
Received July 14, 2020, accepted July 30, 2020, date of publication August 4, 2020, date of current version August 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014076

Dynamic Fleet Management With Rewriting
Deep Reinforcement Learning

WENQI ZHANG , QIANG WANG , (Member, IEEE), JINGJING LI, AND CHEN XU
National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Qiang Wang (wangq@bupt.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFE0205503.

ABSTRACT Inefficient supply-demand matching makes the fleet management a research hotpot in

ride-sharing platforms. With the booming of mobile network services, it is promising to abate the

supply-demand gap with effective vehicle dispatching. In this article, we propose a QRewriter - Dueling

Deep Q-Network (QRewriter-DDQN) algorithm, to dispatch multiple available vehicles in ahead to the

locations with high demand to serve more orders. The QRewriter-DDQN algorithm factorizes into a Dueling

Deep Q-Network (DDQN) module and a QRewriter module, which are parameterized by neural networks

and Q-table with Reinforcement Learning (RL) methods, respectively. Particularly, DDQN module utilizes

the Kullback-Leibler (KL) distribution distance between supply (available vehicles) and demand (orders)

as excitation to capture the complex dynamic variations of supply-demand. Afterwards, the QRewriter

module learns to improve the DDQN dispatching policy with the streamlined and effective Q-table in

RL. Importantly, the higher performance improvement space of the DDQN dispatching policy can be

obtained by aggregating QRewriter state into low-dimension meta state. A simulator is designed to train

and test the performance of QRewriter-DDQN, the experiment results show the significant improvement of

QRewriter-DDQN in terms of order response rate.

INDEX TERMS Deep reinforcement learning (DRL), fleet management, learn to improve, multi-agent.

I. INTRODUCTION

With the vigorous development of ride-sharing platforms,

such as DiDi Chuxing [1] and Uber [2], transportation

becomes convenient and flexible. In the meantime, fleet man-

agement has attracted many researchers’ attention as efficient

and effective vehicle dispatching is able to make full use of

traffic resources [3]–[5]. Consequently, how to make vehicle

dispatching decisions to abate the traffic supply-demand gap,

enhance customer experience and improve the order response

rate is a significant problem.

The fleet management (vehicle dispatching) is a complex

dynamic process as the dispatching decisions for current

vehicles will affect the gap of future traffic supply-demand.

Fortunately, Reinforcement Learning (RL) and Deep Rein-

forcement Learning (DRL) are able to capture the complex

dynamic supply-demand variations and provide the oppor-

tunity to solve the vehicle dispatching problem. Recently,

there are some existing works successfully solve the fleet

management problem with RL and DRL techniques under

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

many scenes [6]–[14]. For example, the authors in [6] found

a near-optimal solution for Vehicle Routing Problem (VRP),

which is a variation of fleet management problem, under

the traffic network with a single vehicle by using the RL

method. In [7], the authors employed DRL method to tackle

Traveling Salesman Problem (TSP), which also is a variation

of fleet management problem, with the known demand dis-

tribution. Nevertheless, in actual traffic, there are huge vehi-

cles in the traffic network and the traffic demand cannot be

obtained in advance. Consequently, the methods for solving

multi-vehicle dispatching problem are expected.

For multi-vehicle dispatching problem, the supply (avail-

able vehicles) distribution and demand (orders) distribution

should be provided to RL/DRL machines to capture the

dynamic supply-demand distribution variations expediently

and efficiently. For example, the authors in [8] designed

a layered multi-agent DRL algorithm to solve the joint

order dispatching and vehicle dispatching problem with

inputting the real-time vehicle distribution and order dis-

tribution. In [9], an end-to-end multi-agent DRL algorithm

was proposed to dispatch the nearby orders to idle vehi-

cles and dispatch the idle vehicles without nearby orders

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 143333

https://orcid.org/0000-0002-4482-6715
https://orcid.org/0000-0002-9392-475X
https://orcid.org/0000-0002-2750-8029

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

to the locations with lager demand. Additionally, the lager

and complex supply-demand distribution also provided to

the proposed DRL algorithm as input. The authors in [10]

combined Convolutional Neural Network (CNN) and RL to

plan routes for vehicles to deal with complex supply-demand

variations and obtain satisfactory passenger waiting time.

In [11], a distributed DRL algorithm with supply-demand

distribution as input was proposed to design vehicle rout-

ing to improve the performance of ride-sharing platform.

A model-free DRL algorithm was proposed in [12] to reduce

unserved orders by solving the dynamic fleet management

problem, and the complex supply-demand distribution as a

part of state input. In [13], a distributed model-free DRL

algorithm was designed to learn effective vehicle dispatch-

ing policy with the New York taxi dataset. However, to let

agents learn independently, the supply-demand distribution

is regarded as the input of each agent. The authors in [14]

proposed a multi-agent DRL algorithm to dispatch available

vehicles to high-demand locations. Furthermore, the real-

time traffic supply-demand distribution used as input and

the contextual information is introduced into DRL frame to

reduce the state-action space. According to the aforemen-

tioned researches, the supply-demand distribution is nec-

essary for solving the multi-vehicle dispatching problem.

However, the complex supply-demand distribution will case

a massive state- action space since there are thousands of

vehicles and orders in the traffic network at each time interval.

Besides, the massive state-action space reduces the efficiency

of DRL frames and limits the performance space of available

vehicle dispatching. Therefore, the effective solution to abat-

ing the effect of larger state-action space and providing higher

performance improvement space ofmulti-vehicle dispatching

problem is expected.

