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Abstract 

 

Model fit assessment is a central component of evaluating confirmatory factor analysis models 

and often the validity of psychological assessments. Fit indices remain popular and researchers 

often judge fit with fixed cutoffs derived by Hu and Bentler (1999). Despite their overwhelming 

popularity, methodological studies have cautioned against fixed cutoffs, noting that the meaning 

of fit indices varies based on a complex interaction of model characteristics like factor reliability, 

number of items, and number of factors. Criticism of fixed cutoffs stems primarily from the fact 

that they were derived from one specific confirmatory factor analysis model and lack 

generalizability. To address this, we propose a simulation-based method called dynamic fit index 

cutoffs such that derivation of cutoffs is adaptively tailored to the specific model and data 

characteristics being evaluated. Unlike previously proposed simulation-based techniques, our 

method removes existing barriers to implementation by providing an open-source, web-based 

Shiny software application that automates the entire process so that users neither need to 

manually write any software code nor be knowledgeable about foundations of Monte Carlo 

simulation. Additionally, we extend fit index cutoff derivations to include sets of cutoffs for 

multiple levels of misspecification. In doing so, fit indices can more closely resemble their 

originally intended purpose as effect sizes quantifying misfit rather than improperly functioning 

as ad hoc hypothesis tests. We also provide an approach specifically designed for the nuances of 

one-factor models, which have received surprisingly little attention in the literature despite 

frequent substantive interests in unidimensionality.   
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Dynamic Fit Index Cutoffs for Confirmatory Factor Analysis Models 

Model fit assessment is an integral part of applying confirmatory factor analysis (CFA) to 

empirical data. For better or worse, metrics of model fit are often the most influential pieces of 

information for consumers or producers of research using CFA. Global model fit metrics that 

summarize the fit of the overall model with a single value generally fall into two broad 

categorizations: exact and approximate.  

The maximum likelihood test statistic (usually referred to as the χ2 test, though other 

types of tests are possible; Yuan & Bentler, 1999) is a common test of exact global fit and 

assesses the hypothesis that the model-implied covariance matrix and (and possibly the model-

implied mean vector as well) is equal to the observed covariance matrix (and possibly the 

observed mean vector as well). Though valued for its clear definition and inferential nature, 

empirical researchers lament two issues with its use: (a) exact fit is not always a necessary 

condition for a model to be useful (Browne & Cudeck, 1992; Cudeck & Henly, 1991; 

MacCaullum, Widaman, Preacher, & Hong, 2001; Mulaik, 2009; Meehl, 1978) and (b) the 

power of the test rapidly increases with sample size or as data deviate from multivariate 

normality (Bentler & Yuan, 1999; Hu, Bentler, & Kano, 1992; Tanaka, 1987).  

Though these positions are endorsed by many empirical researchers, the rationale 

sometimes is attributable to the difficulty of achieving exact fit rather than merit of the test itself 

(e.g., Barrett, 2007; McIntosh, 2012, Ropovik, 2015). Approximate fit indices (e.g., RMSEA, 

CFI, SRMR) are also popular and originally were intended to function more as effect sizes to 

supplement exact fit tests by capturing the magnitude of misspecification in the model. However, 

like effect sizes, approximate fit indices lack inherent null hypotheses, meaning there is 

ambiguity in which values signal “good” or “bad” fit.  
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 Early in the development of fit indices, values constituting approximate good fit were not 

easy to discern and were often based on unsubstantiated heuristics or personal experience (Marsh 

et al., 2004; Maydeu-Olivares, 2017; West et al., 2012). In the late 1990s, more formal inquiry to 

ascribe qualitative meaning to fit indices emerged (e.g., MacCallum et al., 1996), culminating in 

the seminal study by Hu and Bentler (1999). Hu and Bentler (1999) conducted an extensive 

simulation study to investigate which values of various fit indices were able to consistently 

distinguish between fit index distributions of a CFA model that did and did not contain 

misspecifications. This work led to the pervasive traditional cutoffs used in empirical studies 

such as SRMR ≤ .08, RMSEA ≤ .06, and CFI ≥ .96.  

At the time of this writing, Hu and Bentler (1999) has received over 80,000 citations on 

Google Scholar and remains a widespread resource for empirical researchers when presenting 

evidence for approximate model fit. As a testament to its popularity, a review by Jackson et al. 

(2009) noted that about 60% of the approximately 350 studies they reviewed from APA journals 

explicitly mention such fit index cutoffs when evaluating the fit of a CFA model. Though the 

traditional cutoffs from Hu and Bentler (1999) have reached near canonical status, the authors 

themselves warned that cutoffs are not rigid and should not be overgeneralized as simulation 

studies are only applicable to the conditions they investigate (Hu & Bentler, 1998, p. 446).  

In the intervening 20 years, cautions against fit index cutoff overgeneralization have 

intensified and methodological studies have noted that cutoff values can change depending on 

data and model characteristics such as the number of items or factors (Jackson, 2007; Kenny & 

McCoach, 2003; Moshagen, 2012; Shi et al., 2019); degrees of freedom (F. Chen et al., 2008; 

Kenny et al., 2015); magnitude of the standardized loadings and factor reliability (Browne et al., 

2002; Hancock & Mueller, 2011; Heene et al., 2011; McNeish et al., 2018); and model type and 
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the nature of the misspecification (Fan & Sivo, 2007; Kang et al., 2016; Sivo et al., 2006). 

Despite these findings, the review by Jackson et al. (2009) noted, “We also did not find evidence 

that warnings about strict adherence to Hu and Bentler’s suggestions were being heeded” (p. 18).  

Based on Google Scholar citation counts, annual citations of Hu and Bentler (1999) have 

increased from 2,171 in 2009 when Jackson et al. (2009) was published to 10,333 in 2020, 

suggesting that this trend has not dissipated in the intervening years but rather has intensified. 

Although deriving fit index cutoffs is considered a precarious objective to some methodologists, 

use of traditional fixed cutoffs endures because cutoffs have pragmatic utility in empirical 

studies, just as effect sizes like Cohen’s d have become entrenched in linear regression and 

analysis of variance models for assessing practical utility of treatment effects.  

In this paper, we extend the recent methodological literature on simulation-based 

approaches to improve generalizability of cutoffs by adaptively updating the model subspace of 

interest to essentially allow researchers to ask, “What cutoffs would Hu and Bentler (1999) have 

derived had they used a model like mine in their simulation instead?”. In doing so, researchers no 

longer need to tenuously generalize fixed cutoffs derived from a single simulation whose 

conditions only represent a narrow (and possibly disparate) model subspace. Instead, this method 

allows researchers to derive fit index cutoff values that appropriately quantify the magnitude of 

misspecification in CFA models for any combination of sample size, number of items, number of 

factors, factor reliability, etc. Though generalizing fit index cutoffs will not address all concerns 

from ardent critics of fit index use, empirical studies appear persistent in evaluating fit by 

comparing fit indices to cutoffs, so our goal is to improve practice by supplying better fit cutoffs 

within the existing framework and to provide researchers with software that removes barriers to 

implementation.   
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To outline the remainder of the manuscript, we first provide some intuition about why it 

is problematic to generalize the traditional fixed cutoffs. Then, we replicate the simulation from 

Hu and Bentler (1999) but manipulate factor reliability, a model characteristic that was not 

manipulated in the original simulation study but has since been shown to affect cutoff values. 

This replication serves to demonstrate to potentially uninitiated readers how the fit index cutoffs 

derived by Hu and Bentler (1999) would have varied if the model subspace explored in their 

simulation were altered even by a single aspect. Next, we review previously proposed 

simulation-based techniques for deriving custom fit index cutoffs and discuss how we propose to 

extend this literature with an algorithm that recreates the misspecification from Hu and Bentler 

(1999) for any CFA model of interest. We apply the approach to a single simulated dataset with 

detailed descriptions of each step to show how cutoffs are derived and compare the cutoffs to 

what would be derived using the true model. We follow with a generalization of the algorithm to 

induce a range of misspecifications so that researchers can obtain a continuum of cutoffs 

corresponding to different degrees of misspecification to treat fit indices more like the effect 

sizes that they were intended to be rather than as the de facto hypothesis tests to which they have 

devolved. We then apply the method to results from a study in the empirical literature to show 

how conclusions drawn from fixed cutoffs can change when cutoffs are customized for the 

model being evaluated. Issues specific to one-factor models that are common in scale validation 

are also discussed because the approach in Hu and Bentler (1999) does not necessarily 

correspond to such models and a separate approach is proposed instead. 

To facilitate implementation, we provide a web-based Shiny application that implements 

our procedure to generate dynamic cutoffs for the user’s empirical model (www.dynamicfit.app). 

This application relies on two R packages to perform the necessary Monte Carlo simulations to 

http://www.dynamicfit.app/
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derive custom cutoff value (lavaan and simstandard; Rosseel, 2012; Schneider, 2019) but 

requires no knowledge of Monte Carlo simulations techniques or any specific software programs 

and does not require users to manually write any software code. Instead, the application only 

requires users to upload a .txt file containing the model they wish to evaluate along with their 

sample size and the application automates the remainder of the process to write code for a Monte 

Carlo simulation, execute the Monte Carlo study, and collate the results to report cutoffs 

applicable to the specific model of interest.1 Appendix A shows a tutorial on how to use the 

application and Appendix B shows how the method can be implemented (but not automated) 

within Mplus. We end with a discussion recounting the difficulties of model fit assessment 

generally, ways to generalize the method beyond CFA (e.g., growth models, measurement 

invariance), the limitations we foresee with our proposed method despite potential improvement 

to the status quo, and implications for evidence of validity for psychological assessments. 

The Conceptual Problem 

To motivate the issue, consider the entire space of all possible CFA models that one 

could encounter, which includes any combination of model and data characteristics like sample 

size, number of items, number of factors, degrees of freedom, or factor reliability (a function of 

the standardized loadings and the number of items, possibly captured by Coefficient H; Hancock 

& Mueller, 2001). As methodological studies have shown, depending on where the empirical 

model of interest is located in this space, model misspecification affects fit indices differently 

and the fit index value that is sensitive to a particular misspecification fluctuates.  

 
1 The R script used by the application is openly available from the application itself.  
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To help visualize this process, consider the hypothetical representation of RMSEA 

cutoffs across the possible model space in Figure 1.2 The RMSEA value associated with a 

specific model misspecification is on the z-axis, total number of items is on the y-axis, and factor 

reliability is on the x-axis. Though other characteristics are relevant, we limit the representation 

to 3 dimensions so that it can be easily visualized. Throughout this model space, the sensitivity 

of RMSEA to misspecification fluctuates as a function of model and data characteristics.  

 
Figure 1. Hypothetical plot showing the variability in sensitivity of RMSEA to a 

particular misspecification across the model space as a function of model characteristics. The 

intersecting line represents fixed cutoffs from a single simulation and the elliptical cross-section 

highlights the subspace generalizable from conditions in a single simulation study.  

 

 When methodologists use simulation studies to derive fit index cutoffs, they cannot 

explore all the recesses of this cavernous multidimensional model space simultaneously. 

Therefore, methodologists necessarily select a subspace upon which to focus. Following from 

this logic, simulations provide reasonable localized cutoffs that are applicable to detecting a 

 
2 Large values indicate good fit for some indices (e.g., CFI) while values near 0 indicate good fit for others (e.g., 

RMSEA, SRMR). We selected an arbitrary index to make the z-axis easier to interpret, but the general idea extends 

across indices (though not necessarily in equal amounts; Miles & Shevlin, 2007) 
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misspecification with a particular magnitude in the selected subspace, but cutoffs do not 

generalize beyond the selected subspace nor to other misspecifications (Yuan, 2005). The 

conditions used in any single simulation (such as the one used to arrive at the traditional fixed 

cutoffs) are hypothetically represented by the line intersecting the surfacing in Figure 1 and the 

dashed cross-section represents the localized area to which such conditions may be 

generalizable. The derived cutoffs are perfectly reasonable for this narrow subspace, but what 

happens if one’s empirical model is outside of this subspace? Current practice implicitly assumes 

that the traditional fixed cutoffs from this subspace generalize across the entire model space; 

however, studies have unambiguously shown that fit index cutoffs fluctuate and are not fixed 

across the model space (e.g., Hancock & Mueller, 2011; Heene et al., 2011; Shi et al., 2019). In 

fact, the fluid behavior of model fit measures was proved mathematically by Schönemann 

(1981), predating fixed cutoffs by nearly 20 years.    

As methodologists have repeatedly pointed out, fixed cutoffs are inherently at risk of 

overgeneralization because there is no single global definition of “good” fit index values. 

Localized approximations of “good” can be derived, but such values are dependent on a complex 

multiway interaction of several factors. Essentially, the mapping of misfit magnitude to fit index 

values is conditionally monotonic but not globally monotonic. For example, an RMSEA of .04 

indicates less misfit than an RMSEA of .06 if the model characteristics are constant. However, 

an RMSEA of .06 might indicate small and possibly forgivable misspecification in some 

contexts (e.g., the conditions used in Hu & Bentler, 1999) but an RMSEA of .04 might indicate a 

grossly misspecified model in other contexts (e.g., items that uniformly have weak standardized 

loadings; Hancock & Mueller, 2011; Heene et al., 2011). Even identical fit index values can be 

interpreted differently depending on the context such that an RMSEA of .06 in one context does 
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imply the same magnitude of misspecification in another context (Yuan, 2005). Hu and Bentler 

(1998) themselves have pointed this out by saying “it is difficult to designate a specific cutoff 

value for each fit index because it does not work equally well with various types of fit indices, 

sample sizes, estimators, or distributions” (p. 449). Fit indices can be directly compared if model 

characteristics are constant but cannot necessarily be compared across models with different 

characteristics because misfit is encoded differently (Schönemann, 1981). This has been a 

principal grievance with the traditional fixed cutoffs – if the misfit is encoded differently for 

different model characteristics and the mapping of model misfit to fit index values is not globally 

monotonic, how can we justify a single cutoff? That is, an RMSEA of .06 indicates reasonable fit 

in one simulation study but those simulations conditions are not necessarily informative for 

interpreting an RMSEA of .06 in other conditions.  

This is similar to power analysis where the appropriateness of an identical sample size 

can fluctuate in different contexts. N = 50 might be sufficient for a randomized trial with 

repeated measures to detect a large effect size but N = 50 might be absurdly low for a between-

subjects comparison to detect a low effect size. Current use of fixed cutoffs is akin to sample size 

planning decades ago where N = 30 per condition was considered sufficient regardless of other 

pertinent aspects. Just like the traditional fixed cutoffs, N = 30 per cell is sufficient in a limited 

subspace of possible contexts but it can be highly inaccurate in others and knowledge that N = 30 

is sufficient in one context does not necessarily imply that N = 30 is sufficient in a different 

context. A priori power analysis has evolved to derive better localized solutions (i.e., exactly 

with analytical approaches for simple models or approximately with Monte Carlo methods for 

complex models). The ultimate goal of this paper is to derive fit index cutoffs for a localized 

subspace of interest in order to better tailor fit indices to the characteristics of the data and model 
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being evaluated. Putting this into the context of Figure 1, the intersecting line is dynamically 

moved around the model space to locate the appropriate localized cutoff for the model being 

evaluated so that misspecifications can be more accurately quantified.  

To show evidence for how fit index cutoffs fluctuate based on variations in model and 

data characteristics, we replicate the simulation of Hu and Bentler (1999) in the next section but 

manipulate factor reliability, an aspect that was not manipulated in the original study. This also 

provides an opportunity to walk through the logic of their seminal simulation study for readers 

who may have committed the traditional fixed cutoffs to memory but are less familiar with their 

origin.  

Hu and Bentler (1999) Replication Simulation 

 In this section, we focus on the effect of factor reliability on fit index cutoff values, as 

this was not systematically manipulated in the original Hu and Bentler (1999) study. Factor 

reliability – which is a function of standardized factor loadings – has been shown to lead to 

vacillations in potential cutoff values. Heene et al. (2011) provide a proof of the direct inverse 

relation between factor reliability and fit index values, meaning that high factor reliability 

(attained via standardized loadings with magnitudes close to 1) leads to seemingly worse fit 

relative to traditional fixed cutoffs. Plainly worded, the more reliable information one has about a 

latent variable, the more clearly misspecifications can be detected.  

