, the same approach was used as was used 

for beam element sizing [11]. Element sizes were set to be square (or as close to an aspect ratio 

of 1.0 as possible, taking into account the beam height may not be an integer multiple of the 

length fraction used to size the beam elements), with edge lengths set equal to some fraction 

of the system length. An element edge length equal to 0.1% of the intact system length yielded 

convergence to less than 0.3% error. This convergence did not represent solution accuracy, 

however, as this will be discussed further below. As with the beam model, the standard ANSYS® 

Block-Lanczos solver (without any pre-stressing or added mass) was used to solve for the 

natural frequencies and mode shapes of the system. 

Solution accuracy is expected to be affected by a number of factors. First, and most 

importantly, Bellcave did not respect the required minimum length-to-height ratio (L/H>10) to 

satisfy the Euler-Bernoulli beam assumption; the L/H>10 condition must be satisfied for all the 

beam segments within the delaminated model. In addition, the 2D modeled system does not 

explicitly utilize rigid delamination faces. The originally planar faces normal to the beam neutral 

axes at the delamination tips are assumed to remain planar and normal to the neutral axes 

(from the Euler-Bernoulli assumptions) after deformation. Instead, the delamination faces are 

‘soft’, and can deform as necessary to minimize the potential energy of the deformed system. 

The lack of a rigid connector could also reduce the stiffness of the system when compared to 

the beam theory models. Thus, a reduction in the natural frequencies found here is expected. 

4.3. ANSYS® Results 

Both the beam and 2D models were used to find the first two natural frequencies and 

mode shapes of the system, in order to compare to those results found in the literature [17] for 

equivalent delaminated beam systems. The results for each model will be presented separately, 

including convergence information. In each case, to better compare with the literature, the 

normalized natural frequency 𝜆2 was used, where 
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𝜆2 =

𝜔2𝜌0𝐴0
𝐸𝐼0

𝐿04   

where 𝜌0, 𝐴0, 𝐸𝐼0, and 𝐿0 are the linear mass density (mass per unit length), cross-sectional 

area normal to the undeformed neutral axis, bending stiffness, and length of the equivalent 

intact system, respectively and 𝜔 is the frequency of excitation. 

4.3.1. Beam Model  

The variation in natural frequency with delamination length is shown below. The 

delamination length 𝑎 was normalized with respect to the equivalent intact beam length 𝐿0.  

Table 7 – The variation in natural frequency for a beam element model, fom [11] 

 First Mode Second Mode 

𝑎
𝐿0

 
Elem 
size 
1%L 

Elem 
size 

0.1%L 

Della & 
Shu [17] 

Wang, 
et al. 
[49] 

DSM/ 
DFE 

Elem 
size 
1%L 

Elem 
size 

0.1%L 

Della & 
Shu [17] 

Wang, 
et al. 
[49] 

DSM/ 
DFE 

0.1 22.25 22.25 22.37 22.37 22.37 59.74 59.74 60.76 60.76 60.80 
0.2 22.24 22.24 22.36 22.35 22.36 55.29 55.29 55.97 55.97 55.99 
0.3 22.12 22.12 22.24 22.23 22.24 48.48 48.48 49.00 49.00 49.00 
0.4 21.72 21.729 21.83 21.83 21.83 43.31 43.31 43.87 43.87 43.89 
0.5 20.80 20.80 20.89 20.88 20.89 40.80 40.80 41.45 41.45 41.52 
0.6 19.22 19.22 19.30 19.29 19.30 40.21 40.21 40.93 40.93 41.03 

Very good agreement can be seen between the beam-based finite element models 

generated using commercial FEM software and the beam-based analytical solutions from the 

literature. This was to be expected and, in fact, the FEM formulation performed in Section 2 

provided evidence of this, even if it was not a traditional FEM formulation, as ANSYS® provided. 

Slight discrepancies can be noted, and are likely due to the application of delamination 

conditions. In the formulation presented in the literature, axial displacements are accounted for 

implicitly through approximate techniques [35]. The imposition of axial displacements added 

additional constraints to the system, tending to increase the system stiffness, and hence 

increase the natural frequencies seen in the literature. Still, these discrepancies were small (less 

than 2%), and the results verified the theory presented using industry-standard definitions and 

implementations of FEM.  
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4.3.2. 2D Model 

The same delamination length normalization was used here, where the delamination 

length 𝑎 was normalized with respect to the equivalent intact beam length 𝐿0. 