In this article, we propose a multi-vehicle dispatch-

ing algorithm, QRewriter - Dueling Deep Q-Network

(QRewriter-DDQN) algorithm, to dispatch available vehicles

to high-demand locations to serve more orders. Compared

to the existing works, QRewriter-DDQN algorithm is capa-

ble of aggregating high-dimension supply-demand state into

low-dimension meta state and abating the effect of complex

supply-demand dimension. In addition, QRewriter-DDQN

agents autonomously learn to rewrite the dispatching policy

under the low-dimension meta state, and higher improvement

space can be obtained. Therefore, due to the above advan-

tages, QRewriter-DDQN algorithm is able to achieve stable

and sterling dispatching performance. Finally, our detailed

contributions are as follows,

• We consider the available vehicle dispatching under the

dynamic traffic supply-demand variations. Multi-agent

DRL algorithm is leveraged to learn the dispatching

policy to satisfy more demand and improve the order

response rate. In particular, the KL distribution distance

between supply and demand acted as the reward signal

to inspire the multi-agent DRL algorithm.

• We propose the QRewriter-DDQN algorithm, which

is composed of DDQN module [15] and QRewriter

module, to let agents learn to improve the dis-

patching policy with the streamlined and effective

Q-table. Furthermore, the low-dimension QRewriter

state can be obtained by aggregating the complex

supply-demand distribution into a low-dimension meta

state. The QRewriter module is capable of abating the

effect of larger supply-demand distribution with the

low-dimensionQRewriter state and acquiring strong dis-

patching performance.

• Last but not least, a simulator is designed to

train and test the performance of our proposed

QRewriter-DDQN algorithm. Furthermore, experi-

ments with different vehicle initializations are demon-

strated to test the effectiveness and robustness of

QRewriter-DDQN algorithm. The experiment results

demonstrate QRewriter-DDQN outperforms the state-

of-the-art algorithm like multi-agent DDQN and other

baselines in terms of order response rate.

The reminder of this article is organized as follows. Our

problem formulation is presented in Section II. In Section III,

the background of DRL/RL algorithm and the proposed

QRewriter-DDQN algorithm, which included the DDQN

module and the QRewriter module, for multi-driver dispatch-

ing problem are demonstrated. Section IV analyzes the exper-

iment results. At last, Section V concludes this article.

II. PROBLEM FORMULATION

In this article, we investigate the fleet management problem

(multi-vehicle dispatching problem) of ride-sharing platform

with the objective of maximizing the order response rate.

To tackle the multi-driver dispatching problem, we propose

QRewriter-DDQN algorithm to dispatch the idle vehicles in

ahead to the locations with larger demand and serve more

orders. In practice, the given area is divided into many hexag-

onal grids and one day is spilt into 144 time intervals in

order to facilitate available vehicle dispatching. Furthermore,

there are two significant modules in our proposed algo-

rithm, DDQN module and QRewriter module. DDQN mod-

ule gives the dispatching action policy to each idle vehicle

and QRewriter module rewrites the dispatching action pol-

icy, which based on the DDQN dispatching policy, for each

available vehicle. Afterwards, according to our dispatching

policy, the available vehicles are dispatched to places with

high demand and serve more orders. The overall architecture

of the QRewriter-DDQN algorithm is demonstrated in Fig. 1.

A. DDQN MODULE

Obviously, the fleet dispatching problem in DDQN module

is a MDP problem, and each idle vehicle is an agent. Conse-

quently, we employ a five-tuple 〈SD,AD,RD,PD, γD〉 to

exhibit the problem. The detailed explanation as follows,

• State Space SD: State of agent n, snD ∈ SD. We define

the state as (Dv,Do, IDtime, IDgrid), where Dv denotes

the distribution of available vehicles, Do denotes the

distribution of orders, IDtime denotes the ID of time

143334 VOLUME 8, 2020

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

FIGURE 1. Overall architecture of QRewriter-DDQN algorithm.

interval and IDgrid denotes the ID of grid where the

idle vehicle is located. Specially, IDtime and IDgrid are

one-hot code in order to distinguish the time and grid

effectively. The state describes the detailed information

of time-space and demand-supply distribution.

• Action Space AD: Action of agent n, anD ∈ AD.

Each agent has seven actions, which is described as

{0, 1, 2, 3, 4, 5, 6}. Particularly, the seven actions indi-

cate the available vehicles are dispatched to the current

grid and the six adjacent grids, respectively. For exam-

ple, anD = 0 means the available stays in the current grid

and anD = 1 means the available vehicle is dispatched to

the first adjacent grid.

• Reward Space RD: Reward of agent n, rnD ∈ RD. The

immediate reward is defined as

rnD = piv(t)log
piv(t)

pio(t)
− pjv(t + 1)log

p
j
v(t + 1)

p
j
o(t + 1)

, (1)

where piv(t) and p
i
o(t) represent the probabilities of vehi-

cle appears in grid i at time t and order appears in

grid i at time t , respectively. In essence, the reward is

the KL distance between vehicle distribution and order

distribution as the goal of DDQNmodule is to minimize

the distance between demand distribution and supply

distribution.

• Transmission probability PD: Explaining the prob-

ability from the current state sD(t) to the next state

sD(t + 1) under a specific action.

• Reward discount factor γD: γD is utilized to balance

the current profit and future profit.