This has led to the term reliability paradox being applied to fit index interpretation 

(Hancock & Mueller, 2011) with Miles and Shevlin (2007) facetiously noting “if you wish your 

model to fit, … ensure that your measures are unreliable” (p. 874). To emphasize, the reliability 

paradox signifies that models with unreliable factors clear traditional fixed cutoffs more easily 

and would be more likely to be classified as “good” while models with highly reliable factors 
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will encounter much more difficulty surpassing traditional fixed cutoffs and will be more likely 

to be classified as “bad”, even with an identical misspecification. This also applies to the χ2 test 

where power is a function of communalities as proved by Schönemann (1981) and discussed in 

depth by Browne et al. (2002), meaning that an identical misspecification increases the χ2 

statistic more in models where factor reliability is higher. This is, of course, problematic because 

it essentially punishes researchers for having more reliable measures.    

Hu and Bentler (1999) Simulation Design 

 The simulation design exactly replicates the design used in Hu and Bentler (1999). They 

used two separate models, one deemed the “Simple” model and the other deemed the “Complex” 

model. The Simple model is a 3-factor CFA model where each factor loads on 5 items and there 

are no cross-loadings. The Complex model adds 3 cross-loadings to the Simple model: Item 1 

loads on Factor 1 and Factor 3, Item 4 loads on Factor 1 and Factor 2, and Item 9 loads on Factor 

2 and Factor 3.   

 For each model, there are three misspecification conditions: True, Minor, and Major. For 

both models, the empirical model in the True condition exactly matches the data generation 

model such that there are no misspecifications. For the Simple Model, the Minor condition omits 

the covariance between Factor 1 and Factor 2 and the Major condition omits all factor 

covariances involving Factor 1. For the Complex Model, the Minor condition omits the factor 

loading between Factor 3 and Item 1 and the Major condition omits this same loading and the 

loading from Factor 2 to Item 4. Table 1 displays conceptual path diagrams for each of these 

conditions. 

There are 7 sample size conditions: 150, 250, 500, 1000, 2500, and 5000. In Hu and 

Bentler (1999), there are also 7 conditions for normality of the latent factors and/or the error 
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variances. Robustness to non-normality was a greater concern in 1999 than it is now because 

there were fewer estimators available to accommodate non-normality. Hu and Bentler (1999) 

alluded to the promise of the Satorra-Bentler scaled test statistic in their discussion, which has 

since been shown to satisfactorily provide fit criteria that are robust to non-normality (Satorra & 

Bentler, 2001). Given this advance since the original study, we deviate from the original study’s 

design by only including the multivariate normality condition. All items were continuous and 

generated to have a mean of 0.  

Table 1 

Path diagrams of different model and misspecification conditions in Hu and Bentler (1999) 

 Simple 

Model 

Complex 

Model 

True 

  

Minor 

  

Major 

 

 

Note: Error variances for the observed variables are present but not shown in the path diagrams. 

 

In the original study, the factor loadings were not manipulated and were kept constant 

across all conditions. In the Simple model, the first two items on each factor had loadings of .70 

(Items 1, 2, 6, 7, 11, and 12), the middle item on each factor had loadings of .75 (Items 3, 8, and 
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13), and the last two items on each factor had loadings of .80 (Items 4, 5, 9, 10, 14, and 15). The 

error variances were chosen such that the items were standardized, meaning that these loadings 

are standardized. Using Coefficient H to estimate factor reliability, these loadings yield a 

population factor reliability of .87 for each of the three factors. In the Complex Model condition, 

the loadings were the same as in the Simple Model and the three additional cross-loadings were 

each set to .70. All items in the Complex Model were standardized, except the items with cross-

loadings (Items 1, 4, and 9) whose error variances remained equal to .51, .36, and .36, 

respectively, meaning that the total variance for these items exceeded 1 and neither the items nor 

the loadings were standardized.  

Manipulating Factor Reliability  

As noted above, since the publication of Hu and Bentler (1999), methodological research 

has shown that factor reliability is directly related to the size of fit indices (Chen et al., 2008; 

Hancock & Mueller, 2011; Heene et al., 2011; McNeish et al., 2018; Saris et al., 2009). To 

assess how the cutoffs from the exact same data generation model would vary if the model 

subspace were broadened slightly, we varied the standardized loadings such that the middle item 

loadings were 0.35, 0.45, 0.55, 0.65, 0.75, and 0.85. We kept the pattern whereby the first two 

item loadings on each factor were .05 smaller than the middle item and the last two item loadings 

on each factor were .05 larger than the middle item. In the Complex Model, the cross loadings 

were generated to be equal to the value of the lowest item factor loading (i.e., the middle item 

condition minus .05). These loading conditions resulted in Coefficient H values of .42, .57, .69, 

.79, .87, and .94, respectively.  

All the simulation conditions are fully crossed with 252 cells (7 sample sizes × 6 factor 

reliabilities × 6 model conditions) with 500 replications per cell of the design (increased from 
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200 replications in the original study). Data were generated and analyzed in SAS using Proc IML 

and Proc Calis using maximum likelihood estimation. All data generation and analysis files are 

available on the first author’s Open Science Framework page (https://osf.io/wg45r/). SAS was 

used for consistency as it was the software used in the original study.3 The results focus on 

SRMR, RMSEA, and CFI as these are commonly reported fit indices (Jackson et al., 2009).  

Outcomes 

 We tracked fit index values across the replications to locate the value that discriminates 

between fit index distributions from models that are known to be correctly specified and models 

that are known to be misspecified. The general guideline used in Hu and Bentler (1999) was to 

select a cutoff that was able to reject a high percentage of models in the Minor misspecification 

condition (i.e., having a high true positive rate; similar to power expect that there are no null 

hypotheses for fit indices) while rejecting very few of models in the True condition (i.e., a low 

false positive rate; similar to Type-I error rate). The thresholds corresponding to this guideline 

were that 95% or more of misspecified models be rejected while no more than 5% of true models 

be rejected (i.e., such that the false positive and false negative rates were both less than or equal 

to 5%; Hu & Bentler, 1999, p. 16). In some conditions in the original study, these thresholds 

were not met and the false positive and false negative rate reached as high as 10%. This can be 

seen in the recommendation of a combination of TLI ≥ .95 and SRMR ≤ .09 for N ≤ 500, where 

the sum of the false positive and false negative rates was 18.6% for the Complex model in Table 

4 of Hu & Bentler (1999, p. 18).  

 
3 The EQS software was also used but this software currently has much less exposure than it did at the time of the 

original study, so we contain all analysis within SAS given that the fit index formulas are the same and also to avoid 

calling multiple programs 

https://osf.io/wg45r/
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Figure 2 visually demonstrates the process by which cutoffs would be hypothetically 

derived for SRMR. The distribution of SRMR for misspecified models across simulation 

replications is shown in light grey and the distribution of SRMR values for correct models is 

shown in dark grey. The goal of the simulation is to locate the value of SRMR that would be 

highly likely to belong to the misspecified model fit index distribution but that would be highly 

unlikely to belong to the true model fit index distribution. The precise definition of “highly 

likely” is that 95% of misspecified models are at or above the cutoff while no more than 5% of 

true models are at or above the cutoff (and if that condition cannot be met, the percentages are 

expanded to 90% and 10%, respectively, instead of 95% and 5%). In Figure 2, an SRMR value 

of 0.040 meets these criteria – nearly all misspecified models have an SRMR value of 0.040 or 

higher while nearly all true models have an SRMR below 0.040. So, if a model returns an SRMR 

of 0.040 or above with these model and data characteristics, one could be confident that the 

model contains a misspecification at least as large as the “minor” misspecification induced in Hu 

and Bentler (1999) and is unlikely to be exactly correct.  

Figure 2. Comparison of SRMR when the true model is fit versus a misspecified model. The 

black vertical line indicates the cutoff value of .04 that distinguishes between the two 

distributions 
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Results 

 Table 2 presents fit index cutoffs from the replication simulation by sample size and 

factor reliability for the minor misspecification. Following Hu and Bentler (1999), we reduced 

the sample size conditions into three groups: ≤ 250, 500, ≥ 1000. The H = .87 row that uses the 

same loadings from Hu and Bentler’s study (1999) is shaded in grey. For consistency, we applied 

two conditions to derive cutoffs, (a) false positive and false negative rates are both 5% or less 

and (b) false positive and false negative rates are both 10% or less. Condition (a) is reported 

whenever it exists; condition (b) is only reported if condition (a) cannot be met. Such cases are 

marked with an asterisk in Table 2.  

Table 2 

Fit index cutoffs from replication simulation by sample size and factor reliability 

 

    N ≤ 250   N = 500   N ≥ 1000 

Coefficient Middle 
SRMR RMSEA CFI 

  
SRMR RMSEA CFI 

  
SRMR RMSEA CFI 

H Loading 

.42 .35 None None None  ≤ .040* None None  ≤ .029 None None 

.57 .45 None None None  ≤ .050 None None  ≤ .046 ≤ .018 ≥ .982 

.69 .55 ≤ .068 None None  ≤ .064 ≤ .025* ≥ .981*  ≤ .066 ≤ .031 ≥ .973 

.79 .65 ≤ .087 ≤ .038* ≥ .975*  ≤ .087 ≤ .042 ≥ .969  ≤ .094 ≤ .048 ≥ .962 

.87 .75 ≤ .115 ≤ .053 ≥ .972  ≤ .120 ≤ .061 ≥ .962  ≤ .129 ≤ .066 ≥ .956 

.94 .85 ≤ .142 ≤ .080 ≥ .960  ≤ .154 ≤ .085 ≥ .956  ≤ .165 ≤ .089 ≥ .952 

Note: Entries without an “*” indicate that false negative and false positive rates both were below 
5%. Entries followed by “*” indicate that at least one rate exceeded 5% but that both rates were 
less than 10%. Entries listed as “None” convey that there was no cutoff value for which both 
rates were below 10%.  Middle Loading = the standardized loading of the third item on each 

factor 

 

In the H = .87 row, the RMSEA and CFI cutoffs closely reflect the traditional ≤ .06 and ≥ 

.96 cutoffs, respectively. The SRMR cutoff is near ≤ .12 and appears different than the 

traditional ≤ .08 value; however, note that the traditional SRMR cutoff came from combination 
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rules4 whereas the values in the table are obtained from false positive and false negative rates. 

When applying rate rules for cutoffs rather than combination rules, Hu and Bentler (1999) 

similarly arrive at SRMR cutoffs of ≤ .11 or ≤ .12 (e.g., first row of Table 3 on p. 15; text on pp. 

16, 22, 26, and 27. This is also discussed on p. 320 of Heene et al., 2011).  

As factor reliability increases, the cutoff value needed to detect the same misspecification 

moves away from exact fit (higher for SRMR and RMSEA, lower for CFI). For instance, with H 

= .94 and N ≥ 1000, an RMSEA cutoff of ≤ .089 has equivalent ability to differentiate correct 

from misspecified models as the traditional fixed cutoff for the conditions in Hu and Bentler 

(1999). Conversely, clearing traditional fixed cutoffs with lower factor reliability does not 

necessarily indicate good fit. For H = .57 and N ≥ 1000, an RMSEA cutoff of 0.018 has 

equivalent ability to differentiate true from misspecified models as traditional fixed cutoffs for 

the conditions in Hu and Bentler (1999). Additionally, if factor reliability and sample size were 

both low, there are no cutoff values that can consistently distinguish between true and 

misspecified models because distributions of fit index values for true and misspecified models 

overlap too much. Figure 3 shows an example of one such case where excessive overlap in 

SRMR distributions that would not yield a suitable cutoff because SRMR values for these data 

and model characteristics could conceivably come from either distribution, meaning that a cutoff 

would be unable to control false positive and false negative rates.  

Substituting the cutoffs in Table 2 as new fixed cutoffs would be slightly more 

generalizable than traditional fixed cutoffs because they explore more of the model space to 

account for factor reliability. However, they would still suffer from issues related to degrees of 

 
4 Hu and Bentler (1998) recommended a two-index strategy whereby SRMR is paired with other complementary 

indices to increase sensitivity to underparameterized models. The cutoff value of .08 for SRMR reflects optimal 

classification rates when used in combination with other indexes (RMSEA, in particular) rather than in isolation 

(e.g., Hu and Bentler, 1999 p.6).  
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freedom, number of items, number of factors, model size, etc. The cutoffs in Table 2 are only 

applicable to the model space corresponding to a 3-factor CFA model with 87 degrees of 

freedom and 5 items per factor and are only applicable to the single misspecification represented 

the minor condition contained in Hu and Bentler (1999). The next section discusses previous 

work related to generalizing cutoffs with simulation techniques such that the cutoffs are tailored 

to the exact model and data characteristics being evaluated. We also contextualize the 

contribution of the current paper in extending this literature in this section.  

Figure 3. Comparison of SRMR distributions when the overlap is too great to provide a cutoff 

that could reliably distinguish between the two distributions (i.e., false positive and false 

negative rates would be excessive). The “None” entries in Table 2 correspond to this type of 
result.   

 

Simulating Dynamic Cutoffs 

 Limitations of basing fixed cutoffs on a single set of simulation conditions has been noted 

(e.g., Marsh et al., 2004) and an alluring proposal has been to perform a custom Monte Carlo 

simulation based on the specific data and model characteristics of the model under evaluation 

(Millsap, 2007, 2013; Pornprasertmanit et al., 2013). That is, the Hu and Bentler (1999) cutoffs 

were derived from a simulation, so by conducting a simulation but altering the conditions, 
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researchers can essentially follow the same logic as Hu and Bentler (1999) and arrive at cutoffs 

that detect misspecifications in the localized subspace occupied by their model and data.  

The core idea is that fit index cutoff derivation is essentially a power analysis. The goal is 

to uncover fit index values that detect a misspecification of a prespecified magnitude just like 

power analysis is used to uncover the sample size needed to detect a non-null effect with a 

particular magnitude with some prespecified probability. Using traditional fit index cutoffs is 

akin to using a single power analysis across all studies and assuming it generalizes to all 

situations. Similar to how modern power analyses have evolved to be customized to researchers’ 

unique circumstances, fit index cutoffs are most informative when derived under conditions that 

closely match the specific data and model characteristics being evaluated (e.g., sample size, 

number of factors, number items, etc.). Despite the obvious draw of dynamically simulating 

custom fit index cutoffs, implementation of the method has been limited (e.g., Millsap, 2007 has 

113 total Google Scholar citations as of this writing, many of which are citations from 

methodological articles rather than empirical studies) as researchers continue to rely on 

traditional fixed cutoffs even though alternatives have existed for many years.  

Three barriers to implementation are present when calling for researchers to conduct 

simulations to custom tailor fit index cutoffs and may be limiting application of simulation-based 

methods in empirical studies. First, simulation is a methodological skill that many empirical 

researchers do not possess (e.g., Arend & Schäfer, 2019; Green & MacLeod, 2016). Though 

there are accessible software options to remove some barriers to conducting a simulation study 

such as the MONTECARLO utility in Mplus (Muthén & Muthén, 2002) or the simsem R 

package (Pornprasertmanit et al., 2020), even with user-friendly software it can be difficult for 

researchers to engage with these tools if they are unfamiliar with the underlying foundations of 
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simulation techniques. Second, similar to doing a priori power analysis for sample size planning 

with structural equation models (e.g., Anthoine, Moret, Regnault, Sebille, & Hardouin, 2014; Lai 

& Kelley, 2011; MacCallum, Browne, & Sugawara, 1996), it can be difficult to articulate the 

magnitude of the misspecification that is meaningful for complex multivariate models. Third, 

even when researchers do possess requisite skills to conduct simulation studies, the cost-benefit 

tradeoff involved with manually coding multiple simulations to derive a custom cutoff for a 

single model may not be a worthwhile investment, especially if reviewers are content with 

traditional fixed cutoffs.  

Proposed Dynamic Fit Index Cutoff Approach 

To address these limitations and increase the ease with which researchers can derive fit 

index cutoffs that are more attuned to a researcher’s specific data characteristics and model, we 

propose an algorithm to further lower barriers to implementation. We refer to this general 

approach as dynamic fit index (DFI) cutoffs.  