Table 8 – The variation in natural frequency for a 2D element model, fom [11] 

 First Mode Second Mode 

𝑎
𝐿0

 
Elem 
size 
1%L 

Elem 
size 

0.1%L 

Della & 
Shu [17] 

Wang, 
et al. 
[49] 

DSM/ 
DFE 

Elem 
size 
1%L 

Elem 
size 

0.1%L 

Della & 
Shu [17] 

Wang, 
et al. 
[49] 

DSM/ 
DFE 

0.1 21.31 21.25 22.37 22.37 22.37 54.01 54.11 60.76 60.76 60.80 
0.2 21.28 21.23 22.36 22.35 22.36 49.59 49.98 55.97 55.97 55.99 
0.3 21.13 21.09 22.24 22.23 22.24 44.16 44.45 49.00 49.00 49.00 
0.4 20.66 20.66 21.83 21.83 21.83 40.44 40.46 43.87 43.87 43.89 
0.5 19.66 19.73 20.89 20.88 20.89 38.84 38.65 41.45 41.45 41.52 
0.6 18.09 18.20 19.30 19.29 19.30 38.60 38.32 40.93 40.93 41.03 

Although the overall trend between natural frequency and delamination size showed 

good correlation between the FEM results and those taken from the literature, a larger 

discrepancy can be seen here than was present in the beam model verification. As described 

previously, this was to be expected, since the essential condition of L/H>10 was not respected 

for all beam segments in the delamination model, and the ANSYS® design of this system did not 

enforce rigid connectors at the delamination tips. Instead, soft connectors allowed the material 

to deform more naturally in the axial direction. This relaxation of imposed displacements meant 

that the overall stiffness of the system was reduced when compared to those systems designed 

with rigid connectors, such as the beam-based formulations. With a lower overall system 

stiffness, a reduction in the magnitude of the natural frequencies can be observed. 

More detailed results concerning conditions not presented in the literature may be 

located in the internal report assembled by Johan Bellecave [11]. Effects of off-midplane and 

off-centre delaminations, as well as material property differences between the two layers are 

examined and various software protocols for the automatic generation of meshed geometry 

and results are presented, which were utilized during the course of this work.  
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5. 

In the preceding, a detailed analysis of various important aspects of single- and double-

delamination of layered beams was presented. Exact (analytical) solutions existed and were 

found for the simple cases here, and were compared with results obtained from traditional 

FEM, DSM and DFE formulations. DSM and DFE, by their frequency-dependent natures, 

provided excellent results compared to those found in the literature and from the other 

solution techniques, for a relatively coarse mesh size. It was shown that, using very few 

elements, even higher mode natural frequencies and mode shapes could be calculated with 

excellent precision. One of the drawbacks of the dynamic element-based techniques was that 

the root-finding algorithms used tended to be non-linear and difficult to compute fast, unless 

advanced techniques were used. Using a frequency sweep, natural frequencies could be found 

from the non-linear eigenproblem solution, but not as quickly as solving the linear 

eigenproblem that represents FEM free vibration analysis. However, this drawback was more 

than offset by both the use of advanced root-finding algorithms and by the inherent accuracy of 

the DSM and DFE formulations. 

Concluding Remarks 

For double-delamination, since the same axial location would be shared by many 

elements, 2- and 3-node conventional FEM formulations were generated. This was done in an 

attempt to reduce the element count while retaining the accuracy of the model. It was found 

that the use of 3-node beam elements with quartic shape functions (as opposed to the more 

common Hermite cubic shape functions found in 2-node beams) did not produce significantly 

better results for the same mesh size. The difference was catalogued, though, and the exercise 

of generating and analyzing the system using different element types was well-served.  

A verification of the models presented was carried out, in comparison with data 

available from a commercial finite element suite. The purpose of this was twofold: first, it 

would give another independent source of data to which comparisons were made, and second, 

it gave an insight into how accurate the existing engineering toolset was at analyzing the 

problem of delamination. Using a beam element model, and based on the documented 

convergence data, it was found that a fine mesh was required to accurately capture all of the 
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delamination effects. Most commercial FEM applications require quite fine mesh densities in 

order to produce accurate results with a high degree of convergence, especially for higher 

mode numbers. The opportunity to improve upon this was noted – using an extremely coarse 

(in comparison) DFE or DSM mesh, similar results could be obtained, without having to solve a 

large eigenproblem. Additionally, the ability to analyze any mode number using dynamic 

elements, regardless of the total number of degrees of freedom in the global system, is a clear 

advantage of the use of dynamic elements. 

The 2-dimensional FEM model generated using the commercial finite element suite 

(ANSYS®) exhibited some interesting, but expected, trends. The trend was for the natural 

frequencies of the 2-dimensional model to be lower than that of an analytical model. On 

further inspection, the reasons for this discrepancy become clear, though. The 2-dimensional 

element model did not satisfy the essential condition of L/H>10 for all beam segments in the 

delamination model. In addition, it made no assumptions at the delamination faces – whereas 

the rigid connector assumption is one of the hallmarks of the beam-based solutions. The lack of 

rigid connectors, while potentially closer to the behaviour of a real delaminated system, meant 

that the system was less rigid. Hence, a reduction in stiffness led to lower natural frequencies.  

It is clear from an examination of the literature that the direction most researchers, 

including Banerjee, are taking is toward the analysis of sandwich beams. The utility of a 

sandwich beam model lies in the coupling between various displacements and internal forces. 

Sandwich beams, which are regularly being used in structural applications, exhibit more 

complex behaviour than the homogeneous (or homogenized) beams analyzed here. Thus, it 

would be remiss to not pursue a detailed model of a delaminated sandwich beam in the future. 