B. QRewriter MODULE

To obtain a stable and better dispatching policy, theQRewriter

module employs state aggregation to reduce the state-action

space and refine the dispatching policy which is obtained

from DDQN module. In QRwriter module, the agents

are also the idle vehicles. In detail, we use a five-tuple

〈SI ,AI ,RI ,PI , γI 〉 to describe theQRewriter module. The

detailed explanation as follows,

• State Space SI : State of agent n, snI ∈ SI . The

state is defined as (anD, IDtime, IDgrid), where anD is

the action which DDQN module chooses for agent n,

IDtime is the ID of time interval and IDgrid is the

ID of grid where the agent located. Same as DDQN

module, the IDtime and IDgrid are expressed with

one-hot code. The low-dimension QRewriter state

obtained by aggregating the complex supply-demand

distribution into anD with the state aggregation (DDQN

module) and we call the low-dimension QRewriter state

as meta state. In detail, the core of supply-demand

distribution is aggregated into anD as the DDQN mod-

ule makes dispatching decision anD based on the com-

plex and larger supply-demand distribution. Importantly,

the small meta state dimension provides the opportunity

to store Q-value with Q-table.

• Action Space AI : Action of agent n, anI ∈ AI .

Each agent owns seven actions, which is described as

{0, 1, 2, 3, 4, 5, 6}. The Seven actions indicate the seven

rewriting directions. In detail, anI = 2 means that the

agent will explore the second adjacent grid of the grid

the agent located in.

• Reward Space RI : Immediate reward of agent n,

rnI ∈ RI . The immediate reward rnI is depend on the

improvement gain, which is expressed as

G = rD(i, j)− rD(i, k), (2)

where rD(i, j) denotes the DDQN reward from grid i

to grid j and rD(i, k) denotes the DDQN reward from

grid i to grid k . Specially, grid j and grid k are the

dispatching results of DDQN module and QRewriter

module, respectively. The DDQN reward rD > 0 means

that agent is dispatched to a high-demand location and

rD < 0 means that agent is dispatched to a low-demand

location. Consequently, the improvement gain G > 0

indicates the QRewriter module finds a better dispatch-

ing policy and we let the improvement reward rnI = G.

When G < 0 indicates that the QRewriter module finds

a terrible improvement dispatching policy and we let

the improvement reward rnI = −1000. In summary,

the improvement reward is defined as

rnI =

{

G, G > 0

−1000, G < 0.
(3)

• Transmission probability PI : Transmission probabil-

ity in QRewriter module.

VOLUME 8, 2020 143335

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

• Reward discount factor γI : Reward discount factor in

QRewriter module.

C. EXAMPLE

To be more concrete, an example is demonstrated in Fig. 2.

At time 1, agent 1 observes state s1D(1) from environment and

chooses action a1D(1) according to the DDQN dispatching

policy. Then, DDQN module receives the reward r1D(1) =

p0v(1)log
p0v (1)

p1o(1)
− p1v(2)log

p1v (2)

p1o(2)
. Afterwards, the QRewriter

module obtains state S1I (1) and takes action a1I (1) according

to the improvement dispatching policy. The improvement

gain is computed as rD(0, 1)− rD(0, 3) and the improvement

reward r1I (1) is computed as equation (3). Finally, agent 1 is

dispatched to grid 3 according to the improvement dispatch-

ing policy. Specially, the dispatching action of DDQNmodule

is just a ‘‘suggest’’, the agents are dispatched only according

to the dispatching action of QRewriter module.

FIGURE 2. Example problem.

III. PROPOSED ALGORITHMS FOR MULTI-DRIVER

DISPATCHING

A. BACKGROUND OF RL ALGORITHM AND DRL

ALGORITHM

RL algorithm [16] is a ML algorithm that relies solely on

rewards. A RL agent, the action executor, interacts with envi-

ronment and obtains a numerical reward based on the current

state and action. Normally, a five-tuple 〈S,A,R,P, γ 〉 is

used to define the model of RL:

• S: State space, which includes all states of RL agents

(s ∈ S);

• A: Action space, which includes all actions of RL agents

(a ∈ A);

• R: Reward space, which includes all immediate reward

rs,a of RL agents (rs,a ∈ R);

• P: Transmission probability;

• γ : Reward discount factor.

In detail, at time t , a RL agent observes a state st from the

environment and takes an action at according to the action

policy π , which is a series of consecutive actions. After

taking at , the environment gives an immediate reward rst ,at
to the agent. The RL model uses the existing information to

compute the state-action value (Q-value) Qπ (st , at),

Qπ (st , at) = rst ,at + γQπ (st+1, at+1), (4)

where st+1 and at+1 represent the state and action of the next

time, respectively. Then, the state-action valueQπ (st , at) will

be stored into the brain of RL model, Q-table. On the whole,

RL model aims to obtain an optimal action policy π⋆ and

maximize the state-action value Qπ⋆
(st , at),

Qπ⋆

(st , at) = E[rst ,at + γ max
at+1

Qπ (st+1, at+1|st , at)]. (5)

Obviously, equation (5) is a Bellman optimality problem,

and dynamic programing is an effective method to solve the

Bellman optimality problem.

The RL model is able to obtain the optimal action policy

with accurate Q-values. Therefore, Q-value is a vital ele-

ment in the RL model. In RL model, Q-table is used to

store and output Q-values. Nevertheless, when the RL model

has substantial states, the computing complexity cannot be

managed and Q-table no longer an effective approach. For-

tunately, DRL model employs neural networks instead the

RL’s Q-table to estimate (output) the Q-values and solves the

substantial states problem.

B. DDQN MODULE ALGORITHM FOR MULTI-DRIVER

DISPATCHING

DDQN algorithm, a DRL algorithm, is composed of ǫ-greedy

action policy, evaluation Q-network, target Q-network and

action advantage function. In the following, each part is

explained in detail.

1) ǫ-GREEDY ACTION POLICY

At each DDQN training step, the brain of DDQN chooses

and takes an action. In theory, the brain should choose the

current optimal action. However, the current optimal action

in training stage is not the real optimal action since some

action values not be updated. Thus, always taking the current

optimal action will cause DDQN algorithm fall into local

optimum. Fortunately, ǫ-greedy action policy [17] is an effec-

tive approach to solve the local optimum problem. The core of

ǫ-greedy action policy is exploration-exploitation dilemma.