First, we provide researchers with a Shiny software application that automates design and 

execution of a Monte Carlo simulation without any explicit existing knowledge of how to 

program a simulation. Existing software resources automate some aspects of a simulation study 

but still require that researchers manually write at least some software code. However, our 

software application requires no manual code to be written nor does it require users to open or 

download any specific software program. The program is hosted on a website where it can be 

freely accessed by users who only need to provide the standardized estimates from their model. 

From this, any researcher with an internet connection can partake in custom simulations to derive 

fit index cutoffs, not just those researchers with training in Monte Carlo techniques. This also 
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reduces the time investment for researchers who are knowledgeable about Monte Carlo 

techniques but would otherwise have to write code from scratch.  

Second, because selecting the level of misspecification is difficult even if one is familiar 

with Monte Carlo techniques, our algorithm generalizes the misspecifications used by Hu and 

Bentler (1999) to other multifactor models (special considerations are necessary for one-factor 

models, which are discussed in detail later in this paper). Though other methods for capturing 

misspecifications in covariance matrices have been suggested (e.g., Maydeu-Olivares, 2017; Wu 

& Browne, 2015), researchers overwhelmingly continue to reference the traditional fixed cutoffs, 

which would seem to imply at least tacit interest in which fit index values can identify the type of 

misspecifications encoded in these traditional cutoffs (granted, this assumes that researchers 

know the origin of the traditional fixed cutoffs, which may not be the case). This removes 

potential guesswork involved in deciding what type of misspecification researchers wish to 

encode in their simulation while also making the DFI cutoffs consistent with guidelines used for 

deriving the traditional cutoffs.  

Of course, prespecifying the misspecification eliminates users’ ability to customize the 

misspecification used in the simulation. Our software partially addresses this by featuring 

multiple types of misspecifications to give researchers a range of potential options (specific 

details are discussed shortly). Such a practice would be analogous to limiting the possible effect 

sizes in a power analysis to a select number of prespecified values. However, power analyses for 

sample size planning rarely stray from preselected cutoffs such as 0.20/0.50/0.80 for Cohen’s d 

without a reduction in the utility of the approach.   

 Nonetheless, our hope is that giving all researchers (regardless of quantitative savviness) 

an approachable tool by which to simulate custom cutoffs – even if only in a constrained manner 
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– will (a) raise awareness of the precariousness of fit index cutoffs across different data and 

model characteristics, (b) foster a greater appreciation of the origins of the traditional cutoffs, 

and (c) encourage researchers to be more attentive to how they use fit indices. We also hope that 

it moves the methodological literature away from bemoaning generalizability issues with the 

traditional fixed cutoffs (which, as we demonstrate, can be addressed with the current open-

source computing environment) and towards thinking about the types of misspecifications to 

which fit indices should be sensitive and creating ways to better quantify model misspecification 

so that fixed cutoffs become obsolete and reliance upon them is discontinued.  

The next section outlines the algorithm we implement to incorporate the misspecification 

used in Hu and Bentler (1999) across more model and data conditions to generalize cutoffs. After 

going through these details, we discuss how to expand the algorithm to misspecifications with 

varying levels of severity to produce a broader set of cutoffs rather than a single binary cutoff 

that often leads to fit indices to be treated as ad hoc hypothesis tests. Afterwards, we discuss 

special considerations for one-factor models common in scale validation.   

Algorithm to Derive DFI Cutoffs 

DFI cutoffs retain the idea of using simulation to derive suitable fit index cutoffs but 

differ in that the model upon which the simulation is not fixed but rather is updated to match the 

empirical model being evaluated. Specifically, the steps of the DFI algorithm for generalizing the 

Minor misspecification from Hu and Bentler (1999) to other multifactor models is: 

1. Fit the empirical model and obtain the standardized parameter estimates.  

2. The standardized estimates from the empirical model are used to create a data 

generation model for a subsequent Monte Carlo simulation. Rather than use the 

empirical model as the data generation model, an additional path of a magnitude 
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that corresponds to Hu and Bentler’s Minor misspecification condition is added 

to the data generation model. In other words, it is assumed that the empirical 

model now represents the “Minor” misspecification row in Table 1 such that the 

“true” model has an extra path not present in the empirical model. The goal is to 

reverse engineer a plausible model for the “True” row of Table 1, as if the 

researcher’s empirical model were misspecified.  

3. The model created in Step 2 is used to generate 500 datasets. The empirical 

model is fit to each generated dataset, producing a fit index that captures the 

value of a model containing a misspecification of the magnitude used in the 

Minor condition of Hu and Bentler (1999) for the characteristics of the 

researcher’s empirical model. 

4. The empirical distribution of fit indices from analyses of all generated datasets 

is then formed. The 5th percentile of the fit index distribution for lower-is-better 

indices (or the 95% percentile for higher-is-better indices) is the value of the fit 

index that consistently detects a misspecification of similar magnitude as used 

in Hu and Bentler (1999) for the researcher’s empirical model characteristics.  

5. Repeat Step 2 through Step 4 but change the data generation model in Step 2 to 

be exactly equal to the empirical model to inspect behavior of fit indices if the 

empirical model were congruent with the data generation model (i.e., treat the 

empirical model as the True row in Table 1). The cutoff value derived in Step 4 

should be further from exact fit (i.e., further from 0 for SRMR and RMSEA, 

further from 1 for CFI) than when the data generation model is congruent with 
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the empirical model to ensure that fit values are not ambiguous and that the 

cutoff can distinguish between correct and misspecified models.  

5b. If the cutoff value derived in Step 4 is closer to exact fit, then use the more 

lenient criteria using the 10th percentile in Step 4 and 90th percentile in Step 5 

for lower-is-better indices (and vice versa for higher-is-better indices). If no 

such value exists with the more lenient criteria, then the characteristics of the 

model are not amenable to a cutoff that can unambiguously distinguish between 

congruent and misspecified models.   

The logic of the strategy is that it mimics the strategy used to derive the traditional fixed cutoffs 

but adapts the simulation design to the model subspace that corresponds to the empirical model. 

A bottom-up approach is taken whereby the empirical model is used to create a plausible data 

generation model from the same model subspace for purpose of comparison. That is, whether the 

data generation model in Step 2 is the “true” model is irrelevant because the goal is merely to 

identify a model whose model-implied covariance structure differs by an amount consistent with 

the Minor misspecification conditions from Hu and Bentler (1999). That is, the goal is not to 

identify misspecifications in the empirical model but rather to determine the scaling of fit indices 

for the model being evaluated.  

This approach follows previous work in the causal inference literature on omitted 

confounders (Rosenbaum, 2002, 2010; Rosenbaum & Rubin, 1983) where the interest is not in 

identifying the omitted variables themselves but rather to quantify possible effects of 

hypothetical unseen or uncollected variables. For instance, the sensitivity test from Rosenbaum 

(2002) calculates how large the effect of an omitted cofounder would need to be in order to alter 

a conclusion that treatment effect is significant. The Rosenbaum’s method is not interested in 
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identifying the omitted variable. Instead, it gives researchers an idea of the magnitude of effect 

an omitted variable would need to have in order to reverse the conclusion so that researchers can 

consider whether variables they did not collect might have an effect with such a magnitude. 

Harring et al. (2017) adapted this approach into structural equation modeling to test whether 

omitted variables could change conclusions and similar ideas have been suggested for sensitivity 

analyses in mediation models (MacKinnon & Pirlott, 2015). 

The DFI approach follows the same thought process – there is no presupposition that the 

data generation model in Step 2 is actually the true model nor is the goal to isolate and identify 

the true model. The point of Step 2 is merely to reverse engineer a hypothetical model that would 

render the empirical model misspecified to a similar degree as in Hu and Bentler (1999) in order 

to determine what the distribution of fit index values would look like for a misspecified model in 

the subspace occupied by the empirical model. In other words, the scaling of the fit indices is 

dependent on data and model characteristics and using a consistent, representative 

misspecification in the data generation model (such as the one used by Hu and Bentler) helps to 

uncover the scaling of the fit indices. The end-goal is to determine how a particular 

misspecification is quantified by fit indices under particular data and model characteristics to 

derive a custom cutoff value with similar properties as the traditional fixed cutoffs anywhere in 

the subspace of CFA models regardless of the number of items, number of factors, factor 

reliability, degrees of freedom, etc.  

Note that the actual misspecification in the empirical model could be different in 

magnitude and pattern than the misspecification featured in the data generation model. The data 

generation model is selecting but one possible misspecification to help better understand the 

scaling of fit indices for a specific set of data and model characteristics. This helps to anchor the 
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scale of the fit indices in a particular subspace, but how the misfit is distributed throughout the 

empirical model is not necessarily the same as the representative misspecification used in the 

DFI simulations. The DFI simulations are a tool to guide interpretation of fit indices across 

models but do not imply anything about the nature of specific misspecifications in the empirical 

model.  

Though challenges in generalizing the Hu and Bentler (1999) misspecification is one 

presumed reason for lack of implementation in previous simulation-based techniques for 

deriving custom cutoffs, lack of familiarity with simulation techniques in general is another 

presumed reason for lack of application of such methods in empirical studies. Therefore, we 

provide a web-based Shiny application that only requires users to enter their sample size and 

upload a .txt file with their model’s standardized estimates to a web browser that then automates 

Steps 2 through 5 and reports the DFI cutoffs corresponding to their model. We walkthrough an 

example analysis in the next section to elucidate the details of the method.  

Simulated Data Example 

 In this section, we demonstrate the DFI approach for deriving RMSEA, SRMR, and CFI 

cutoffs for multifactor models using the data from Replication 1 of the Complex model, N = 500, 

H = 0.69 conditions from the simulation whose results were presented in Table 2. We begin with 

generated data because – unlike empirical data – we know the true model so we can compare the 

results of our procedure to the results using the true model in order to better gauge accuracy. We 

go through each of the 5 steps in detail to clarify the process of obtaining DFI cutoffs.  

Step 1: Fit the Empirical Model  

The empirical model is a 3-factor model where all factors covary with each other. Items 1 

through 5 load on Factor 1, Items 6 through 10 load on Factor 2, Items 11 through 15 load on 
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Factor 3, Item 4 cross-loads on Factor 2 and Item 9 cross-loads on Factor 3. The path diagram for 

the empirical model is shown in Figure 4. We fit the model in Mplus Version 8.3 with maximum 

likelihood estimation. Model fit metrics are reported in Table 3 along with both unstandardized 

and standardized parameter estimates. The RMSEA was .033 (90% CI = [.021, .044]), SRMR 

was .041, and CFI was .970. If referencing traditional fixed cutoffs, the model would appear to 

fit well. However, the factor reliability values are in the low .60s/high .70s and are far below the 

.87 factor reliability used to derive the traditional fixed cutoffs. So even though the model 

characteristics are identical to those from Hu and Bentler (1999) in all respects but one, the 

reduced factor reliability could potentially place this model in a subspace where fit indices 

quantify misfit differently. 

Figure 4. Path Diagram for empirical model 

Table 3 

Empirical model estimates for replication 1 of the N =500, H =0.69, complex condition  

 

Loadings  Factor Correlations 

  Item Unstandardized Standardized  Factor 1 Factor 2 .485 

Factor 1     Factor 1 Factor 3 .657 
 1 .861 .705  Factor 2 Factor 3 .196 
 2 .444 .445  Error Variances Unstandardized Standardized 

 3 .478 .515  Item 1 .752 .503 
 4 .453 .373  Item 2 .798 .802 
 5 .480 .497  Item 3 .632 .735 

Factor 2     Item 4 .653 .444 
 4 .593 .489  Item 5 .700 .753 
 6 .601 .595  Item 6 .658 .645 
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 7 .540 .507  Item 7 .845 .743 
 8 .565 .559  Item 8 .703 .688 
 9 .634 .532  Item 9 .693 .488 
 10 .627 .638  Item 10 .573 .593 

Factor 3     Item 11 .759 .702 
 9 .460 .386  Item 12 .679 .706 
 11 .567 .546  Item 13 .670 .771 
 12 .532 .542  Item 14 .627 .676 
 13 .447 .479  Item 15 .595 .605 
 14 .549 .570  Model Fit 

  15 .623 .628  RMSEA  .033 

Factor Reliability (Coefficient H)  RMSEA 90% CI  [.021, .044] 

Factor 1  .676  SRMR  .041 

Factor 2  .733  CFI  .970 

Factor 3   .710   χ2 (85)   131.39, p <.01 

Note: Factors are given scale by constraining factors variances to 1 for all factors; factor 

correlations are equal to factor covariances  

 

Step 2: Create the Data Generation Model 

 We use the standardized estimates from Table 3 to create a data generation model for a 

Monte Carlo simulation with one addition: we add a cross-loading to mimic the Minor 

misspecification condition in Hu and Bentler’s Complex model. The logic of Hu and Bentler’s 

Complex model misspecification was to determine the fit index value that could consistently 

identify an omitted cross-loading whose magnitude is equal to the weakest loading present in the 

model. Item 2 has the weakest standardized loading (.445), so the data generation model will be 

the same as the empirical model with an additional cross-loading to Item 2 with the value equal 

to .445 (the standardized path of this weakest item).5 This cross-loading is added to the factor on 

which the item did not originally load that has the highest factor reliability because this will 

provide the largest misspecification that could be associated with such a cross-loading (it also 

 
5 Item 4 and Item 9 have lower standardized loadings for one factor, but higher standardized loadings for another 

factor. If items load on multiple factors, we consider the item with the highest standardized residual variance. The 

magnitude of the path that can be added to the data generation model is limited by the size of the standardized 

residual variance, so the item with a larger standardized residual variance provides the most flexibility. This is 

discussed in detail in the next section.  
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facilitates replicating the same data generation model if the method is applied repeatedly). In this 

example, Item 2 originally loaded on Factor 1, so the cross-loading would originate from Factor 

2 because its Coefficient H is slightly higher than Factor 3 (0.733 vs. 0.710). In this way, we 

treat the empirical model as if it has a minor misspecification in attempt to determine fit index 

values that detect a misspecification consistent with an omitted cross-loading with the same 

magnitude as the weakest loading in the empirical model.6 The path diagram of the data 

generation model is shown in Figure 5.  

Importantly, note that the true model does not need to be known when forming the data 

generation model. In this example using simulated data, we are privy to the fact that the true 

model has no cross-loading from Factor 2 to Item 2 but rather that the actual omitted path in the 

empirical model is a loading from Factor 3 to Item 1. This is irrelevant for the DFI approach 

because the goal is not to uncover the true model. Rather, the goal is to generate data from a 

plausible model within the same approximate subspace as the empirical model that contains a 

misspecification with a similar magnitude used by Hu and Bentler (1999). 

 
Figure 5. Path diagram for the data generation model. The addition path not included in the 

empirical model is represented by a bold dashed line. 

 
6 In the accompanying Shiny application, we select the lowest loading from factors with 3 or more items when 

possible. During experimentation with models with irregular characteristics, results were less stable when cross-

loadings were added to an item from a two-item factor, presumably due to local under-identification. The 

application also will not run for models with very small degrees of freedom whereby additional paths would make 

the model just-identified or under-identified.  
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Ensuring the Cross-Loading is Admissible. Note that for models with high 

standardized loadings across all items, it is not possible to add a cross-loading with a high 

standardized loading. For example, if the lowest standardized loading present in the model was 

0.80, adding a cross-loading of the same magnitude to the same item would lead to a model-

implied variance of at least 
2 20.80 0.80 1.28+ = , which would require a negative population 

residual variance to keep items on a standardized metric. Hu and Bentler (1999) encountered this 

same problem and addressed it by unstandardizing items with cross loadings in their data 

generation model (p. 7). To streamline software automatization, we take a slightly different 

approach.  

Instead, we compare the magnitude of the lowest standardized loading in the empirical 

model to the maximum allowable cross-loading that would maintain a nonnegative population 

residual variance. For items that do not already have cross-loadings in the empirical model, the 

maximum allowable standardized cross-loading is  

 ( ) ( )
2 2

, ,O CL O CL
CL O O OF F F F
      + −   (1) 

where CL is the standardized cross-loading to be added to the data generation model, O is the 

original standardized loading in the empirical model, ( ),O CLF F
 is the factor correlation between 

the factor the item originally loads on ( OF ) and the factor associated with the additional cross-

loading  in the data generation model ( CLF ), and O is the original standardized error variance of 

the item in the empirical model. The standardized cross-loading is then equal to 

( ) ( )( )2 2

, ,
min 0.95 ,

O CL O CL
O O O OF F F F
      + −  

. We multiply by 0.95 simply to prevent a 
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nonpositive definite population covariance matrix that may be attributable to rounding error (this 

possibility occurred during experimentation using the exact maximum). 