Since the behaviour of sandwich beams is so much more complex, no analytical solutions are 

readily available for even the natural frequencies of intact beams. However, both DSM and DFE 

solutions do exist for the free vibration of intact sandwich beams. This means that, as 

presented here, an extrapolation of the intact beam solutions could be applied to model a 

delaminated beam. This would be a significant advancement in the analysis of delaminated 

beams. 
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Also, the techniques discussed here are not limited to beams. Although the formulations 

were carried out on beam structures, composite plates are seeing increased use in structural 

applications, especially in the aerospace industry, where their use is becoming more common in 

fuselage, wing, and stabilizer skins. Important in the aerospace industry as well is the use of 

composite materials in the fan and compressor sections of turbine motors. The complex 

geometry and material properties of these make them very difficult to analyze using existing 

techniques. With a robust dynamic delamination model, this could provide analysts with a 

powerful tool for analyzing the vibration of defective structures in such a high-stress 

environment.   
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Model 1, from Chapter 3;  

Appendix A: Mode Shapes of Double-Delaminated Beams 

 
Figure 19 - mode 1, a/L = 0.3 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 20 - mode 1, a/L = 0.4 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 21 - mode 1, a/L = 0.5 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 
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Figure 22 - mode 2, a/L = 0.3 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 23 - mode 2, a/L = 0.4 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 24 - mode 2, a/L = 0.5 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 
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Model 2, from Chapter 3;  

 

 
Figure 25 - mode 1, a/L = 0.3 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 26 - mode 1, a/L = 0.4 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 27 - mode 1, a/L = 0.5 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 
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Figure 28 - mode 2, a/L = 0.3 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 29 - mode 2, a/L = 0.4 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 

 

 
Figure 30 - mode 2, a/L = 0.5 

Left: 3-node beam element, nodes visualized; Right: Analytical solution 
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Quartic Shape Functions 

Appendix B: Shape Functions 

 

Figure 31 – Quartic shape functions used for double-delamination case study 
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Dynamic Shape Functions 

 

 

 

Figure 32 – Dynamic shape functions for different non-dimensional frequencies.  
Top Left: Hermite cubic shape functions, λ -> 0; 

Top Right: DFE shape functions, λ = 10; Bottom: DFE shape functions, λ = 100 
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Mesh sensitivity analyses were undertaken for each beam element for the delamination 

configuration shown in the previous section. The different meshing schemes outlined below 

were used to determine an appropriate element size for approximate convergence. 

Convergence will be estimated using the first three fundamental frequencies in each case. Note 

the boundary conditions are clamped-clamped. 

Appendix C: Double-Delamination Mesh Sensitivity Analysis 

  

Figure 33 –Left- configuration 1;  Right- configuration 2 

The element configurations and numbering schemes for each mesh 

 

In addition, the following delamination parameters will be chosen, and assumed 

constant for the purposes of evaluating mesh sensitivity, and will be varied in the actual 

analysis to follow: 

Delamination Length 0.2L 
H2 0.3H1 
H3 0.2H1 

 

2-Node Beam 

Table 9 – 2-node beam sensitivity analysis 

 Configuration 1 Configuration 2 Exact (Analytical) 
λ1 4.7312 4.7296 4.7250 
λ2 7.3775 7.2563 7.2450 
λ3 10.6919 10.3695 10.3350 

  

While it can be seen that all 3 fundamental frequencies do approximately converge 

(error less than 1%) for the second configuration, the maximum error for the first configuration, 

using 2-node beam elements, is approximately 3.4%. While still within a reasonable margin of 
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error, it will now be investigated if increasing the order of the interpolation function positively 

affects this result. 

3-Node Beam 

Table 10 – 3-node beam sensitivity analysis 

 Configuration 1 Configuration 2 Exact (Analytical) 

λ1 4.7239 4.7243 4.7250 

λ2 7.2468 7.2510 7.2450 

λ3 10.3384 10.3437 10.3350 
 

Based on error between configurations, convergence was achieved to within 1% of the 

analytical solution, using configuration 1 for a 3-node beam element. The benefit of utilizing 

more elements has not been shown here, and solution times could be reduced by using 

configuration 1 due to the reduction in elements from 13 to 8 (38% reduction) and reduction in 

nodes from 25 to 15 (40% reduction), with no appreciable loss in solution accuracy. 

Additionally, given the nature of DFE development, as opposed to traditional FEM 

development, the number of natural frequencies and mode shapes available for a given mesh is 

not dependent on the number of elements used. Frequency sweeps or more advanced root 

finding algorithms are not limited to the degree of freedom count as an eigensolution is, so long 

as the frequency range being analyzed does not cause a computational floating-point overflow. 

It can also be observed that, while slightly higher accuracy was obtained using the 3-

node beam element - as expected - this increase was only marginal for the first two 

fundamental modes. Therefore, no absolute rule can be established as to which element is 

better suited for all situations. In fact, the situation itself would likely dictate which element to 

select - smaller problems benefiting from the increased accuracy of the 3-node element and 

large problems benefiting from the increased solution efficiency of the 2-node element (due to 

a 20% reduction in degrees of freedom per element). 
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