In detail, the brain of DDQN will choose the current optimal

action with probability 1−ǫ and choose a random action with

probability ǫ,

a =

{

current optimal action : argmax
a
Q, α > ǫ

random action, α < ǫ,
(6)

where ǫ is the exploring probability and α is a random

float number belongs to [0, 1]. Generally, the ǫ-greedy action

policy provides the opportunity to jump out from the local

optimum and explore new actions.

2) EVALUATION Q-NETWORK

Each DDQN agent obtains an immediate reward from envi-

ronment after taking an action according to ǫ-greedy action

policy. The long-term accumulated reward is composed of the

immediate reward,

rD(t)+γDrD(t + 1)+γ 2
DrD(t + 2)+ · · · + γ T−tD rD(T), (7)

143336 VOLUME 8, 2020

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

where γD denotes the reward discount factor in DDQN

module. Specially, the except value of long-term accumu-

lated reward is the Q-value. In DDQN module, we use

QD(sD(t), aD(t)) for denoting the Q-value,

QD(sD(t), aD(t)) = E[

T
∑

k=0

γ kDrD(t + k)|sD(t), aD(t)]. (8)

The goal of DDQN model is to maximize Q-value. However,

the optimal Q-value of next time is needed when calculate the

optimal Q-value of current time. Consequently, Q-value can

be expressed as,

QD(sD(t), aD(t))

= (1− ŴD)QD(sD(t), aD(t))

+ŴD(rD(t)+ γD max
aD(t+1)

QD(sD(t + 1), aD(t + 1))), (9)

where ŴD is learning rate in the DDQN module. Obviously,

a precise sate-action value is vital for DDQN model to seek

out the optimal action policy andmaximize state-action value.

For DDQN, the model utilizes neural network to estimate

state-action value, and we call the neural network as evalu-

ation Q-network. Afterwards, the Q-value is expressed as,

QD(sD(t), aD(t); θ)

= (1− ŴD)QD(sD(t), aD(t))

+ŴD(rD(t)+ γD max
aD(t+1)

QD(sD(t + 1), aD(t + 1); θ)),

(10)

where θ represents the parameters of evaluation Q-network.

Besides, we update the parameters of evaluation Q-network

by minimizing the loss J (θ),

J (θ) = E[(QD(sD(t), aD(t); θ)− (rD(t)

+γD max
aD(t+1)

QD(sD(t + 1), aD(t + 1); θ)))2], (11)

with gradient descent method [18].

3) TARGET Q-NETWORK

To improve the stability of DDQN, another independent

neural network, target Q-network, is introduced into DDQN

model. The core of target Q-network is to use the output

of target Q-network at time t + 1 instead of the output of

evaluation Q-network at time t+1 when compute the Q-value

at time t . Therefore, the equation (10) is turned into,

QD(sD(t), aD(t); θ)

= (1− ŴD)QD(sD(t), aD(t))

+ŴD(rD(t)+ γD max
aD(t+1)

QD(sD(t + 1), aD(t + 1); θ ′)),

(12)

where θ ′ represents the parameters of target Q-network.

In addition, we update the parameters of target Q-network

with the following equation periodically,

θ ′ = βθ + (1− β)θ ′, (13)

where β is the update rate. To reduce the relevance of

training samples, the memory replay is introduced into

the DDQN model. At each training step, a four-tuple

〈sD(t), aD(t), rD(t), sD(t + 1)〉 is stored into memory replay.

Afterwards, a mini-batch of samples are selected randomly

from memory replay to train the parameters of evaluation

Q-network.

4) ACTION ADVANTAGE FUNCTION

Action advantage function allows agents reference the aver-

age action value when choose action and improve the stability

and robustness of the DDQN model. After introducing the

action advantage function into DDQN model, the equation

(10) is expressed as,

QD(sD(t), aD(t); θ) = V (sD(t); θ)+ A(sD(t), aD(t); θ)

−
1

|AD|

∑

a(t)∈AD

A(sD(t), a(t); θ), (14)

where V (sD(t)) represents the state value of state sD(t),

A(sD(t), aD(t)) represents the action value of state sD(t) under

the action aD(t), A(sD(t), aD(t); θ) −
1
|AD|

∑

a(t)∈AD
A(sD(t),

a(t); θ) represents action advantage value of action aD(t)

and |AD| represents the dimension of DDQNmodule’s action

space. The action advantage function expresses the advantage

of an action a relative to the average value of state s. From the

perspective of quantitative relationship, it is the deviation of

random variable relative to mean value. In detail, if action a

is better than the mean value, then action advantage value is

positive; otherwise, it is negative. Consequently, a relatively

stable Q-value can be guaranteed by selecting the action

according to action advantage function.

The details of DDQNmodule algorithm is demonstrated in

Algorithm 1.

C. QRewriter MODULE ALGORITHM FOR MULTI-DRIVER

DISPATCHING

Since the complex supply-demand distribution is aggregated

in current DDQN action and we obtain the small meta state

space (QRewriter state space). In particular, the small meta

state dimension provides the opportunity to store Q-value

with Q-table. Consequently, in this module, we propose RL

algorithm, Q-learning algorithm, to improve the action policy

which obtained from DDQN module. At each Q-learning

training step, each agent observes a state sI (t) from envi-

ronment and takes an action aI (t) which also according to

the ǫ-greedy action policy. Afterwards, the Q-learning model

checks if the state sI (t) already exists in theQ-table. Q-table is

shown in Table 1, where QI (sI (t), a
1
I (t)) denotes the Q-value

under the state sI (t) with taking the first action a1I (t) in

the action space. If the state already exists in the Q-table,

we update the Q-value QI (sI (t), aI (t)) at the special location

in the Q-table according to the following equation,

QI (sI (t), aI (t))

= (1− ŴI)QI (sI (t), aI (t))

+ŴI (rI (t)+ γI max
aI (t+1)

QI (sI (t + 1), aI (t + 1))), (15)

where ŴI denotes the learning rate in the QRewriter mod-

ule. We add a new line to Q-table to store the information

VOLUME 8, 2020 143337

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

TABLE 1. The detailed information of Q-table.