  Using Table 3, the empirical model standardized loading of Item 2 ( O ) was 0.445, the 

correlation between Item 2’s original factor (Factor 1) and the factor associated with the cross-

loading (Factor 2) is 0.485, and the standardized error variance of Item 2 in the empirical model (

O ) is 0.802. Evaluating Equation 1 with this example would yield 

 

2 20.445 0.485 0.802 0.445 0.485

0.705

CL

CL





  + − 


  (2) 

The maximum standardized cross-loading Item 2 can accommodate is 0.705 because if a cross-

loading of this size were added, the explained variance of Item 2 would be 

 ( )2 20.445 0.705 2 0.445 0.705 0.485 1.00+ +   =   (3) 

The lowest standardized loading of 0.445 is below 95% of the maximum allowable cross-loading 

in Equation 2 ( 0.95 0.705 0.670 = ), so we set the cross-loading equal to .445 in this example.  

 Factor Covariance Misspecification. In Hu and Bentler (1999), two misspecifications 

are present: one for misspecified cross-loadings (the Complex condition) and one for 

misspecified factor covariances (the Simple condition). In the original study, the Simple 

misspecification omitted a factor covariance such that two factors were made orthogonal. 

Though this involves removing only a single parameter, Fan and Sivo (2005) note that this has 

widespread consequences in the model-implied covariance matrix because it restricts the 

covariance between any items on the two orthogonal factors. Fan and Sivo (2005) note that 

reported sensitivity of SRMR to covariance misspecifications is primarily an artifact of this 

specific misspecification and is not a general rule.  
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 Empirical models typically feature factor covariances, so the Hu and Bentler (1999) 

approach of making factors orthogonal is not implementable when trying to reverse engineer a 

data generation model from an empirical model. The Hu and Bentler (1999) misspecified models 

had orthogonal factors, but if the empirical model of interest posits non-orthogonal factors, this 

type of misspecification cannot be recreated because reverse engineering involves adding more 

parameters to the data generation model, which cannot be accomplished if those paths were 

already estimated as part of the empirical model. Put another way, because we effectively treat 

the empirical model of interest as the minor misspecification condition in the simulation, if the 

empirical model includes all possible factor covariances (as is the default in many software 

programs), the factor covariance matrix is saturated and cannot be misspecified.  

 Given this issue and based on findings from Fan and Sivo (2005), we do not differentiate 

types of misspecifications to derive cutoffs for different fit indices. That is, we rely on the 

procedure described in the Complex condition of Hu and Bentler (1999) to create the data 

generation model from the empirical model for all indices. As a result, we expect that our 

RMSEA and CFI values will closely match what is presented in Table 2, but the SRMR values 

are expected to be different (specifically, they will be smaller).  

Step 3: Generate Data and Fit the Empirical Model 

Multivariate normal data consistent with the model-implied covariance matrix from the 

data generation model are generated in a Monte Carlo simulation. Generated data contain the 

same number of variables and the same sample size as the empirical data (15 variables and 500 

people, in this example). This is repeated such that there are 500 unique datasets, each containing 

500 observations and 15 variables. The empirical model from Figure 4 is then fit to each 

simulated dataset such that the resulting fit index values reflect typical values from a 
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misspecified model because the empirical model has fewer estimated paths than the data 

generation model. Again, the accompanying Shiny application executes this automatically so 

unfamiliarity with Monte Carlo simulation or an undesirable time investment related to writing 

simulations scripts from scratch are not barriers to implementation.  

Step 4: Locate the 5th Percentile of the Fit Index Distribution 

The Monte Carlo simulation generates 500 different datasets and each one is analyzed 

with the empirical model, meaning that there are 500 different sets of output. The distribution of 

fit indices from these 500 analyses are then summarized. To coincide with Hu and Bentler’s 

method for deriving cutoffs, we are interested in the 5th percentile of the distribution for lower-is-

better indices (SRMR and RMSEA) which identifies the fit index value to which 95% of 

misspecified model fit index values are equal or greater. That is, in the simulation we know that 

the empirical model that is fitted to the generated data is misspecified because the data 

generation model and the empirical model do not match, so the 5th percentile tells us the value of 

the fit index that would detect this misfit 95% of the time. CFI is a higher-is-better index, so this 

same information is captured by the 95th percentile of the distribution instead of the 5th 

percentile. Table 4 shows the 5th percentile of SRMR and RMSEA and the 95th percentile of CFI 

when the model is known to have a misspecification. Using the cutoffs shown in the “Value” 

column of Table 4 would accurately reject a model with this misspecification 95% of the time 

(i.e., a false negative rate of 5%) and therefore shows how misfit caused by an omitted cross-

loading scales the fit indices for these data and model characteristics. 
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Table 4 

5th percentile of SRMR and RMSEA and 95th percentile of CFI fit index distributions when the 

model is misspecified 

 

Index Distribution Percentile Value 

RMSEA Misspecified 5 .023 

SRMR Misspecified 5 .035 

CFI Misspecified 95 .987 

 

Step 5: Repeat Using the Empirical Model as the Data Generation Model 

 The values from Step 4 are not necessarily the final cutoffs because we also need to 

ensure that these values do not excessively reject true models (i.e., that they do not yield high 

false positive rates). We repeat Step 2 through Step 4 but make the data generation model equal 

to the empirical model (i.e., the data generation model is the model shown in Figure 4 and there 

are no additional cross-loadings included). In doing so, we inspect the typical fit index values we 

would encounter in this subspace were the empirical model correct. Ideally, 5% or fewer of 

correct model replications will be rejected when using the cutoff value obtained in Step 4. That 

is, the 95th percentile of the correct model fit index distribution should be at or below the 5th 

percentile of the misspecified model fit index distribution for lower-is-better indices (and vice 

versa for higher is better indices). Otherwise, the overlap in fit index values for misspecified and 

correct models would be ambiguous since the same fit index value could conceivably come from 

either the correct or misspecified model distribution. Table 5 shows the 95th percentile of SRMR 

and RMSEA and the 5th percentile of CFI when the empirical model is correct and matches the 

data generation model.  
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Table 5 

95th percentile of SRMR and RMSEA and 5th percentile of CFI fit index distributions when the 

model is correct 

Index Distribution Percentile Value Step 4 Cutoff 

RMSEA Correct 95 .024 .023 

SRMR Correct 95 .033 .035 

CFI Correct 5 .984 .987 

 

For SRMR, the 95th percentile for the correct model distribution (0.033) is below the 5th 

percentile of misspecified models (0.035), so the 0.035 value from Step 4 can reasonably 

differentiate between misspecified and correct models because the false positive and false 

negative rates are both below 5%. However, for RMSEA, the 95th percentile of the correct model 

distribution (0.024) exceeds the 5th percentile of misspecified models (0.023), meaning that the 

value from Step 4 is ambiguous in that it is observed for both correct and misspecified models. 

The same is true for CFI such that 5th percentile for the correct model distribution (0.984) is 

below the 95th percentile of the misspecified model distribution (0.987), so the CFI value 

obtained in Step 4 is similarly ambiguous.  

Figure 6 demonstrates this possible ambiguity using CFI as an example. Based on the 

logic of deriving fit index cutoffs, values at or worse than the cutoff indicate unacceptable fit. In 

Figure 6, this would mean that CFI values at or to the left of the 95th percentile of the 

misspecified model distribution would be considered unacceptable. However, in this case, the 5th 

percentile of the correct model distribution falls in this area, meaning that an unacceptable 

proportion of correct models would be rejected (i.e., the false positive rate is too high). 

Therefore, the SRMR value in Step 4 is an acceptable cutoff for detecting misfit for this model, 

but the CFI and RMSEA values in Step 4 are unacceptable using a 5% threshold, so we test the 

10% threshold in Step 5b.   
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Figure 6. Comparison of CFI distributions when the model is misspecified and when the model 

is correct. The 95th percentile of the correct model distribution is further from perfect fit than the 

5th percentile of the misspecified model distribution, indicating that the false positive rate would 

be too high and that this cutoff is not suitable to distinguish between distributions. 

 

Step 5b. If the false positive and false negative rates cannot both be kept under 5%, then 

we move on to Step 5b and determine if there is a fit index value that keeps both rates at or 

below 10%. Table 6 shows the same information as Step 4 and Step 5 for RMSEA and CFI but 

expands the false positive and false negative rate thresholds to 10%. For RMSEA, the 10th 

percentile of the misspecified model distribution (0.026) is now further from exact fit than the 

90th percentile of the correct model distribution (0.021). So, RMSEA ≤ 0.026 meets the 10% 

threshold and would be acceptable as a value to distinguish between true and misspecified 

models in this context. 

Similarly, the 10th percentile of the CFI misspecified model distribution of 0.983 is 

further from exact fit than the 90th percentile of the CFI correct model distribution of 0.987. So, 

CFI ≥ 0.983 appears to be a reasonable CFI value for distinguishing between correct and 

misspecified models for these data and model characteristics. Readers can replicate these results 

in the Shiny application by uploading a .txt file with the model standardized model estimates to 
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https://dynamicfit.app and setting the sample size to 500 (see Appendix A for more details; .txt 

files for all the models in this paper are provided on the OSF page associated with this paper). 

Table 6 

Comparison of RMSEA and CFI fit index distributions when the model is correct and 

misspecified using a 10% false positive and false positive threshold 

 

Index Distribution Percentile Value  

RMSEA Correct 90 .021 

 Misspecified 10 .026 

CFI Correct 10 .987 

  Misspecified 90 .983 

 

Conventionally, values satisfying the primary 5% threshold are preferable because the 

false positive and false negative rates are much smaller, so the Shiny application does not report 

the 10% threshold cutoffs when the 5% threshold cutoffs are available. Alternatively, if no value 

can be obtained that satisfies the 5% or 10% threshold, then the fit index distributions may not be 

sufficiently precise to differentiate between correct and misspecified models in the subspace 

occupied by the empirical model (this would correspond to the “None” cells of Table 2 and the 

example shown in Figure 3). This outcome will be more common at smaller sample sizes where 

the sampling variability of the fit index distributions will tend to be larger.  

Summary  

Although the fit index values for the empirical model appear to fit well compared to the 

traditional fixed cutoffs, none of the indices meet the DFI cutoffs that replicate the Hu and 

Bentler (1999) misspecification applied to the data and model characteristics present in this 

analysis because misfit is quantified differently in the current model subspace than it is in the 

model used in Hu and Bentler (1999). Figure 7 compares the fit index distributions for SRMR, 

RMSEA, and CFI and highlights the differences between the DFI and traditional cutoffs in this 

example. Note that the traditional cutoffs are completely insensitive to a misspecification 

https://dynamicfit.app/
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consisting of a single omitted cross-loading for this model when the factor reliability is low (H = 

.69) and the distributions of both models fall completely (or nearly-completely) to one side of the 

traditional cutoff. The DFI approach relocates the cutoff so that it more closely corresponds to 

the point that demarcates correct and misspecified models to reflect misfit quantification more 

accurately in this context.  

Figure 7. SRMR, RMSEA, and CFI distributions for true and misspecified models with 

comparison of dynamic cutoffs and traditional fixed cutoffs 

 

Further, note the proximity of the cutoffs from Table 2 for H = .69 and the DFI cutoffs 

here, which we summarize in Table 7 (the SRMR value in Table 4 is from the Complex 

condition rather than the Simple Condition presented in Table 2). Table 2 compared the 

empirical model to the actual true model (which was known because the data were simulated) 

whereas the DFI approach reverse engineered a plausible data generation model featuring a 

misspecification of the same magnitude as used in Hu and Bentler (1999). The advantage of the 

DFI approach is that we did not need any knowledge of the true model to arrive at essentially the 
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same cutoffs: we only analyzed a single dataset and used the estimates to reverse engineer a 

plausible data generation model with the same level of misspecification used in Hu and Bentler 

(1999) to generalize their approach to these data and model characteristics. Furthermore, both 

methods also came to the same conclusion that SRMR passed the primary 5% threshold but that 

both RMSEA and CFI did not and the secondary 10% threshold was required.  

Table 7 

Comparison of DFI cutoffs from the first replication data  

 

  Cutoff Threshold 

  Table 2 DFI Table 2 DFI 

SRMR .036 .035 5% 5% 

RMSEA .025 .026 10% 10% 

CFI .981 .983 10% 10% 

 

Note: the SRMR value reported for Table 2 comes from the Complex condition used by the DFI 

approach, not the Simple condition used to derive SRMR cutoffs in Hu and Bentler (1999) so the 

values differs from what was reported in Table 2.  

 

Reproducing Table 2 with Dynamic Fit Cutoffs 

 To provide further evidence for how our procedure is effective without requiring 

knowledge of the true model, we reproduce each cell for the N = 500 condition in Table 2 using 

the DFI procedure using the first generated data set for each condition. In Table 2, the true model 

was known and was fit to the data. In this section, we used the DFI approach to reverse engineer 

a plausible model with a similar magnitude of misspecification to use as the data generation 

model. A comparison of the DFI cutoffs and the cutoffs from the full factorial simulation Table 2 

are presented in Table 8. The DFI cutoffs closely reproduce the Table 2 cutoffs across conditions 

where nearly all the cutoffs differ only in the third decimal place. The SRMR cutoff is a little 

different in the H = .94 condition because the DFI approach relies on the maximum allowable 

cross-loading is this condition rather than unstandardizing any items with a cross-loading as done 

in the original Hu and Bentler (1999) study. This leads to a slightly different misspecification 
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and affects SRMR more than RMSEA of CFI because SRMR is an absolute index that has no 

parsimony adjustment or comparison to a baseline model.   

Table 8 

Comparison of cutoffs from full simulation using true model in Table 2 and dynamic fit cutoffs 

using data generated from the first replication in the N =500 condition  

 

   SRMR   RMSEA   CFI 

Coefficient 

H 

Middle  

Loading 

Table 2 

Cutoff 

DFI 

Cutoff 
 Table 2 

Cutoff 

DFI 

Cutoff 
 Table 2 

Cutoff 

DFI 

Cutoff 

.42 .35 None None  None None  None None 

.57 .45 None None  None None  None None 

.69 .55 .036 .035  .025* .026*  .981* .983* 

.79 .65 .044 .047  .042 .052  .969 .963 

.87 .75 .051 .051  .061 .067  .962 .959 

.94 .85 .068 .049  .085  .088  .956  .953 

 

Note: SRMR in Table 2 is reported for the Simple misspecification. The dynamic cutoff 

approach uses the Complex misspecification from Table 2, so the SRMR reported here 

corresponds to the Complex condition not reported in Table 2. Cells with a “*” indicate the 
secondary 10% threshold was necessary to determine a cutoff value.  

 

Fit Indices as a Continuum, not an Ad Hoc Hypothesis Test 

Fit indices were originally intended to provide continuous information to supplement the 

χ2 test to help quantify the degree of misfit (Hu & Bentler, 1999, p.2; Tucker & Lewis, 1973). As 

noted by Ropovik (2015), “a significant chi-square does not necessarily imply a useless model” 

and fit indices can assist in differentiating between a model that retains some merit despite 

misspecifications and a model that is grossly incorrect and should be discarded (Millsap, 2007). 

However, over time, fit indices have migrated into being used as binary arbiters of fit and 

function as ad hoc hypothesis tests – much like the χ2 test – rather than a supplement to quantify 

the magnitude of misfit (Gomer, Jiang, & Yuan, 2019, p. 372).  

To return fit indices more closely to their intended purpose, the simulation design for 

deriving fit index cutoffs can include multiple conditions for the severity of misspecification. 
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Rather than having a single cutoff to differentiate “good” versus “bad” models as with traditional 

fixed cutoffs, varying misspecification severity would provide a semi-continuous set of cutoffs. 

The result would be similar to bins created by Cohen’s d type effect sizes where researchers can 

better articulate the potential magnitude of misspecification in their model. Unlike Cohen’s d 

effect size bins that are static (e.g., between d = .20 and d =.50 is a typically considered a 

“medium” effect), DFI cutoff bins adaptively change based on the data and model 

characteristics. The idea is to allow researchers to be more forthright with their evaluation of fit 

by not limiting the possible outcome of fit assessment to only “good” or “bad” but rather to 

allow for more nuance and clarity in model evaluation.  

This could also moderate some of the heated debates between proponents of exact fit and 

approximate fit. Currently, fit indices are used like hypothesis tests rather than as effect sizes, 

which justifiably elicits consternation among exact fit adherents because treating fit indices this 

way circumvents principles of null hypothesis significance testing. Treating fit indices more like 

the effect sizes they were intended to be protects the sanctity of exact fit tests while allowing 

researchers who are willing to accept some degree of misspecification in their models a way to 

quantify misfit more accurately. Separating these approaches to model evaluation by giving fit 

indices the vocabulary and framework it needs to operate as intended gives each perspective 

space to operate without encroaching on the mechanisms of the other perspective. 

More candid evaluations of fit that do not restrict the outcome to only “good” or “bad” 

will hopefully encourage researchers to embrace a rejected hypothesis that the model fits exactly 

and use it an opportunity to inspect the nature of the misspecification in their model, such as by 

examining modification indices (e.g., Saris et al., 2009) or the standardized residual matrix 

containing the difference between the model-implied and observed covariance elements 
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(McDonald, 2010; though others do note that such follow-up investigations have caveats and 

may encourage atheoretic model tinkering, Markland, 2007; MacCallum, Roznowski, & 

Necowitz, 1992). Rejection of exact fit tests indicates that the model does not exactly reproduce 

the observed covariance matrix and examination of the standardized residual matrix – for 

example – can aid in differentiating whether misfit is attributable to a single correctable 

misspecification or to a scattering of small discrepancies throughout the model, which may 

suggest the model is a reasonable approximation to reality (McDonald & Ho, 2002, p. 73; 

Millsap, 2007, p. 879).  

For instance, models with high factor reliability (and therefore with high communalities) 

can often have larger fit indices but no obvious areas of local strain in the standardized residual 

matrix because power to detect deviations from exact fit are a direct function of the 

communalities (Browne et al., 2002). Though examination of the standardized residual matrix is 

often suggested in methodological sources (e.g., Hancock & Mueller, 2011; West et al., 2012), 

this practice is rarely reported in empirical studies with Ropovik (2015) finding it in just 3% of 

reviewed articles. Presumably, this is due to fit indices that meet cutoffs being interpreted similar 

to exact fit rather than being interpreted as lack of exact fit but possibly containing only minor 

misspecifications.  

Varying Severity of Misspecification 

Marsh et al., (2004) made strong arguments that the misspecifications used in Hu and 

Bentler (1999) may not be of interest across different model types and that different levels of 

misspecification may be of interest in different contexts. For instance, Marsh, Hau, and Grayson 

(2005) note that it becomes more difficult to meet traditional fixed cutoffs with larger models 

and that this has encouraged models with few items per factor, similar to how researchers prior 
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to popularization of fit indices might prefer smaller samples to more easily achieve 

nonsignificant χ2 tests. 

The DFI approach can be generalized to provide varying levels of misspecification. 

Rather than solely mimicking the single omitted cross-loading to produce the equivalent 

traditional fixed cutoffs for different data and model characteristics, the simulation can include 

additional cross-loadings to provide DFI cutoffs for more severe levels of misspecification. In 

essence, the general procedure outlined previously remains intact but additional misspecification 

severity conditions are sequentially added with DFI cutoffs being derived for each level. The 

result is that a model evaluated with fit indices is not merely “good” or “bad” but rather that the 

level of goodness or badness can be quantified with more nuance.  

In the corresponding Shiny application, the default number of misspecification levels is 

determined by the number of the factors in the model such that the maximum degrees of 

misspecification is equal to the number of factors minus one. This follows from Hu and Bentler 

(1999), who simulated two levels of misspecification for a three-factor model (minor and major; 

see Table 1). The rationale for this choice is that adding multiple cross-loadings to multiple items 

that load on a single factor in the empirical model does not necessarily worsen misspecification 

because multiple misspecifications of this type can be absorbed into a single factor covariance, 

which increases the local strain on this part of the model but does not necessarily affect global 

strain. 

That is, if Item 1 and Item 2 both load on Factor 1 in the empirical model and a data 

generation is created by adding two additional cross-loadings from Factor 2 to Item 1 and Factor 

2 to Item 2, parameter estimates can more easily account for such a localized misspecification 

and the discrepancy function is little affected by the presence of one versus two omitted cross-
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loadings (we encountered this situation exactly when testing different ways to allot multiple 

additional paths in the data generation model in the algorithm). When adding multiple paths to a 

data generation model, it is useful to spread them throughout the model to avoid this hyper-

localized misspecification, which is why the number of levels of misspecification is based on the 

number of factors to ensure that the discrepancy function will actually increase as more paths are 

added to the data generation model. The algorithm to create the data generation model continues 

to add paths equal to each successive loading in ascending order of magnitude but does so 

conditionally to not repeat adding cross-loadings that affect the same pair of factors. This is 

demonstrated in the next section with the same simulated example used previously.  

Simulated Data Example 

 We demonstrate using the same data from Replication 1 from the Complex model, N = 

500, H = 0.69 condition reported in Table 3. As discussed previously, the data generation model 

for one additional cross-loading that mimics the minor misspecification in Hu and Bentler (1999) 

would consist of an additional standardized cross-loading of .445 from Factor 2 to Item 1. We 

can extend beyond the misspecification in Hu and Bentler (1999) and test additional levels of 

misspecification to get a broader sense of the sensitivity of fit indices to different types of 

misspecifications.  

 To add a second additional path to the data generation model, Step 2 of the DFI algorithm 

is repeated with Item 2 removed from consideration because it has already been used. The next 

item selected is Item 13 whose standardized loading in the empirical model was .479. This 

loading (or the maximum allowable loading described in Equation 1) is also added to the data 

generation model so that there are two-cross-loadings in the data generation model that did not 

appear in the empirical model (similar to Hu and Bentler’s “major” misspecification condition). 
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Choosing the factor associated with this second cross-loading is more nuanced with multiple 

additional cross-loadings present in the data generation model. As before, the factor on which the 

item did not originally load with the highest factor reliability is preferred. If selecting this factor 

would repeat the same factor pairing as a previously added path, then the factor with the next 

highest factor reliability is selected. 

 In this example, Item 13 loads on Factor 3, Factor 2 has the highest factor reliability, and 

the previously added cross-loading was between Factor 2 and an item that loaded on Factor 1. 

The DFI algorithm will note that there is also an additional misspecification already in the data 

generation model between Factor 1 and Factor 2 and will not allow another misspecification to 

be added between these factors. However, misspecifications can be added between either Factor 

1 and Factor 3 or between Factor 2 and Factor 3. Factor 2 has the highest factor reliability, so the 

.479 loading is therefore added from Factor 2 to Item 13 because this factor pairing is still 

available to receive a misspecification in the data generation model.  

If the item selected for the second additional cross-loading also belonged to Factor 1, the 

cross-loading would have been assigned to Factor 3 to avoid including multiple misspecifications 

between Factor 2 to an item belonging to Factor 1 in the data generation model. For a 3-factor 

model, two misspecifications are tested by default in the Shiny application (similar to Hu and 

Bentler’s minor and major misspecification conditions) and DFI cutoffs corresponding to each 

level of misspecification are provided. For this example dataset, these cutoffs are presented in 

Table 9. 
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Table 9 

DFI cutoffs for two levels of misspecification and the magnitude of the standardized cross-

loading added to create at each level of misspecification.  

 

Additional Paths 

In Data Generation Model  

Magnitude of 

Omitted Loading 
SRMR RMSEA CFI 

1 .445 .035 .026 .983 

2 .479 .051 .049 .948 

 

In Table 9, the first row corresponds to the DFI cutoffs for a misspecification of one 

omitted cross-loading with a standardized magnitude of .445 (these were also presented in the 

previous section where we outlined the details of the DFI algorithm). The second row 

corresponds to the DFI cutoffs for a misspecification of two omitted cross-loadings with  

standardized magnitudes of .445 and .479. Rather than having a single set of cutoffs that obliges 

researchers into a “good” versus “bad” determination, there are now multiple bins in which the 

model evaluation can fit: 

1. The model reproduces the observed covariance matrix exactly (non-significant χ2 

test). 

2. The model does not fit exactly, but the amount of misfit is consistent with or less 

than an omitted standardized cross-loading equal to .445 (fit index values better 

than the DFI cutoffs in the first row). 

3. The model does not fit exactly and the amount of misfit is consistent with 

somewhere between one omitted standardized cross-loadings equal to .445 and 

two omitted standardized loadings equal to .445 and.479 (fit index values better 

than the DFI cutoffs in the second row but worse than the DFI cutoffs in the first 

row).  
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4. The model does not fit exactly and the amount of misspecification exceeds two 

omitted standardized cross-loadings equal to .445 and .479 (fit index values 

worse than the DFI cutoffs in the second row). 

For this particular model, the fit index values were SRMR = .041, RMSEA = .033, and CFI = 

.970, so the interpretation would fall into Category 3 – the fit index values are worse than the 

DFI cutoffs in the first row but better than the DFI cutoffs in the second row. This would indicate 

that the model does have some misspecifications, but the magnitude of those misspecifications 

appears to be moderate and the model may retain some merit (as we discuss in the next section, 

just like effect sizes used in other modeling frameworks, it is up to the researcher to justify the 

level of misspecification that is acceptable). For models with more factors, more levels of 

misspecification are output by default in the application to address the points in Marsh et al. 

(2004) and Marsh et al. (2005) that the definition of ‘minor misspecification’ is not fixed, can 

differ across model types and scales with model size.   

How Misspecified is “Too Misspecified”? 

Where to draw the line for which level of misspecification is “too much” is up to 

interpretation. This is no different from effect sizes in other analyses – a treatment effect may be 

statistically significant, but the real question is whether the impact is sufficiently high to warrant 

a policy change or intervention. To some researchers, “sufficiently high” might correspond to a 

Cohen’s d of .25 but to others it might correspond to a Cohen’s d of .50. Further, the traditional 

effect size cutoffs provided by Cohen (1988) have recently been noted to be more fluid than 

originally thought and vacillate across contexts (e.g., Correll et al., 2020; Kraft, 2020), much like 

fit indices. To be clear, such arguments are not about whether the effect is different from 0 as 
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tested by null hypotheses, it is about the point at which difference becomes practically 

meaningful.  

The same principle holds for model evaluation with CFA – there is no arguing about 

whether the model fits exactly or not from an inferential standpoint. If the χ2 test is significant, 

then the model does not reproduce the observed covariance matrix and there is a misspecification 

either in the structural relations in the model or in the distributional assumptions of the model. 

Fit indices should not be used as an ad hoc hypothesis test to replace a null hypothesis 

significance test whose outcome is unfavorable. This is analogous to the fact that a small 

Cohen’s d does not invalidate a significant treatment effect because the two metrics are testing 

different things. Conversely, a significant χ2 test does not imply that a model is useless just as a 

significant treatment effect does not mean a policy change is necessarily warranted if the 

practical difference between groups is negligible. 

As in other statistical models where there is a complementary interplay of effect sizes and 

significance tests, exact fit and approximate fit should not be competing approaches in CFA but 

rather are complementary approaches that together can provide more holistic evaluations of 

models. Instead, fit indices should be used to quantify the degree of misspecification and to 

present evidence for whether the impact of the misspecification is sufficiently large to invalidate 

the model and its conclusions. As with policy decisions using effect sizes, there will be differing 

opinions about what magnitude misspecification is too big in a particular context, but this is an 

inherent quality of effect size measures (and fit indices) that should be embraced rather than 

overlooked by those who use fit indices to evaluate their models.  

Furthermore, the guidelines presented by AERA, NCME, and APA (2014) describe five 

equally important sources of validity evidence for the use of psychological measurements. 
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Researchers heavily emphasize quantitative evidence of validity based on internal structure – 

often via CFA and model fit measures – to the detriment of the others. Validity arguments via 

internal structure can be important, but statistical models themselves are atheoretical and 

psychometric interpretations are only valid insofar as there is a strong theory behind a model. 

Internal structure is only one piece of the puzzle and can (and should) be supplemented with 

other sources of validity information to present a more holistic case for validity that can extend 

behind model fit measures. In other words, validity is always an argument that can be supported 

by – but not exclusively based upon – quantitative information like fit indices.  

Empirical Example 

This section provides an empirical example to show how fixed cutoffs can impact 

conclusions from empirical studies that do not necessarily share model characteristics with the 

data generation model in Hu and Bentler (1999). Psychological Assessment focuses on scale 

validation where evaluating fit of CFA models is often a primary goal and was a natural location 

from which to draw an example. We discuss a study from Kearns et al. (2018) which involved 

scale validation using standard CFA models along with traditional fixed cutoffs to inform 

decisions about adequacy of model fit.  

To be clear, this study followed currently accepted protocols and we are not faulting their 

methodology in any way. In fact, the study was selected because it was so thorough in reporting 

its results that all relevant information needed to recreate and evaluate the analysis was present 

and we commend the authors’ transparency. Accordingly, we highlight this study as an example 

of limitations of existing recommended practices, even when followed exactly. We give a short 

description of the study and its reported results prior to applying the DFI approach to the 

reported model and discussing discrepancies between traditional and DFI cutoffs.  
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Kearns et al. (2018) 

Kearns et al. (2018) was interested in validating the Brief-Caffeine Expectancy 

Questionnaire (B-CaffEQ) and collected responses on 47 candidate items from 975 people 

regarding their caffeine consumption. Half of the participants (N = 488) were used in an 

exploratory analysis, which narrowed the scale down to 21 items loading on 7 factors. The final 

CFA featured 20 items on 7 factors for the remaining 487 people (one item was removed 

between the exploratory and confirmatory analysis); the first 6 factors each had 3 items and the 

last factor had 2 items. All factors were allowed to covary with all other factors. The 

standardized factor loadings were quite high, ranging from 0.70 to 0.92, with an average of 0.84. 

Figure 8 shows the path diagram with standardized loadings for the CFA model (factor 

correlations are not shown to improve readability of the figure). The fit of the CFA was reported 

to be reasonable relative to traditional cutoffs where RMSEA = 0.066 [90% CI = (0.060, 0.072)], 

SRMR = 0.040, and CFI = 0.953. Reporting of model fit was done thoughtfully and the authors 

were forthright in noting that the RMSEA was slightly above the traditional cutoff.  

The factor reliability is high in this model, ranging from 0.76 to 0.92 across the seven 

factors, which falls close to the values used to derive the traditional cutoffs in Hu and Bentler 

(1999). The number of factors in the model was higher than the number used to derive traditional 

cutoffs (7 versus 3) while the number of items per factor was lower (2 or 3 versus 5). Given these 

differences, the model subspace used when deriving the traditional cutoffs is not adjacent to this 

empirical model and the cutoffs would be unlikely to generalize.  

The DFI cutoffs corresponding to a misspecification of single omitted cross-loading for 

these model and data characteristics that mimic the procedure used to derive the traditional 

cutoffs are: 
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• RMSEA ≤ 0.038 

• SRMR ≤ 0.037 

• CFI ≥ 0.986  

None of the fit indices from this empirical model are better than these cutoffs, indicating that the 

cumulative magnitude of misspecification in this model is greater than that contained by a single 

omitted cross-loading. 