Algorithm 1 DDQNModule Algorithm for Multi-Driver

Dispatching Problem

Input: Initial distribution of available vehicles and

initial distribution of orders.

1 for t = t△, 2t△, . . . , 144t△ do

2 for each available vehicle do

3 Taking an action according to ǫ-greedy action

policy ;

4 Storing (sD(t), aD(t), rD(t), sD(t + 1)) into the

memory replay;

5 Sampling some samples from memory replay;

6 Updating the evaluation Q-network with

θ ← θ +∇θJ (θ);

7 Updating the target Q-network with

θ ′← βθ + (1− β)θ ′, periodically;

Output: The dispatching actions for available vehicles.

Algorithm 2 QRewriter Module Algorithm for Multi-

Driver Dispatching Problem

Input: The dispatching actions of available vehicles.

1 for t = t△, 2t△, . . . , 144t△ do

2 for each available vehicle do

3 Taking an action according to ǫ-greedy action

policy ;

4 Checking the current state if already exists in the

Q-table;

5 If yes, update Q-table with equation (15);

6 If no, add a new line into Q-table and update

Q-value;

Output: The improvement dispatching actions for

available vehicles.

(Q-value) of state sI (t), otherwise. Since the limited and man-

aged state-action dimension allows Q-learning model gain

an integral Q-table, we are capable of getting an integral

Q-table through continuous training and updating Q-table.

Moreover, stable and precise Q-values are able to be extracted

from Q-table when the algorithm convergences. Therefore,

an optimal improvement action policy will be obtained with

the stable and precise Q-values. The QRewriter module algo-

rithm is shown in Algorithm 2.

D. ANALYSIS OF THE PROPOSED ALGORITHM

1) COMPLEXITY OF THE PROPOSED ALGORITHM

For the DDQN module, the complexity is O(|SD|
2|AD|),

where |SD| and |AD| represent the state space dimension

and action space dimension of DDQN module, respectively.

For the QRewriter module, the complexity is O(|SI |
2|AI |),

where |SI | and |AI | denote the state space dimension and

action space dimension of QRewriter module, respectively.

Consequently, the complexity of our proposed algorithm is

O(|SD|
2|AD|+|SI |

2|AI |). Since |AD| is equal to |AI |, the com-

plexity can be simplified asO(|AI |(|SD|
2+|SI |

2)). Obviously,

the state space dimension of DDQN module and QRewriter

module dominate the complexity of our proposed algorithm.

In addition, |SI | < |SD| since the available vehicles distribu-

tion and order distribution are aggregated into the QRewriter

state.

2) CONVERGENCE OF THE PROPOSED ALGORITHM

The essential problems of the DDQN module and QRewriter

module are the Bellman problems. For the Bellman equation,

we let

F(s, a) = r + γ maxQ(s, a)− Q⋆(s, a). (16)

Afterwards, we can obtain

E[F(s, a)|F] =
∑

s∈S

pas,s′ [r + γ maxQ(s, a)− Q⋆(s, a)]

= (HQ)(s, a)− Q⋆(s, a)

= (HQ)(s, a)− (HQ⋆)(s, a)

≤ γ ||d ||∞, (17)

where d = Q(s, a) − Q⋆(s, a) = (1 − Ŵ)Q(s, a) −

Ŵ(r+maxa′ Q(s
′, a′)−Q⋆(s, a)). According to [19] and [20],

the bounded DDQN reward and the bounded improvement

reward ensure that d convergences to zero when
∑

t Ŵt = 1

and
∑

t Ŵ
2
t < ∞. Therefore, our proposed algorithm is

able to convergence to the optimal Q-value and the efficient

multi-driver dispatching policy can be obtained.

IV. EXPERIMENT RESULTS

A. EXPERIMENT SETTING

1) SIMULATOR DESIGN

Generally, simulators are built to research the traffic problems

[21]–[23]. In our experiment, we set up a simulator to train

and test the performance of our proposed algorithm. To prove

the effectiveness of our simulator, the simulator parameters

are calibrated with the real world history data. Consequently,

the traffic behaviors of our simulator are same as the real

world traffic behaviors, and this is proved in our previous

work [24].

In the simulator, the given area is spilt into many grids and

one day is divided into 144 time intervals (each time interval

is t1 = 10 mins). During each time interval, the orders

are generated according to the real world data firstly. Then,

143338 VOLUME 8, 2020

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

TABLE 2. Performance comparison of comparative methods in terms of order response rate.

the vehicle distribution is generated according to the vehi-

cle state (start working and stop working), which is esti-

mated with Maximum Likelihood (ML) method. Afterwards,

all idle vehicles are dispatched to different grids according

to QRewriter-DDQN algorithm. Lastly, matching available

vehicles and orders (order dispatching).

2) DATA DESCRIPTION

Our real world data is provided by DiDi Chuxing, and the

data includes the vehicle data and order data in the core area

of Haikou. In detail, the vehicle data is composed of unique

vehicle ID, location latitude, location longitude and vehicle

state (start working or stop working). Order data is made up

of unique order ID, pick-up location (latitude and longitude),

drop-off location (latitude and longitude) and pick-up time.