Figure 8. Path diagram for CFA model in Kearns et al. (2018) with standardized loadings. All 

factors have a variance of 1 and all factor covary with each other, which are not shown  

 

Because commonly used fit indices track global fit, the more unique elements present in 

the model-implied covariance matrix, the easier it is for the impairment caused by a single 

misspecification to be washed out after being combined with or averaging over the other 

elements (see e.g., Table 3 of Shi, Lee, & Maydeu-Olivares, 2019).7 Additionally, with many 

factors and few items per factor, one omitted cross-loading will impact few other elements of the 

 
7 For example, we reran the H = .94 condition for the simulation presented in Table 2 but added 5 more items with 

loadings between .80 and .90 and the Level-1 cutoffs corresponding to a single-omitted cross-loading became 

stricter (RMSEA ≤ 0.064, CFI ≥ 0.970, SRMR ≤ 0.037). 
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model-implied covariance matrix (i.e., the contagion of the misspecification is more isolated 

with few factors and many items per factor). As model size expands, perhaps a model with only 

a single misspecification – upon which the traditional fixed cutoffs are based – can still make a 

contribution to the literature (e.g., Marsh et al., 2005). Therefore, it would be useful to obtain 

cutoffs based on additional misspecification(s) that are less isolated to better quantify what level 

of misspecification is actually present in the model rather than concluding that, if the model does 

not meet the cutoffs for a single omitted cross-loading, then the model fit is necessarily poor.  

As described above, additional levels of misspecification can be tested to better quantify 

the magnitude of misspecification that may be present to better evaluate fit and extend beyond 

simple conclusions of “good” or “bad” fit. Using the generalization of the DFI algorithm 

described previously, our Shiny application by default will test 6 levels of misspecification for a 

model with 7 factors. The misspecification and the cutoffs corresponding to these different levels 

are provided in Table 10.  

The first row of Table 10 is the one omitted cross-loading misspecification that 

corresponds to the approach used to derive the traditional cutoffs. Each successive row adds 

another cross-loading to the data generation model such that the omitted cross-loadings are 

cumulative. That is, the second row of Table 10 provides DFI cutoffs for a data generation model 

that omits a standardized cross-loading of .446 and a standardized cross-loading of .234 in the 

same model. The magnitudes of the omitted cross-loadings are small for this model because the 

standardized loadings in the model are high and items cannot accommodate larger standardized 

cross-loadings while retaining a nonnegative standardized residual variances because there is 

little unexplained variance remaining in most items. The magnitude of the omitted cross-loadings 
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is also not strictly monotonic because the overall misspecification is also affected by the 

magnitude of factor correlations in addition to cross-loading magnitude.  

Table 10 

DFIs cutoffs for six levels of misspecification and the magnitude of the new cross-loading added 

to create each subsequent misspecification.  

 

Additional Paths 

In Data Generation Model  

Magnitude of 

Omitted Loading 
SRMR RMSEA CFI 

1 0.446 .038 .038 .986 

2 0.234 .039 .042 .984 

3 0.272 .044 .053 .977 

4 0.255 .049 .062 .970 

5 0.239 .049 .072 .964 

6 0.279 .057 .088 .949 

Note: Bold entries indicate the level for each index at which the fit index from the Kearns et al. 

(2018) model is better than the DFI cutoff 

 

From this information, we can see that the SRMR in this model (.040) is consistent with 

an omission of three standardized cross-loadings with magnitudes of .446, .234, and .272. 

Similarly, the RMSEA (.066) is consistent with an omission of five standardized cross-loadings 

with magnitudes of .446, .234,.272, .255, and .239 and CFI (.953) is consistent an omission of 

six standardized cross-loadings with magnitudes of 446, .234, .272, .255, .239, and .279. As a 

reminder, this does not mean that the empirical model necessarily has omitted cross-loadings. 

The omitted cross-loadings included in the data generation model are merely one representative 

misspecification to help better understand the scaling of fit indices for these data and model 

characteristics. This would be interpreted as the cumulative misspecification in the empirical 

model being on par with misfit that would be caused by a particular number of cross-loadings of 

a particular magnitude. The actual pattern or distribution of misfit throughout the empirical 

model could look very different what is generated in the DFI simulations. In other words, the 
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DFI simulations are a tool to guide interpretation of fit indices but do not imply anything about 

the nature of misspecifications in the empirical model.   

 The ultimate question is, does this model fit? Strictly speaking, it does not because the χ2 

test is significant (
2 (149) 469.29, .01p =  ,  as reported in the original paper) which indicates a 

misspecification is present. However, as noted by Ropovik (2015), a significant χ2 test does not 

imply a model is useless and Millsap (2007) notes that fit indices can be used to differentiate 

models with merit versus models that are grossly incorrect. Here, the model is not consistent 

with a misspecification of the size used to derive the traditional cutoffs (or smaller) when 

updated to the current model characteristics. However, the model may retain some merit 

depending on how this information in contextualized. In our opinion, even though the misfit is 

consistent with several omitted cross-loadings, the magnitudes associated with these 

hypothetically omitted standardized loadings is mostly in the low .20s and misspecification of 

this magnitude would likely not be severe enough to warrant dismissing the model.  

Nonetheless, model evaluation using fit indices is not wholly objective by design and 

involves some argumentation to support whether the model misspecification is sufficiently small 

such that its use could still be warranted despite deviation from exact fit. The DFI approach 

provides a framework where validity arguments can be built around the types of 

misspecifications that are consistent with fit index values (possibly including other sources of 

validity beyond internal structure) and what types of misspecifications researchers deem 

acceptable rather than imprudently overgeneralizing fixed cutoffs.  Incidentally, this fits neatly 

within the mainstream arguments-based approach to instrument validation in education and 

psychology whereby researchers are encouraged to present any evidence needed to justify the 

intended uses and interpretations of assessment scores (Kane, 2013).  
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One-Factor Models 

Despite the wealth of interest in unidimensionality and one-factor models, the 

misspecifications in Hu and Bentler (1999) do not translate to one-factor contexts. The 

covariance misspecification in their Simple misspecification condition featured an omitted factor 

covariance and their Complex misspecification condition featured omitted cross-loadings on 

other factors. However, in the one-factor context, there are no additional factors with which the 

sole factor can covary nor are there additional factors upon which items can cross-load. Despite 

the frequency with which traditional fixed cutoffs are applied with one-factor models, the 

misspecifications to which that traditional fixed cutoffs are designed to be sensitive do not exist 

in one-factor models. Though some research has delved into issues pertaining to fit indices and 

associated cutoffs with one-factor models (e.g., Shi et al., 2019; Shi & Maydeu-Olivares, 2020), 

this area remains understudied with limited guidance for practice compared to the sizeable 

literature on multifactor models.  

Unidimensionality is a common question in scale development and validation and there 

has been recent renewed interest in one-factor models for assessing psychometric properties of or 

as alternatives to sums or averages of item scores (e.g., Edwards & Wirth, 2009; Fried et al., 

2016; Fried & Nesse, 2015; Kuhfeld & Soland, 2020; McNeish & Wolf, 2020; Slof-Op’t Landt 

et al., 2009). To meet the needs of researchers seeking to evaluate evidence of fit of their one-

factor models, we have created a separate DFI algorithm that deviates from the multifactor 

approach of Hu and Bentler (1999) to better address the issues present in one-factor models. Due 

to differences between one-factor and multifactor models, we felt it was appropriate to separate 

Shiny applications for these different types of models.  

One-Factor DFI Algorithm 
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A common interest with one-factor models is in evaluating whether a set of items are 

reasonably unidimensional or whether there may be multiple factors present. One proxy for 

inducing multidimensionality with one-factor models is to add residual correlations between 

individual items, which has been used in previous methodological studies in this area (Shi et al., 

2019; Shi & Maydeu-Olivares, 2020). Previous simulation results have suggested that the 

magnitude of factor loadings was less salient for models with omitted residual correlations but 

that the number of items was far more influential in the context of one-factor models (e.g., Table 

3 of Shi & Maydeu-Olivares, 2020). Given these findings and the omission of one-factor models 

for the simulation used to derive the traditional cutoffs, we retain the simulation-based 

framework presented in previous section but break from following Hu and Bentler’s approach 

for computing DFI cutoffs for one-factor models.  

Just as we featured multiple levels of misspecification for multifactor models, we also 

feature multiple levels of misspecification for one-factor models. Residual correlations are a 

more localized misspecification, so cutoffs are affected by the number of items in a one-factor 

model. For example, the presence of one omitted residual correlation in a one-factor model with 

30 items will be much less impactful than one omitted residual correlation in a one-factor model 

with 6 items. Rather than provide the DFI cutoff for a single omitted residual correlation for all 

models, we base the DFI cutoffs on the proportion of items in the data generation model with 

residual correlations. Whereas a single omitted residual correlation may be worrisome in a model 

with 6 items, the threshold for concern in a 30-item model would likely be much larger. 

Consequently, the number of residual correlations added will vary depending on model size and 

will not necessarily correspond to a generalization of the traditional cutoffs (as we strived for 

above in multifactor models where the prior literature is much deeper).  
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Unlike the multifactor DFI algorithm that varied the number of misspecification levels 

depending on the number of factors (which was done to maintain a connection to Hu and 

Bentler, 1999), the one-factor DFI algorithm takes a more standardized approach. Each one-

factor model fit with our Shiny application will test three levels of misspecification for one-

factor models regardless of model size. Each of these levels is proportional to the number of 

items in the one-factor model that do not already have another residual covariance with another 

item – denoted as I –  so that the levels of misspecification have constant meaning across all 

models to improve interpretation of the DFI cutoffs8. Mathematically, the number of residual 

correlations added in the data generation model for each level of misspecification is 

Level-1: / 2 / 3 0.50I +      

Level-2: ( )2 / 2 / 3I      

Level-3: / 2I    

Where    is the floor function that rounds all values down to the nearest integer. The three 

levels of misspecifications are ascending such that Level-3 is the most severe. The Level-1 

misspecification implies that about one-third of the items in the data generation model have 

residual correlations, the Level-2 misspecification implies that about two-thirds of items in the 

data generation model have residual correlations, and the Level-3 misspecification implies that 

each item has one residual correlation with exactly one other item if there are an even number of 

items. If the number of items is odd, all but one item will have a residual correlation with exactly 

one other item in the Level-3 misspecification. When / 2I  is divisible by 3, the proportion will 

be exactly one-third for Level-1 and exactly two-thirds for Level-2. Models with only four items 

 
8 Items that already have an error covariance in the model are ineligible for covariance misspecifications. Under 

local independence where there are no residual covariances, I will be equal to the number of items in the model. 
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will only have one level (a Level-2 misspecification with 4 items would be just-identified) and 

models with only five available items will only have two levels (three covariances cannot be 

added without reusing items).   

 When creating these models, the magnitude of residual correlations added to the data 

generation model are not limited in the same way as cross-loadings, so we do not base the 

magnitude of additional paths in the data generation model off the estimates in the empirical 

model. Rather, each residual correlation added in the data generation model is equal to 0.30. 

Residual correlations are added in the data generation starting with the items that have the lowest 

standardized loadings and additional residual correlations are added to item pairs in ascending 

order of their standardized loadings with no item receiving more than one residual correlation. 

That is, assuming no residual correlations in the empirical model for clarity, the first residual 

correlation in the data generation model would be added between the items with lowest and 

second lowest standardized loadings, the second residual correlation between the third and fourth 

lowest loadings, and third residual correlation between the fifth and sixth lowest loadings and so 

on. This pattern was chosen to provide a replicable series of steps so that the results are identical 

if fit repeatedly to the same model rather than for any particular methodological reason. An 

example of the one-factor algorithm in provided in the next subsection.  

One-Factor Model Example 

Example data come from the SAQ-7 scale data used in Field (2005) and that appear as an 

example of CFA on the popular UCLA Institute for Digital Research and Education (IDRE) 

Statistical Consulting website (https://stats.idre.ucla.edu/spss/seminars/introduction-to-factor-

analysis/). The data contain 2,571 responses to seven items about anxiety surrounding learning to 

use the SPSS statistical software and the interest of the analysis is in determining whether this 

https://stats.idre.ucla.edu/spss/seminars/introduction-to-factor-analysis/
https://stats.idre.ucla.edu/spss/seminars/introduction-to-factor-analysis/
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scale is unidimensional and measuring a single construct. The data were generated and some of 

the items are facetiously worded to engage introductory students to which the textbook is aimed; 

however, the data are openly available from several sources and are able to demonstrate 

implementation of our proposed approach to one-factor models.  

We fit a one-factor model in Mplus version 8.3 using maximum likelihood estimation and 

the standardized loadings and fit criteria are provided in Table 11. The model does not fit exactly 

given that the χ2 test is significant ( ( )2 14 376.32, .01p =  ). The sample size was quite large 

and we had high power to detect small misspecifications, so consulting fit indices may help 

determine whether the model may still have some utility or whether it is grossly misspecified. 

The RMSEA is .10 is above the traditional .06 cutoff; however, the degrees of freedom are small 

for this model (as they are for many one-factor models) and RMSEA may be inflated relative to 

traditional cutoffs (e.g., Kenny et al., 2015). The SRMR of .049 is below the traditional cutoff 

and the CFI of .906 is below the traditional cutoff but above the heuristic .90 cutoff that is 

sometimes considered acceptable for incremental indices. Based on traditional cutoffs, there may 

be some evidence that the model misspecifications are small enough to warrant considering the 

model further. However, it is unclear how sensitive the traditional cutoffs are to 

misspecifications in one-factor models because traditional cutoffs were derived from multifactor 

models. Furthermore, the model has more items per factor and lower factor reliability (H = .79) 

than the conditions used to derive traditional cutoffs.  
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Table 11 

Standardized loadings and fit from one-factor CFA testing unidimensionality of the SAQ-7 scale 

 

Item Std. Loading Fit 

1 .590 RMSEA .100 

2 -.553 RMSEA 90% CI [.092, .109] 

3 .672 SRMR .049 

4 .576 CFI .906 

5 .491 χ2(14) 376.32  

6 .497  p <.01 

7 .648     

 

 To quantify the degree of misspecification more specifically for this one-factor model, 

we calculated the DFI cutoffs. The model has 7 items, meaning that the Level-1, Level-2, and 

Level-3 misspecifications will consist of one, two, and three additional 0.30 residual correlations 

in the data generation model, respectively. Figure 9 shows the path diagram for the data 

generation model at each level of misspecification. The data generation for a Level-1 

misspecification includes an additional .30 residual correlation between the items with the two 

lowest standardized loadings (Item 5 and Item 6). The Level-2 misspecification adds another .30 

residual correlation to the items with the next two lowest standardized loadings (Item 2 and Item 

4). The Level-3 misspecification then adds a third .30 residual correlation to the items with the 

next two lowest standardized loadings (Item 1 and Item 7). Because there are an odd number of 

items, the item with the highest standardized loading (Item 3) does not receive a residual 

correlation in any of the data generation models.    
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Level-1 Misspecification 

Data Generation Model 

Level-2 Misspecification 

Data Generation Model 

Level-3 Misspecification 

Data Generation Model 

   

 

Figure 9. Path diagrams for the data generation models used to derive Level-1, Level-2, and 

Level-3 misspecification DFI cutoffs for testing unidimensionality of the SAQ-7 

 

Table 12 shows the DFI cutoffs for these model and data characteristics for the three 

standardized levels of misspecification. From the DFI cutoffs, we can see that the model 

misspecification is not consistent with a Level-1 or Level-2 misspecification as the empirical 

model fit index values are worse that these cutoffs for all three indices. The model fit indices are 

consistent with (or slightly better than) a Level-3 misspecification, indicating that the cumulative 

model misspecification is on par with every item but one having an omitted 0.30 residual 

correlation with another item. Similar to Cohen’s d bins, Level-1 is intended to be the cutoff for 

a ‘small’ misspecification, Level-2 the cutoff for a ‘medium’ misspecification, and Level-3 the 

cutoff for a ‘large’ misspecification. So, the unidimensionality of the model is questionable given 

the proximity of the empirical model fit index values to the Level-3 DFI cutoffs.  

Table 12 

DFI cutoffs for testing unidimensional of SAQ-7 Scale 

 

Misspecification 

Level 
SRMR RMSEA CFI 

 
1 .033 .064 .962  

2 .044 .088 .927  

3 .052 .107 .903  
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As a reminder, this does not mean that the model necessarily has omitted residual 

correlations – the omitted residual correlations included in the data generation model are merely 

one representative misspecification to help better understand the scaling of fit indices for these 

data and model characteristics. This would be interpreted as the cumulative misspecification in 

the model being consistent with three omitted residual correlations. However, the distribution 

and pattern of misfit is not necessarily the same as the representative misspecification used in the 

DFI simulations. Given the relatively poor fit of the model, discussion of possible modifications 

is considered in the next subsection. 

Model Modification 

DFI provides information about severity of misfit, not just whether fit is broadly 

classified as good or bad. This allows us to see that the model in the previous section does not 

just fit poorly, but that the fit indices are consistent with a rather large misspecification. In such 

situations, two perspectives emerge on how to proceed depending on where the analysis falls 

along the continuum of confirmatory to exploratory. If the model is confirmatory and altering the 

model is objectionable, researchers could ascertain whether they are comfortable with a level of 

misspecification just slightly below the Level-3 CFI cutoff. If the model is more exploratory, 

researchers can follow up possibly deficient fit to diagnose why the model fit is poor and 

whether there are clear ways in which fit would be improved (such modifications should, of 

course, be reported). As an analogy to analysis of variance, this could be considered as an 

omnibus-type test indicating that there is misfit somewhere and inspections of diagnostics would 

serve to locate the source of the misspecification.  

As noted previously, the standardized residual matrix is a helpful source to locate such 

misfit. This matrix for the current model is,  
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I1 I2 I3 I4 I5 I6 I7

I1 0

I2 .01 0

I3 .04 .01 0

I4 .06 .01 .01 0

I5 .04 .01 .02 .01 0

I6 .08 .05 .06 .03 .02 0

I7 .08 .02 .03 .04 .02 .19 0

−
−

−
− − − −
− − − − −

 

Entries in this matrix indicate the difference between the model-implied correlation and the 

observed correlation for observed variables. Values of 0 indicate the model-implied correlation 

exactly reproduces the observed correlation, negative values indicate the model-implied 

correlation is larger than the observed correlation, and positive values indicate the model-implied 

correlation is smaller than the observed correlation. Most of the standardized residual elements 

are near 0 except the correlation between Item 6 and Item 7, which was off by 0.19 (observed 

correlation = 0.51; model-implied correlation = 0.32). This indicates that there is likely an 

unmodeled relation between these two items, which is corroborated by the modification indices 

which suggest that adding a residual covariance between Item 6 and Item 7 would reduce the 
2

statistic by 322.78. Item 6 and Item 7 are both related to anxiety about computer literacy rather 

than about mathematical or statistical reasoning, so this may be responsible for the additional 

relationship above and beyond the latent variable.  

 The standardized estimates for the modified model with a residual correlation between 

Item 6 and Item 7 are shown in Table 13. The model still does not fit exactly (

( )2 13 66.77, .01p =  ) but the fit indices are much improved (RMSEA = .040, SRMR = .021, 

CFI = .986). The DFI cutoffs can then be reassessed using the modified model.9 Because the 

 
9 In this example, we recalculate the DFI cutoffs after modifying the model. We could see arguments against this 

practice such that the DFI cutoffs from the original model should be used instead. We could not determine a 

definitive answer to which should be preferred and additional consideration of this topic would be needed to 

determine which set of cutoffs is most appropriate. In general, for modifications that only involve different paths and 
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modified model has one existing residual correlation, there are only 5 possible items to which a 

residual correlation could be added in the data generation model. Therefore, only two levels of 

misspecification can be tested rather than the three levels that were tested in the original model. 

The DFI cutoffs for the modified model are shown in Table 14.  

Table 13 

Standardized loadings and fit for the modified SAQ-7 model featuring a residual correlation 

between Item 6 and Item 7 

 

Item Std. Est. Fit 

1 .619 RMSEA .040 

2 -.558 RMSEA 90% CI [.031, .050] 

3 .694 SRMR .021 

4 .588 CFI .986 

5 .498 χ2(13) 66.77 

6 .403   p <.01 

7 .582   

Corr (6, 7) .375     

Table 14 

DFI cutoffs for testing modified model for SAQ-7 scale 

 

Misspecification 

Level 
SRMR RMSEA CFI 

 
1 .032 .061 .967  

2 .040 .082 .948  

3 --- --- ---  

The level of misspecification present in the modified model appears to be relatively low and is 

consistent with one omitted residual correlation or less severe (i.e., the fit indices of the empirical 

model are better than the Level 1 DFI cutoffs). Furthermore, inspecting the standardized residual 

matrix reveals that there is no obvious source of misfit in the modified model, 

 
that do not change the number of variables, there should not be too great a difference between the sets of cutoffs 

because the model characteristics should be quite close. This pattern is observed in this example whereby the Level-

1 and Level-2 cutoffs in Tables 12 and 14 differ only in the third decimal place in all but one case. For more 

fundamental modifications that involve removing items or changing the number of factors such that there are 

differences in the model characteristics, it would seem more prudent to consider recalculating cutoffs such that they 

based on the modified model characteristics. 
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I1 I2 I3 I4 I5 I6 I7

I1 0

I2 .01 0

I3 .01 .01 0

I4 .03 .02 .01 0

I5 .02 .02 .00 .02 0

I6 .03 .00 .01 .00 .02 0

I7 .05 .07 .00 .02 .01 .00 0

−
−

−
− − −

 

 

Also note that the modified model could equivalently be fit as a two-factor model with 

Factor 1 loading on Item 1 through Item 5 (math and statistics related items) and Factor 2 

loading on Item 6 and 7 (computer related items). If the model were fit this way, the 

loglikelihood, 
2  statistic, fit indices, and model-implied covariance matrices are all identical. 

We can run the modified two-factor model estimates through the Shiny application to get the 

DFI cutoffs when treating the modified model as a multifactor model. The DFI cutoffs from 

treating the model as multifactor rather than as one-factor with residual covariances is shown in 

Table 15 (recall that two-factor models can only test one level of misspecification in the 

application). The DFI cutoffs in Table 15 are not identical to those in Table 14 because the 

misspecification in the data generation model is slightly different (based on a cross-loading 

rather than residual correlation), but they are relatively close and lead to the same overall 

conclusion that the model fit is consistent with a Level-1 misspecification (or lower).  

Table 15 

DFI cutoffs from treating the modified model as a two-factor model rather than a one-factor 

model with correlated residuals  

 

Misspecification Level SRMR RMSEA CFI 

1 .037 .076 .969 

 

 The equivalence of fit between the one-factor model with an error covariance and the 

two-factor model and the ease at which a researcher can consult modification indices and change 
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their model further emphasizes the importance of establishing strong, evidence-based theory a 

priori. When modeling behavioral data, there will often be modifications that can improve fit 

because people are heterogeneous and psychological constructs are complex. We encourage 

researchers to remember the motivation for using a CFA model in the first place: to present 

evidence of validity. This validity is often based on the internal structure although other types of 

evidence of validity exist (AERA, APA, NCME, 2014). Severe misfit can arise for any number 

of reasons and a decision of how to best handle that (e.g., defend the scale as is, modify theory, 

or modify items) is likely best made with the help of other types of validity evidence.     

Discussion 

Global model fit indices are often treated as a fundamental source of validity evidence for 

psychological assessments, necessitating appropriate implementation. Many methodological 

studies have shown that the meaning of these fit indices change depending on data and model 

characteristics. The implication is that the threshold needed to achieve “good fit” with fixed 

cutoffs is inconsistent and models with certain characteristics (e.g., low factor reliability) have an 

arbitrary advantage relative to Hu and Bentler’s traditional fixed cutoffs. To create more flexible 

and equitable cutoffs, previous recommendations have suggested simulation-based techniques 

that are custom tailored to the unique characteristics of the model being evaluated to derive 

custom cutoffs. Though this recommendation is insightful for circumventing undesirable 

properties of fixed cutoffs, it has failed to gain traction in empirical studies, presumably because 

the requisite quantitative training required to implement simulation-based techniques exceeds the 

quantitative training possessed by many empirical researchers. Alternatively, even if researchers 

have the requisite quantitative training, the process of programming a unique simulation for each 

model can be time intensive.  
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Our DFI approach aims to address these issues to improve the precision of fit index 

cutoffs in a user-friendly manner, making bespoke evaluation of psychometric models and 

validity evidence widely accessible. Our Shiny application creates simulation code based on 

model results and internally executes the simulation so that researchers without knowledge of 

simulation techniques can exploit modern computational resources and those with knowledge of 

simulation techniques can streamline the process. This overcomes barriers present with earlier 

proposals for simulation techniques to custom tailor cutoffs. The result is that DFI cutoffs are 

fully tailored to the data and model characteristics without demanding that users possess the 

ability to manually program their own simulations.  

 The DFI approach aims to provide a user-friendly alternative to the common practice of 

using fit indices as ad hoc hypothesis tests and to revert their use to effect sizes that quantify the 

magnitude of misspecification in the model. In this way, the DFI approach is not just about 

revising cutoffs but rather about changing how researchers interact with and use fit indices. 

Providing a set of cutoffs rather than a single binary decision point allows researchers to more 

openly acknowledge that the model does not fit exactly and contextualize potential 

misspecifications, similar to the valuable interplay of statistical and practical significance 

enjoyed in other statistical models. This hopefully will serve to dampen the rift between those 

who ardently support the χ2 test and those who prefer fit indices. Rather than competing against 

one another in a methodological Battle Royale where only one method can emerge victorious, 

the DFI approach reinforces that the χ2 test and fit indices are different metrics with different 

goals and can be used to complement – not replace – one another.  

DFI vs. Equivalence Testing 
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 Readers familiar with recent developments may note that equivalence testing (Yuan et al., 

2016; Marcoulides & Yuan, 2018) has a similar goal to the proposed DFI method. The method 

proposes switching from a null hypothesis framework typically used for model fit evaluation to 

an equivalence testing framework whereby the hypothesis being tested is whether the 

discrepancy function is larger than a particular value – which can be defined by fit index values – 

rather than testing whether the model-implied covariance matrix is exactly equal to the observed 

covariance matrix. As a byproduct of this switch, Yuan et al. (2016) note the previous literature 

on how fit index values can carry different meaning in different contexts and provide a method 

by which traditional fit index cutoffs can be adjusted so that they change in accordance with data 

and model characteristics so that the level of misspecification used in the equivalence testing null 

hypothesis is equitable.  

Rather than customized simulation studies, equivalence testing provides a correction 

factor based on results from a best subset regression involving interactions and polynomial terms 

of sample size and degrees of freedom. This approach has advantages over DFI in that it is faster 

to compute and there are no differences in the adjustment between different types of models 

(e.g., one-factor vs. multifactor). However, a possible limitation relative to DFI is that aspects 

other than sample size and degrees of freedom are not included in the equivalence testing 

correction factor despite aspects like the number of factors, the number of items per factor, and 

factor reliability being reported to affect fit index values.  

As an anecdotal example using values in Table 8 that manipulated factor reliability, the 

RMSEA DFI cutoffs for N = 500 was .026 for H = .69 and .088 for H = .94. However, the “close 

fit” equivalence testing cutoff is .059 for both H = .69 and H = .94 because the equivalence 

testing correction factor does not include factor reliability. The fact that the cutoffs between DFI 
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and equivalence testing are different anecdotally does not imply that either is superior and further 

investigation would be needed to compare the performance of these methods more 

comprehensively.  

To give researchers the ability to make their own conclusions about the viability of DFI 

cutoffs and equivalence testing cutoffs, we modified the open-source R code provided by Yuan 

et al. (2016) and included an equivalence testing for RMSEA and CFI as part of Shiny 

application to make the method more accessible to researchers who wish to use it but who may 

not be comfortable with R functions or to researchers who want to study its properties further.  

Limitations 

Despite the advantages of DFI cutoffs we have illustrated in this paper, DFI cutoffs 

undoubtedly have limitations that are important to note and there is ample room for expansion 

and refinement of the approach. In particular,  

1. In its current form, the DFI approach is only applicable to CFA models. The process 

described to create the data generation model does not necessarily apply to different 

modeling contexts. For instance, creating a data generation model by adding cross-loadings 

in latent growth models would not be meaningful because the empirical model in a latent 

growth context typically includes loadings from all growth factors to all repeated measures. 

Additional work would be needed to identify relevant misspecifications outside of CFA 

contexts (e.g., the ability to detect a moderate quadratic component or autocorrelation in 

residual variance might be more meaningful misspecifications in a latent growth model). The 

Shiny application we provide may still function for these models and provide results; 

however, the procedure we describe is not intended nor tested for these types of applications 

and results would, at this point, be invalid.  

http://www.dynamicfit.app/
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A clear future direction is to extend to logic of the DFI approach proposed here for CFA 

to other model types. Dynamizing measurement invariance cutoffs to accompany those 

suggested by Cheung and Rensvold (2002) and Chen (2007) would be one obvious next step 

with wide practical utility. Specialized approaches may also be needed for bifactor models 

because the approach of including additional cross-loadings in the data generation model 

may not function properly when all items already have cross-loadings by design (e.g., the 

formula for the maximum allowable cross-loading likely will be different). The same is true 

for second-order or hierarchical factor models where additional cross-loadings in the data 

generation model may have differential impact if applied to a first-order or second-order 

factor.    

2. Though our intention is to improve model fit assessment by providing empirical researchers 

with custom cutoffs, an unintended consequence could be an increase in researcher degrees 

of freedom. With more options, researchers can more easily shop around for the fit criteria 

that aligns with the desired narrative. This could manifest, for instance, when a researcher 

has low factor reliability. Traditional fixed cutoffs would be more likely to return values 

indicating good fit, so the traditional cutoffs might be employed in such contexts. Rather than 

refining model fit assessment, the net effect could be a deluge of “good” fitting models 

because there are more paths that researchers could take to arrive at a conclusion of good fit.  

It could be difficult to dissuade empirical researchers from using the traditional fixed 

cutoffs when it is against their interests or when a generation of researchers has committed 

fixed cutoffs to memory. The focus on quantification of misspecification with the DFI 

approach is intended to discourage this practice by making researchers more actively support 
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their conclusion regarding fit, possibly by investigating local areas of strain and presenting 

additional types of validity arguments beyond the internal structure.   

3. Global fit is the de facto modality for assessing model fit, but there is foundational theoretical 

criticism of this approach to model fit (e.g., Tomarken & Waller, 2003, 2005). For instance, 

even when data and model characteristics are identical, an SRMR of .05 can occur for 

different reasons. Because SRMR has global focus and averages over all elements of a 

covariance matrix, a model can achieve a .05 value by having several small discrepancies 

spread throughout the model or by having one large misspecification. The DFI approach does 

not address – nor does it attempt to address – the potential caveats within the broader global 

fit framework. Instead, the DFI approach is targeted at improving fit assessment within the 

confines of the global fit framework with which empirical researchers are familiar, but we 

fully acknowledge the deficiencies therein and the recent work that has noted the benefits of 

local fit inspections (e.g., Thommes, Rosseel, & Textor, 2018).  

Indeed, some might relate DFI cutoffs reliance on global fit to the portion of John 

Tukey’s quote about the futility of precise answers to the wrong question. While an element 

of this sentiment exists, we would retort that model fit is sufficiently nebulous that current 

fixed cutoffs are an imprecise answer to an imperfect question while no consensus exists 

about what the right question even looks like. In this respect, having a precise answer to an 

imperfect question seems like an envious position to which model fit could aspire because, 

currently, the field does not have the right answer to any question when it comes to model fit. 

4. Missing data and deviations from normality are not considered in the simulation design that 

we outline. The data generation process assumes complete data that are multivariate normal. 

Fit indices can be affected by both of these aspects (Davey, 2005; Zhang & Savalei, 2020) 
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and the degree to which they are present could affect performance of the resulting DFI 

cutoffs. The current version only considers continuous items, but support for categorical 

items with weighted least squares would be another high-priority extension.  

5. Pragmatically, a single set of cutoffs is simpler to interpret and enforce for editors, reviewers, 

and consumers of research broadly. Dynamically changing cutoffs could make evaluating 

research more difficult. The nature of dynamic cutoffs requires researchers to perform 

additional computations, meaning that there is a non-zero chance that the DFI cutoffs could 

be calculated incorrectly, which would be difficult to detect. Our hope is that the Shiny 

application accompanying this paper reduces the complexity of obtaining these values by 

removing essentially all the programmatic requirements. Nonetheless, the presence of 

additional steps beyond committing fixed values to memory naturally will correspond to at 

least some increase in instances of user error.  