Furthermore, the real world data is for three consecutive

weeks, the first two weeks’ data (training week) and the

third week’s data (testing week) are used to train the pro-

posed QRwriter-DDQN algorithm and test the performance

of QRewriter-DDQN algorithm, respectively.

3) EVALUATION METRIC

The goal of the proposed QRewriter-DDQN algorithm is to

serve more orders with dispatching available vehicles to the

grids with high demand. Consequently, the evaluation metric

is order response rate, which is defined as

Nso

Nto
× 100%, (18)

where Nso and Nto represent the number of served orders

of one day and the number of total orders of one day,

respectively.

B. COMPARATIVE METHODS

In order to analysis the proposed QRwriter-DDQN algo-

rithm performance, three comparative methods are used as

baseline methods. Moreover, the order response rates of

QRewriter-DDQN algorithm and baseline methods are the

average values of three runs with random seeds. The detailed

information of all methods is described as follow,

• Simulation: Simulation method means that vehicles

serve orders without any dispatching policy.

• Random: In this method, the available vehicles in the

same grid are uniformly dispatched to a random grid.

• Multi-agent DDQN: DDQN is a method of DRL, and

multi-agent DDQN is a method of multi-agent DRL.

Specially, multi-agent DDQN/DRL indicates that there

are multiple agents in the DDQN/DRL model. For

multi-agent DDQN, there are three layers in the neural

network. The three layers owns 128, 64, 32 neurons,

respectively. ReLU [25] is employed as the activation

function. For ǫ-greedy action policy, the ǫ is set as 0.3.

For memory replay, the sizes of memory replay and

random mini-batch are 10000 and 2000, respectively.

Besides, RMSProp algorithm [26] is used to update the

parameters of evaluation Q-network. The reward dis-

count factor and learning rate are set as 0.9 and 0.01,

respectively.

• QRewriter-DDQN: The parameter setting of DDQN

module is same as the multi-agent DDQN method. The

reward discount factor and learning rate of QRewriter

module are also set as 0.9 and 0.01, respectively.

Besides, the influence of ǫ value on QRewriter-DDQN

algorithm performance will be discussed in the Experi-

ment Analysis section.

Remark: The QRewriter-DDQN algorithm will fall into

local optimum and obtain poor performance when ǫ value too

big. However, the ǫ value too small will cause the QRewriter-

DDQN algorithm always choose random actions and obtain

a terrible dispatching policy. Consequently, a proper ǫ value

is vital for the QRewriter-DDQN algorithm performance.

C. EXPERIMENT ANALYSIS

To test the effectiveness and robustness of our proposed

QRewriter-DDQN algorithm in the idle vehicle dispatching

environment, three experiments are demonstrated with differ-

ent vehicle initializations. The experiment results are shown

in Table 2, and the results in the table are the average order

response rate over three runs. For all methods, the initial

vehicles are random generated with the random seeds and

orders are generated according to the real world data provided

by DiDi Chuxing.

As demonstrated in Table 2, the QRewriter-DDQN

algorithm outperforms the state-of-the-art algorithm like

multi-agent DDQN and other baselines in terms of order

response rate. Although multi-agent DDQN method is capa-

ble of learning the complex dynamic variations between

demand and supply, the state-action dimension of multi-agent

DDQN is too large to obtain sterling and stable dispatching

performance. The proposed QRewriter-DDQN algorithm is

able to reduce the state-action space by using state aggrega-

tion and improve the dispatching performance. In QRewriter-

DDQN, the small state-action dimension of the QRewriter

module allows the module get Q-value from simple and effi-

cient Q-table. Consequently, the QRewriter module elevates

the DDQN module action policy with the stable and accu-

rate Q-value. Furthermore, the multi-agent DDQN method,

which was proposed in the previous work [24], corresponds

to the DDQN module in our proposed QRewriter-DDQN

VOLUME 8, 2020 143339

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

FIGURE 3. The effectiveness and robustness of the proposed
QRewriter-DDQN algorithm under different DDQN module performances
(different DDQN module’s ǫD values) under 100% vehicle initialization.

algorithm, the comparison between multi-agent DDQN

method and QRewriter-DDQN method indicates the advan-

tages and effectiveness of QRewriter module. Finally,

the improvement space of QRewriter-DDQN algorithm

decreases as the initialized number of vehicles decreases. It is

because that the available vehicles which can be dispatched

are less when the initialized number of vehicles is small.

Fig. 3. indicates the effectiveness and robustness of

the proposed QRewriter-DDQN algorithm with different

DDQN module performances (different DDQN module’s

ǫD values) under 100% vehicle initialization. According to

the figure, even under poor DDQN module performance,

QRewriter-DDQN is capable of achieving the stable and

sterling performance. In detail, the order response rate of

ǫD = 0.7 is higher about 2% than the order response rate of

ǫD = 0.9. However, the same excellent performance can be

achievedwhen apply the QRewriter module to both of the two

cases. It is because that the QRewriter module can effectively

and efficiently abate the effect of the larger supply-demand

dimension and improve the performance improvement space

of DDQNmodule. Moreover, the QRewriter module employs

the steady Q-table to realize the improvement policy. Conse-

quently, QRewriter-DDQN algorithm is able to obtain stable

results even in a poor environment (poor DDQN module

performance).