Concluding Remarks 

 Hu and Bentler (1999) is a seminal study in the field that was instrumental in shaping 

thinking about model fit and providing practical guidelines for assessing fit in empirical studies 

that was ultimately overgeneralized. These guidelines were based on a very narrow subspace of 

possible models and research in the intervening years has shown that fit indices beyond this 

narrow subspace behave differently. Our DFI approach and the associated Shiny application 

provides an accessible way to exploit benefits of simulation-based techniques to better tailor 

cutoffs to the data and model characteristics being evaluated. By assessing different magnitudes 

of misspecification, the DFI approach also helps return fit indices to their intended use of being 

effect size measures that quantify misfit rather being used as ad hoc hypothesis tests for whether 

misfit is present. Though there are clear opportunities for extension and refinement of the DFI 
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approach beyond its current form, we hope that this paper helps to move the methodological 

literature away from lamenting about poor generalizability of fixed cutoffs and towards modern 

solutions that empirical researchers can adopt to evaluate their models more precisely and more 

accurately.   
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Appendix A 

Short Tutorial on Using Web-Based Application 

 

The application website is located at www.dynamicfit.app and the landing page displays the 

models that are currently supported, one-factor CFA and multifactor CFA (there is also an 

application for equivalence testing, which is not pictured here). Clicking either image will open a 

software application specific to the model type of interest.  

 

http://www.dynamicfit.app/
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The homepage for each application gives instructions for how the application works along with a 

simple example.  The general idea is that researchers provide their CFA model with the 

standardized estimates in lavaan notation in a .txt file and upload it on the left side of the page (if 

users are unfamiliar with lavaan syntax, the instructions page describes how to specify the 

models in this form). A sample model statement with a corresponding path diagram is included 

for clarity. The user also enters the sample size from their empirical dataset. After these two 

steps are done, users click the “Submit” button to begin calculations.  
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The corresponding .txt file for the example shown in Table 3 is  

 

 
 

And is presented in text here for users that wish to copy and paste the model statement into a text 

file: 

Factor1 =~ .705*x1 + .445*x2 + .515*x3 + .373*x4 + .497*x5 

Factor2 =~ .489*x4 + .595*x6 + .507*x7 + .559*x8 + .532*x9 + .638*x10 

Factor3 =~ .386*x9 + .546*x11 + .542*x12 + .479*x13 + .570*x14 + .628*x15 

 

Factor1 ~~ .485*Factor2 

Factor1 ~~ .657*Factor3 

Factor2 ~~ .196*Factor3 

 

This file is uploaded and the sample size is set to 500.  
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After clicking submit, a progress bar will appear at the top of the page to indicate that the 

application is running to (a) parse the .txt file to determine which misspecification to include in 

the data generation model, (b) create code for the data generation model, (c) generate 500 

replication from the data generation model, (d) fit the empirical model to each, (e) generate 500 

datasets from the empirical model, (f) fit the empirical model to each generated dataset, and (g) 

summarize the fit index values to determine the dynamic cutoffs for SRMR, RMSEA, and CFI.  
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Once the process is complete, the progress bar will disappear and clicking on the “Results” tab 

will show the DFI cutoffs from the simulation. For the multifactor CFA application, the number 

of misspecifications will vary by model size. In this example, the model has 3 factors, so two 

different levels of misspecification are shown. The Level-1 rows correspond to a data generation 

model with one additional cross-loading and the Level-2 rows correspond to a data generation 

model with two additional cross-loadings. For the one-factor CFA application, 3 levels will 

always be shown unless the number of items is too small to support 3 levels.  

 

Hu and Bentler (1999) did not use a consistent criterion to determine where the cutoff should be 

relative to the correct and misspecified model distributions. From the results in their paper, the 

common approaches were (a) to reject 95% of misspecified models while rejecting no more than 

5% of true models or (b) to reject 90% of misspecified models while rejecting no more than 10% 

of true models. The application will show the cutoffs satisfying Criterion A for each level of 

misspecification if possible. If Criterion A cannot be met, then it will show the cutoffs that 

satisfy Criterion B. If neither can be satisfied, all cells will read “NONE”.  
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The “Info” tab in the multifactor CFA application will show which misspecifications were added 

for each level of misspecification. In this example, the Level-1 data generation model contained 

a loading with magnitude .4455 that was not present in the empirical model. The Level-2 data 

generation model contained two loadings with magnitude .4455 and .4791 in the data generation 

model that were not present in the empirical model.  

 

The one-factor CFA tab does not have an “Info” tab because the additional paths in the data 

generation model are more standardized and always include residual correlations equal to .30 

between one-third of items for Level-1, two-thirds of items for Level-2, and all items for Level-

3.  
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The “Plots” tab shows the fit index distributions for the correct and misspecified models for each 

level of misspecification to show the overlap between the distributions and how the DFI cutoffs 

were derived. A reference line is also added to facilitate comparing the DFI cutoffs to the 

traditional Hu and Bentler (1999) cutoffs.  
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Appendix B 

Implementation in Mplus 

This appendix walks through how to obtain dynamic cutoffs from the “Simulated Data 

Example” section of the main text that uses the first replication from the N = 500, H = 0.69 

condition from the Complex model. We will go through each of the 5 steps and show Mplus 

code and screenshots to explain how to obtain the DFI cutoffs and how to interpret them. Mplus 

Version 8.3 was used throughout this document.  

Step 1: Fit the Empirical Model 

The path diagram for the empirical model was shown in Figure 4 in the main text. Mplus 

code for the model is shown below. The latent variables are assigned scale by constraining the 

factor variances to 1 and the first loading of each item is freely estimated. The last line requests 

that standardized loadings be output since they will be used in subsequent steps. The model is a 

standard CFA model with no mean structure, so we will not go through each line of the code as 

we assume that Mplus users are familiar with the basic setup of CFA model in the program. The 

standardized estimates from this code as reported in Table 3 of the main text are shown on the 

next page  

DATA: FILE IS Complex Rep1 .55 Loadings.csv; 

VARIABLE: NAMES ARE y1-y15; 

 

ANALYSIS:  

ESTIMATOR = ML;  

MODEL = NOMEANSTRUCTURE; 

INFORMATION = EXPECTED; 

 

MODEL:  

f1 BY y1* y2-y5; 

f2 BY y6* y7-y10 y4; 

f3 BY y11* y12-y15 y9; 

 

f1@1; 

f2@1;  

f3@1; 

 

OUTPUT: STDYX; 
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Step 2: Create the Data Generation Model 

 The main text describes the process by which the data generation model is created, which 

corresponds to path diagram in Figure 5. In this data, the selected item was Item 2 and the 

associated cross-loading is 0.445. As noted in the main text, this cross-loading was below the 

maximum allowable value so a loading from Factor 2 to Item 2 with value of  0.445 will be 

added to the data generation model. In doing so, we need to change the standardized residual 

variance of Item 2 to reflect the additional variance explained by the cross-loading to ensure that 

the total variance of Item 2 remains equal to 1. The total explained variance for Item 2 is now 

 ( )2 20.445 0.445 2 .445 .485 .445 0.588+ +   =   

meaning that the standardized residual variance should be 1 .588 .412− = . All other standardized 

residual variances can remain at the value shown in the above output.  

Step 3: Generate Data and Fit the Empirical Model 

 Mplus code for creating the data generation model and fitting the empirical model to the 

generated data is presented below. For readers unfamiliar with the MONTECARLO utility in 

Mplus, unlike a traditional analysis, no data are read into the program. First, users tell Mplus the 

names of the variables they want to generate in each dataset, the number of observations to 

generate per dataset, and the number of unique datasets to generate. Then, users provide a model 

from which to generate data in the MODEL MONTECARLO command (as determined in Step 2). 

The model is written out just like any other Mplus model except that users must give Mplus 

population values from which to generate data. These population values come after an asterisk 

and must be provided for every parameter in the model. The population values are taken from the 

standardized estimates in Step 1 (with the exception of the residual variance for the item which 

contains an additional cross-loading, as mentioned in Step 2). Then, the MODEL command 
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contains the standard Mplus code for the original empirical model, which will be fit to the 

generated datasets. The Mplus code below essentially says: 

1. The MONTECARLO command tells Mplus to create 1000 unique datasets such 

that each dataset has 500 people and 15 continuous variables labeled y1 to y15  

2. The values of the generated variables are randomly drawn from the model 

specified in the MODEL MONTECARLO command, which takes its values from the 

empirical model estimates with one additional cross-loading set equal to the 

weakest loading item.  

3. The MODEL command then tells Mplus to fit the empirical model to each 

generated dataset.   
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MONTECARLO: 

!Generate 15 continuous variables; 

NAMES = y1-y15;  

!make the sample size 500 in each dataset; 

NOBS = 500;  

!create 1000 different datasets; 

NREPS = 1000; 

!set Seed for reproducible results; 

SEED=1981; 

 

!Remove estimates of item mean parameters; 

ANALYSIS: 

MODEL=NOMEANSTRUCTURE; 

INFORMATION=EXPECTED; 

    

!Data generation model used to generate the 1000 datasets; 

MODEL MONTECARLO: 

 

!Standardized Loadings for Factor 1; 

f1 BY y1*.705 y2*.445 y3*.515 y4*.373 y5*.497; 

!Standardized Loadings for Factor 2; 

f2 BY y6*.595 y7*.507 y8*.559 y9*.532 y10*.638 y4*.489; 

!Standardized loadings for Factor 3; 

f3 BY y11*.546 y12*.542 y13*.479 y14*.570 y15*.628 y9*.386; 

 

!Additional factor loading for weakest item, not present in empirical model;  

f2 BY y2*.445; 

  

!Factor Variances; 

f1-f3*1;  

!Factor covariances; 

f1 WITH f2*.485;  

f1 WITH f3*.657; 

f2 WITH f3*.196; 

 

!Standardized Residual variances ; 

y1*.503; 

y2*.412; 

y3*.735; 

y4*.444; 

y5*.753; 

y6*.645; 

y7*.743; 

y8*.688; 

y9*.488; 

y10*.593; 

y11*.702; 

y12*.706; 

y13*.771; 

y14*.676; 

y15*.605; 

 

!Empirical Model to be fit to each generated dataset; 

MODEL:  

f1 BY y1* y2-y5; 

f2 BY y6* y7-y10 y4; 

f3 BY y11* y12-y15 y9; 

y1-y15; 

f1-f3@1;     
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Step 4: Locate the 5th Percentile of the Misspecified Fit Index Distribution 

This Monte Carlo simulation generates 1000 different datasets and each one is analyzed 

with the empirical model, meaning that there are 1000 different sets of output. Fortunately, 

Mplus parses through each of these 1000 outputs automatically and summarizes the results in a 

single output file. The output contains outcomes that are commonly of interest in Monte Carlo 

simulation studies such as parameter estimate bias, confidence interval coverage, and – most 

importantly to this paper – distributions of fit indices. Not all fit indices are tracked by Mplus, 

but the mean, standard deviation, and percentiles of the SRMR and RMSEA distributions are 

reported automatically.  

 The output from the analysis of this data is shown below for the RMSEA and the SRMR. 

Version 8.3 of Mplus does not report the CFI for Monte Carlo studies. The leftmost column lists 

proportions and the rightmost column lists the fit index percentile value associated with that 

proportion. The proportions are one minus the percentile rank. We are interested in the 5th 

percentile as this identifies the fit index values to which 95% of misspecified model fit index 

values are greater than or equal. The 5th percentile can be located by looking at the Expected 

Percentile column that corresponds to the 0.950 Expected Proportion row.  

In this case, the associated RMSEA value is 0.023 and the associated SRMR is 0.034, 

meaning that 95% of models with an omitted cross-loading yield an RMSEA value of 0.023 or 

higher and an SRMR of 0.034 or higher. In other words, using these values as cutoffs would 

yield 95% probability to accurately reject this model. Step 5 then will ensure that these values do 

not over-reject true models. 
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Step 5: Repeat Using the Empirical Model as the Data Generation Model 

Step 4 showed that an RMSEA cutoff of 0.023 and a SRMR cutoff of 0.034 had a 95% 

probability to detect a misspecified cross-loading. However, we also need to determine whether 

these cutoffs do erroneously reject good models. We repeat Step 2 through Step 4 but make the 

data generation model equal to the empirical data (i.e., the data generation model is the model 

shown in Figure 4 in the main text and there are no additional cross-loadings included). The 

Mplus code for the data generation model in Step 5 would be almost identical as Step 3 except 

that it would omit f2 BY y2*.445 and reset the standardized residual variance of Item 2 to 

the value from the empirical analysis (i.e., y2*.802 rather than y2*.412). The Mplus code 

for this step is shown below.  
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MONTECARLO: 

!Generate 15 continuous variables; 

NAMES = y1-y15;  

!make the sample size 500 in each dataset; 

NOBS = 500;  

!create 1000 different datasets; 

NREPS = 1000; 

!set Seed for reproducible results; 

SEED=1981; 

 

!Remove estimates of item mean parameters; 

ANALYSIS: 

MODEL=NOMEANSTRUCTURE; 

INFORMATION=EXPECTED; 

    

!Data generation model used to generate the 1000 datasets; 

MODEL MONTECARLO: 

 

!Standardized Loadings for Factor 1; 

f1 BY y1*.705 y2*.445 y3*.515 y4*.373 y5*.497; 

!Standardized Loadings for Factor 2; 

f2 BY y6*.595 y7*.507 y8*.559 y9*.532 y10*.638 y4*.489; 

!Standardized loadings for Factor 3; 

f3 BY y11*.546 y12*.542 y13*.479 y14*.570 y15*.628 y9*.386; 

 

!Factor Variances; 

f1-f3*1;  

!Factor covariances; 

f1 WITH f2*.485;  

f1 WITH f3*.657; 

f2 WITH f3*.196; 

 

!Standardized Residual variances ; 

y1*.503; 

y2*.802; 

y3*.735; 

y4*.444; 

y5*.753; 

y6*.645; 

y7*.743; 

y8*.688; 

y9*.488; 

y10*.593; 

y11*.702; 

y12*.706; 

y13*.771; 

y14*.676; 

y15*.605; 

 

!Empirical Model to be fit to each generated dataset; 

MODEL:  

f1 BY y1* y2-y5; 

f2 BY y6* y7-y10 y4; 

f3 BY y11* y12-y15 y9; 

y1-y15; 

f1-f3@1;     
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The Mplus output from running this Monte Carlo code where the data generation model 

equal to the empirical model is shown below. Since this is the correct model, we are interested in 

the 95th percentile of the distribution. The 95th percentile can be located by looking at the 

Expected Percentile column corresponding to the 0.050 Expected Proportion row. The 95th 

percentile of the SRMR distribution is 0.033, which is below the 0.034 value from Step 4 

meaning that an SRMR cutoff of 0.034 can distinguish between true and misspecified models. 

Unfortunately, the 95th percentile of the RMSEA distribution is 0.024, which is larger than the 

value obtained in Step 4, meaning that using 0.023 as the cutoff would reject more than 5% of 

true models.   
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Step 5b: Assess a 10% Threshold  

 If more than 5% of correct models are rejected, the next goal is to assess a 10% threshold 

for rejecting correct models and a 90% threshold for rejecting misspecified models. To do so, we 

determine whether the 90th percentile of the true model distribution is below the 10% percentile 

of the misspecified model distribution. To follow this strategy for the current example, no code 

or simulations need to be rerun. Instead, we simply need to reference different rows of the 

previous simulations. In the misspecified model simulation, the 10th percentile of the distribution 

appears in the Expected Percentile column of the 0.900 Expected Proportion row, which is 0.025 

for RMSEA. We do not need to look up this value for SRMR since both error rates were already 

5% or below. 
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The 90th percentile of the correct distribution appears in in the Expected Percentile column of the 

0.100 Expected Proportion row, which is 0.020. Now, the 90th percentile of the correct model 

distribution is below the 10th percentile of the misspecified model distribution so using a cutoff 

of 0.025 is unambiguous for the specified threshold.  

 

 

 

 

 

 

 

 

 

 

Therefore, the dynamic RMSEA cutoff is 0.025 and the dynamic cutoff for SRMR is 0.034. 

There is a .001 difference in the RMSEA and SRMR cutoffs compared to what is reported in the 

paper since there is some Monte Carlo error between different randomly generated sets of data.  

 