Fig. 4. shows the order response rate of each day in

the testing week with different QRewriter module’s ǫI val-

ues under 100% vehicle initialization. The goal of this fig-

ure is to investigate how ǫI effects the performance of

QRewriter-DDQN algorithm. Specially, ǫI determines how

agents balance between exploration and exploitation. Clearly,

ǫI = 0.8 surpasses the performance with other ǫI values

according to the figure. The lager ǫI values, like ǫI = 1

and ǫI = 0.9, let the available vehicles always take the

current optimal actions. In the training steps, the current

optimal actions are not the real optimal actions. Therefore,

the QRewriter-DDQN algorithm will fall into the local opti-

mum and obtain poor dispatching performance. The small

ǫI values, like ǫI = 0.7, let idle vehicles take random

dispatching actions with larger probability and attenuate the

dispatching performance. Consequently, the proper ǫI value

is vital for the QRewriter-DDQN algorithm and we apply

ǫI = 0.8 in the QRewriter module to obtain better dispatching

FIGURE 4. The relationship between QRewriter module’s ǫI values and
QRewriter-DDQN algorithm performance under 100% vehicle
initialization.

FIGURE 5. Case study: the dispatching process for a specific idle vehicle.

policy. This phenomenon is also confirmed by the insights

provided in Remark.

D. CASE STUDY

Fig. 5. demonstrates the dispatching process for a specific

idle vehicle. The given area is split into many grids, and the

darker the color is, the more orders there are. As we can see,

DDQN module wants dispatch the idle vehicle to a grid with

less orders (grey dotted arrow). Nevertheless, the QRewriter

module finds that there is an adjacent grid with high demand

and dispatches the idle vehicle to the high demand grid (grey

solid arrow). In detail, the DDQN module obtains state sD
from environment and chooses action aD according to the

DDQN dispatching policy. The DDQN module suggests the

idle vehicle move to grid 1. However, the DDQNmodule only

employs reward which produced by action aD to update its

parameters and the idle vehicle will not be really dispatched

to grid 1. Afterwards, the QRewriter module gets state sI
from aD and part of sD. The improvement dispatching action

aI is taken with the improvement dispatching policy and the

idle vehicle is dispatched to grid 5. At last, the QRewriter

module uses the reward produced by action aI to update its

own parameters.

V. CONCLUSION

In this article, we proposed the QRewriter-DDQN algorithm

to dispatch available vehicles in ahead to the locations with

high demand to serve more orders. The QRewriter-DDQN

algorithm factorized into a DDQN module and a QRewriter

143340 VOLUME 8, 2020

W. Zhang et al.: Dynamic Fleet Management With Rewriting DRL

module, which were parameterized by neural networks and

Q-table with RL methods, respectively. Particularly, DDQN

module employed the KL distribution distance between

available vehicles and orders as excitation to capture the

complex dynamic variations of supply-demand. Afterwards,

the QRewriter module learned to improve the DDQN dis-

patching policy with the streamlined and effective Q-table in

RL. Importantly, the higher performance improvement space

of the DDQN dispatching policy can be obtained by aggre-

gating QRewriter state into low-dimensionmeta state. At last,

the experiment results demonstrated the significant improve-

ment of QRewriter-DDQN in terms of order response rate.

REFERENCES

[1] Didi Chuxing. [Online]. Available: http://www.didichuxing.com/en/

[2] Uber. [Online]. Available: https://www.uber.com/

[3] G. Xu, J. Wang, G. Q. Huang, and C.-H. Chen, ‘‘Data-driven resilient fleet

management for cloud asset-enabled urban flood control,’’ IEEE Trans.

Intell. Transp. Syst., vol. 19, no. 6, pp. 1827–1838, Jun. 2018.

[4] M. Dicorato, G. Forte, M. Trovato, C. B. Munoz, and G. Coppola,

‘‘An integrated DC microgrid solution for electric vehicle fleet manage-

ment,’’ IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7347–7355, Nov. 2019.

[5] Q. Cui, Y. Wang, K.-C. Chen, W. Ni, I.-C. Lin, X. Tao, and P. Zhang, ‘‘Big

data analytics and network calculus enabling intelligent management of

autonomous vehicles in a smart city,’’ IEEE Internet Things J., vol. 6, no. 2,

pp. 2021–2034, Apr. 2019.

[6] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac, ‘‘Reinforcement learn-

ing for solving the vehicle routing problem,’’ in Proc. Neural Inf. Process.

Syst. (NeurIPS), 2018, pp. 9839–9849.

[7] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-

torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[Online]. Available: http://arxiv.org/abs/1611.09940

[8] J. Jin,M. Zhou,W. Zhang,M. Li, Z. Guo, Z. Qin, Y. Jiao, X. Tang, C.Wang,

J.Wang, G.Wu, and J. Ye, ‘‘CoRide: Joint order dispatching and fleet man-

agement for multi-scale ride-hailing platforms,’’ 2019, arXiv:1905.11353.

[Online]. Available: http://arxiv.org/abs/1905.11353

[9] J. Holler, R. Vuorio, Z. Qin, X. Tang, Y. Jiao, T. Jin, S. Singh, C.Wang, and

J. Ye, ‘‘Deep reinforcement learning for multi-driver vehicle dispatching

and repositioning problem,’’ 2019, arXiv:1911.11260. [Online]. Available:

http://arxiv.org/abs/1911.11260

[10] G. Guo and Y. Xu, ‘‘A deep reinforcement learning approach to ride-

sharing vehicles dispatching in autonomous mobility-on-demand sys-

tems,’’ IEEE Intell. Transp. Syst. Mag., early access, Apr. 1, 2020,

doi: 10.1109/MITS.2019.2962159.

[11] J. J. Q. Yu,W. Yu, and J. Gu, ‘‘Online vehicle routing with neural combina-

torial optimization and deep reinforcement learning,’’ IEEE Trans. Intell.

Transp. Syst., vol. 20, no. 10, pp. 3806–3817, Oct. 2019.

[12] T. Oda and C. Joe-Wong, ‘‘MOVI: Amodel-free approach to dynamic fleet

management,’’ in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,

Apr. 2018, pp. 2708–2716.

[13] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, ‘‘DeepPool: Distributed

model-free algorithm for ride-sharing using deep reinforcement learn-

ing,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4714–4727,

Dec. 2019.

[14] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and

J. Ye, ‘‘Large-scale order dispatch in on-demand ride-hailing platforms:

A learning and planning approach,’’ in Proc. 24th ACM SIGKDD Int. Conf.

Knowl. Discovery Data Mining, Jul. 2018, pp. 905–913.

[15] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and

N. de Freitas, ‘‘Dueling network architectures for deep reinforcement

learning,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1995–2003.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

vol. 1. Cambridge, MA, USA: MIT Press, 1998.

[17] A. S. Mignona and R. L. A. Rochaa, ‘‘An adaptive implementation of

ǫ-greedy in reinforcement learning,’’ Procedia Comput. Sci., vol. 109,

pp. 1146–1151, 2017, doi: 10.1016/j.procs.2017.05.431.

[18] S. Ruder, ‘‘An overview of gradient descent optimization

algorithms,’’ 2016, arXiv:1609.04747. [Online]. Available: http://arxiv.

org/abs/1609.04747

[19] F. S. Melo, ‘‘Convergence of Q-learning: A simple proof,’’ Inst. Syst.

Robot., Tech. Rep., 2001, pp. 1–4.

[20] T. Jaakkola, M. I. Jordan, and S. P. Singh, ‘‘Convergence of stochastic

iterative dynamic programming algorithms,’’ in Proc. Neural Inf. Process.

Syst. (NeurIPS), 1994, pp. 703–710, 1994.

[21] X. Liang, X. Du, G. Wang, and Z. Han, ‘‘A deep reinforcement learning

network for traffic light cycle control,’’ IEEE Trans. Veh. Technol., vol. 68,

no. 2, pp. 1243–1253, Feb. 2019.

[22] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement

learning,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1928–1937.

[23] K. T. Seow, N. H. Dang, and D. Lee, ‘‘A collaborative multiagent taxi-

dispatch system,’’ IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 607–616,

Jul. 2010.

[24] W. Zhang, Q.Wang, J. Li, and D. Shi, ‘‘Dynamic vehicle dispatching based

on minimum fleet a deep reinforcement learning method,’’ in Proc. Neural

Inf. Process. Syst. (NeurIPS, Deep Reinforcement Learn. Workshop), 2019.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,

MA, USA: MIT Press, 2016.

[26] N. Ketkar, ‘‘Stochastic gradient descent,’’ in Deep Learning With Python.

Berkeley, CA, USA: Apress, 2017, doi: 10.1007/978-1-4842-2766-4_8.

WENQI ZHANG received the B.S. degree from

the Beijing University of Posts and Telecom-

munications, China, in 2016. She is currently

pursuing the Ph.D. degree with the National Engi-

neering Laboratory for Mobile Network Security,

Wireless Technology Innovation Institute, Beijing

University of Posts and Telecommunications. Her

research interests include dynamic fleet manage-

ment, reinforcement learning, and UAV-assisted

networks.

QIANG WANG (Member, IEEE) received the

B.S. degree in material science and engineering

from the Hefei University of Technology, Hefei,

China, in 2003, and the Ph.D. degree in commu-

nication engineering from the Beijing University

of Posts and Telecommunications, Beijing, China,

in 2008. Since 2008, he has been working with the

School of Information and Communication Engi-

neering, where he is currently an Associate Profes-

sor. He has participated in many national projects,

such as NSFC, 863 and so on. His research interests include information

theory, wireless communications, VLSI, and statistical inference.

JINGJING LI is currently pursuing the mas-

ter’s degree with the National Engineering Lab-

oratory for Mobile Network Security and the

Wireless Technology Innovation Institute, Beijing

University of Posts and Telecommunications. Her

research interests include rebalancing bike sharing

systems and reinforcement learning.

CHEN XU is currently pursuing the master’s

degree with the National Engineering Laboratory

for Mobile Networks Security and Wireless Tech-

nology Innovation Institute, Beijing University of

Posts and Telecommunications. His research inter-

ests include estimated time of arrival and rein-

forcement learning.

VOLUME 8, 2020 143341

http://dx.doi.org/10.1109/MITS.2019.2962159
http://dx.doi.org/10.1016/j.procs.2017.05.431
http://dx.doi.org/10.1007/978-1-4842-2766-4_8

	INTRODUCTION
	PROBLEM FORMULATION
	DDQN MODULE
	QRewriter MODULE
	EXAMPLE

	PROPOSED ALGORITHMS FOR MULTI-DRIVER DISPATCHING
	BACKGROUND OF RL ALGORITHM AND DRL ALGORITHM
	DDQN MODULE ALGORITHM FOR MULTI-DRIVER DISPATCHING
	-GREEDY ACTION POLICY
	EVALUATION Q-NETWORK
	TARGET Q-NETWORK
	ACTION ADVANTAGE FUNCTION

	QRewriter MODULE ALGORITHM FOR MULTI-DRIVER DISPATCHING
	ANALYSIS OF THE PROPOSED ALGORITHM
	COMPLEXITY OF THE PROPOSED ALGORITHM
	CONVERGENCE OF THE PROPOSED ALGORITHM

	EXPERIMENT RESULTS
	EXPERIMENT SETTING
	SIMULATOR DESIGN
	DATA DESCRIPTION
	EVALUATION METRIC

	COMPARATIVE METHODS
	EXPERIMENT ANALYSIS
	CASE STUDY

	CONCLUSION
	REFERENCES
	Biographies
	WENQI ZHANG
	QIANG WANG
	JINGJING LI
	CHEN XU

